
Financial Derivatives Toolbox™

User’s Guide

R2012a

How to Contact MathWorks

www.mathworks.com Web
comp.soft-sys.matlab Newsgroup
www.mathworks.com/contact_TS.html Technical Support

suggest@mathworks.com Product enhancement suggestions
bugs@mathworks.com Bug reports
doc@mathworks.com Documentation error reports
service@mathworks.com Order status, license renewals, passcodes
info@mathworks.com Sales, pricing, and general information

508-647-7000 (Phone)

508-647-7001 (Fax)

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098
For contact information about worldwide offices, see the MathWorks Web site.

Financial Derivatives Toolbox™ User’s Guide

© COPYRIGHT 2000–2012 The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or
reproduced in any form without prior written consent from The MathWorks, Inc.

FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation
by, for, or through the federal government of the United States. By accepting delivery of the Program
or Documentation, the government hereby agrees that this software or documentation qualifies as
commercial computer software or commercial computer software documentation as such terms are used
or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and
conditions of this Agreement and only those rights specified in this Agreement, shall pertain to and govern
the use, modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal government)
and shall supersede any conflicting contractual terms or conditions. If this License fails to meet the
government’s needs or is inconsistent in any respect with federal procurement law, the government agrees
to return the Program and Documentation, unused, to The MathWorks, Inc.

Trademarks

MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand
names may be trademarks or registered trademarks of their respective holders.

Patents

MathWorks products are protected by one or more U.S. patents. Please see
www.mathworks.com/patents for more information.

http://www.mathworks.com/trademarks
http://www.mathworks.com/patents

Revision History
June 2000 First printing New for Version 1.0 (Release 12)
September 2001 Second printing Revised for Version 2.0 (Release 12.1)
April 2004 Third printing Revised for Version 3.0 (Release 14)
September 2005 Fourth printing Revised for Version 4.0 (Release 14SP3)
March 2006 Online only Revised for Version 4.0.1 (Release 2006a)
September 2006 Online only Revised for Version 4.1 (Release 2006b)
March 2007 Fifth printing Revised for Version 5.0 (Release 2007a)
September 2007 Sixth printing Revised for Version 5.1 (Release 2007b)
March 2008 Online only Revised for Version 5.2 (Release 2008a)
October 2008 Online only Revised for Version 5.3 (Release 2008b)
March 2009 Online only Revised for Version 5.4 (Release 2009a)
September 2009 Online only Revised for Version 5.5 (Release 2009b)
March 2010 Online only Revised for Version 5.5.1 (Release 2010a)
September 2010 Online only Revised for Version 5.6 (Release 2010b)
April 2011 Online only Revised for Version 5.7 (Release 2011a)
September 2011 Online only Revised for Version 5.8 (Release 2011b)
March 2012 Online only Revised for Version 5.9 (Release 2012a)

Contents

Getting Started

1
Product Description . 1-2
Key Features . 1-2

Interest-Rate-Based Derivatives . 1-3

Equity-Based Derivatives . 1-4

Expected Users . 1-5

Portfolio Creation . 1-6
Introduction . 1-6
Interest-Rate-Based Derivatives . 1-6
Equity Derivatives . 1-7
Adding Instruments to an Existing Portfolio 1-8

Portfolio Management . 1-10
Instrument Constructors . 1-10
Creating New Instruments or Properties 1-11
Searching or Subsetting a Portfolio 1-13

Interest-Rate Derivatives

2
Understanding Interest-Rate Derivative
Instruments . 2-2
Introduction . 2-2
Bond . 2-3
Bond Options . 2-6
Bond with Embedded Options . 2-6
Fixed-Rate Note . 2-10

v

Floating-Rate Note . 2-11
Cap . 2-12
Floor . 2-13
Range Note . 2-13
Swap . 2-14
Swaption . 2-15

Overview of Interest-Rate Tree Models 2-17
Interest-Rate Modeling . 2-17
Rate and Price Trees . 2-18
Viewing Rate or Price Movement with This Toolbox 2-19

Understanding the Interest-Rate Term Structure 2-22
Introduction . 2-22
Interest Rates Versus Discount Factors 2-22
Interest-Rate Term Conversions . 2-27
Functions That Model the Interest-Rate Term Structure . . 2-31

Computing Prices and Sensitivities Using the
Interest-Rate Term Structure . 2-37
Introduction . 2-37
Computing Instrument Prices . 2-38
Computing Instrument Sensitivities 2-40

Understanding Interest-Rate Tree Models 2-42
Introduction . 2-42
Building a Tree of Forward Rates . 2-43
Specifying the Volatility Model (VolSpec) 2-45
Specifying the Interest-Rate Term Structure (RateSpec) . . 2-48
Specifying the Time Structure (TimeSpec) 2-49
Examples of Tree Creation . 2-51
Examining Trees . 2-52

Computing Prices and Sensitivities Using Interest-Rate
Tree Models . 2-64
Introduction . 2-64
Computing Instrument Prices . 2-64
Computing Instrument Sensitivities 2-73
Calibrating the Hull-White Model Using Market Data . . . 2-76

vi Contents

Interest-Rate Derivatives Using Closed-Form
Solutions . 2-87
Pricing Caps and Floors Using the Black Option Model . . 2-87

Graphical Representation of Trees 2-88
Introduction . 2-88
Observing Interest Rates . 2-88
Observing Instrument Prices . 2-92

Equity Derivatives

3
Understanding Equity Trees . 3-2
Introduction . 3-2
Building Equity Binary Trees . 3-3
Building Implied Trinomial Trees . 3-8
Examining Equity Trees . 3-16
Differences Between CRR and EQP Tree Structures 3-21

Understanding Equity Exotic Options 3-22
Introduction . 3-22
Asian Option . 3-22
Barrier Option . 3-23
Basket Option . 3-25
Compound Option . 3-26
Lookback Option . 3-27
Digital Option . 3-28
Rainbow Option . 3-29
Vanilla Option . 3-30

Computing Prices and Sensitivities for Equity
Derivatives Using Trees . 3-33
Computing Instrument Prices . 3-33
Computing Prices Using CRR . 3-35
Computing Prices Using EQP . 3-37
Computing Prices Using ITT . 3-39
Examining Output from the Pricing Functions 3-41
Computing Instrument Sensitivities 3-45

vii

Graphical Representation of CRR, EQP, LR, and ITT
Trees . 3-49

Equity Derivatives Using Closed-Form Solutions 3-51
Introduction . 3-51
Computing Prices and Sensitivities Using the Black-Scholes
Model . 3-55

Computing Prices and Sensitivities Using the Black
Model . 3-57

Computing Prices and Sensitivities Using the
Roll-Geske-Whaley Model . 3-59

Computing Prices and Sensitivities Using the
Bjerksund-Stensland Model . 3-60

Hedging Portfolios

4
Hedging . 4-2

Hedging Functions . 4-3
Introduction . 4-3
Hedging with hedgeopt . 4-4
Self-Financing Hedges with hedgeslf 4-12

Specifying Constraints with ConSet 4-16
Introduction . 4-16
Setting Constraints . 4-16
Portfolio Rebalancing . 4-19

Hedging with Constrained Portfolios 4-21
Overview . 4-21
Example: Fully Hedged Portfolio . 4-21
Example: Minimize Portfolio Sensitivities 4-24
Example: Under-Determined System 4-25
Example: Portfolio Constraints with hedgeslf 4-27

viii Contents

Function Reference

5
Interest-Rate Instruments . 5-2

Interest-Rate Term Structure . 5-3

Interest-Rate Tree Models . 5-4
Heath-Jarrow-Morton Trees . 5-4
Heath-Jarrow-Morton Tree Utililites 5-5
Black-Derman-Toy Trees . 5-6
Black-Derman-Toy Tree Utilities . 5-6
Hull-White Trees . 5-7
Hull-White Tree Utilities . 5-8
Black-Karasinski Trees . 5-9
Black-Karasinski Tree Utilities . 5-9
Tree Manipulation . 5-10

Interest-Rate Closed-Form Solutions 5-11

Equity Instruments . 5-12

Equity Tree Models . 5-13
Cox-Ross-Rubinstein Trees . 5-13
Cox-Ross-Rubinstein Tree Utilities 5-13
Equal Probabilities Binomial Trees 5-14
Equal Probabilities Binomial Tree Utilities 5-14
Leisen-Reimer Trees . 5-15
Leisen-Reimer Tree Utilities . 5-15
Implied Trinomial Trees . 5-15
Implied Trinomial Tree Utilities . 5-15
Tree Manipulation . 5-16

Equity Derivative Closed-Form Solutions 5-17
Black-Scholes Option Pricing Model 5-17
Black Option Pricing Model . 5-18
Role-Geske-Whaley Option Pricing Model 5-19
Bjerksund-Stensland Option Pricing Model 5-19
Nengjiu Ju Approximation Pricing Model 5-19
Stulz Option Pricing . 5-20

ix

Monte Carlo Simulation for Equity Derivatives 5-21
Longstaff-Schwartz Option Pricing Model 5-21

Controlling Defaults and Options 5-22

Portfolio Handling for Interest and Equity
Instruments . 5-23

Financial Object Structures . 5-24

Hedging Portfolios . 5-25

Functions — Alphabetical List

6

Derivatives Pricing Options

A
Pricing Options Structure . A-2
Introduction . A-2
Default Structure . A-2

Customizing the Structure . A-5

Bibliography

B
Black-Derman-Toy (BDT) Modeling B-2

Heath-Jarrow-Morton (HJM) Modeling B-3

x Contents

Hull-White (HW) and Black-Karasinski (BK)
Modeling . B-4

Cox-Ross-Rubinstein (CRR) Modeling B-5

Implied Trinomial Tree (ITT) Modeling B-6

Leisen-Reimer Tree (LR) Modeling B-7

Equal Probabilities Tree (EQP) Modeling B-8

Closed-Form Solutions Modeling . B-9

Financial Derivatives . B-10

Examples

C
Instrument Portfolio Examples . C-2

Interest Rate Environment Examples C-3

HJM Examples . C-4

Volatility Modeling . C-5

BDT Examples . C-6

Rate Specification Creation . C-7

Time Specification . C-8

Sensitivity . C-9

xi

Treeviewer Examples . C-10

Creating Equity Derivatives . C-11

Pricing Equity Derivatives . C-12

Closed-Form Solution Examples . C-13

Hedging Examples . C-14

Hedging with Constrained Portfolios C-15

Glossary

Index

xii Contents

1

Getting Started

• “Product Description” on page 1-2

• “Interest-Rate-Based Derivatives” on page 1-3

• “Equity-Based Derivatives” on page 1-4

• “Expected Users” on page 1-5

• “Portfolio Creation” on page 1-6

• “Portfolio Management” on page 1-10

1 Getting Started

Product Description
Model and analyze equity and fixed-income derivatives

Financial Derivatives Toolbox™ provides functions for pricing, valuing, and
analyzing equity and fixed-income derivatives. These functions can be used on
both individual derivatives and portfolios of derivatives. The toolbox enables
you to compute prices and sensitivities, view price evolutions, and perform
hedging analyses using common equity and fixed-income modeling methods.
It provides analysis functions for interest rate derivatives, such as options,
swaps, swaptions, floating-rate notes, caps, and bonds with embedded options,
and for exotic equity options, including basket, digital, and rainbow options.

Key Features

• CRR, EQP, LR, and ITT tree models for vanilla and exotic equity options

• Black Scholes, Black, Roll-Geske-Whaley, Bjerksund-Stensland, Nengjiu
Ju, Stulz, and Longstaff-Schwartz models for vanilla and exotic equity
options

• Interest rate term structure pricing for fixed-income instruments

• HJM, BDT, BK, and HW tree models for fixed-income instruments

• Hedging strategies for minimizing portfolio cost (or sensitivities) given
target sensitivities (or costs)

• Interest-rate instrument pricing and valuation for bonds, vanilla options,
bonds with embedded options, vanilla swaps, swaptions, caps, floors, and
floating rate notes

• Equity instrument pricing and valuation for options (vanilla, Asian,
lookback, barrier, digital, rainbow, basket, compound, and chooser)

1-2

Interest-Rate-Based Derivatives

Interest-Rate-Based Derivatives
The toolbox provides functionality that supports the creation and management
of these interest-rate-based instruments:

• Bonds

• Bond options (puts and calls)

• Bond with embedded options

• Caps

• Fixed-rate notes

• Floating-rate notes

• Floors

• Swaps

• Swaption

Additionally, the toolbox provides functions to create arbitrary cash flow
instruments. The toolbox provides pricing and sensitivity routines for these
instruments. For more information, see “Computing Prices and Sensitivities
Using the Interest-Rate Term Structure” on page 2-37 ,“Computing
Prices and Sensitivities Using Interest-Rate Tree Models” on page 2-64,
and“Interest-Rate Derivatives Using Closed-Form Solutions” on page 2-87.

1-3

1 Getting Started

Equity-Based Derivatives
The toolbox also provides functions to create and manage various equity-based
derivatives, including the following:

• Asian options

• Barrier options

• Basket options

• Compound options

• Digital options

• Lookback options

• Rainbow options

• Vanilla stock options (put and call options)

The toolbox also provides pricing and sensitivity routines for these
instruments. (See “Computing Prices and Sensitivities for Equity Derivatives
Using Trees” on page 3-33, “Equity Derivatives Using Closed-Form Solutions”
on page 3-51, and “Basket Option” on page 3-25.)

1-4

Expected Users

Expected Users
In general, this guide assumes experience working with financial derivatives
and some familiarity with the underlying models.

In designing Financial Derivatives Toolbox documentation, we assume your
title is similar to one of these:

• Analyst, quantitative analyst

• Risk manager

• Portfolio manager

• Fund manager, asset manager

• Financial engineer

• Trader

• Student, professor, or other academic

We also assume your background, education, training, and responsibilities
match some aspects of this profile:

• Finance, economics, perhaps accounting

• Engineering, mathematics, physics, other quantitative sciences

• Bachelor’s degree minimum; MS or MBA likely; Ph.D. perhaps; CFA

• Comfortable with probability theory, statistics, and algebra

• Understand linear or matrix algebra, calculus, and differential equations

• Previously done traditional programming (C, Fortran, etc.)

• Responsible for instruments or analyses involving large sums of money

• Perhaps new to MATLAB®

1-5

1 Getting Started

Portfolio Creation

In this section...

“Introduction” on page 1-6

“Interest-Rate-Based Derivatives” on page 1-6

“Equity Derivatives” on page 1-7

“Adding Instruments to an Existing Portfolio” on page 1-8

Introduction
The instadd function creates a set of instruments (portfolio) or adds
instruments to an existing instrument collection. The TypeString argument
specifies the type of the investment instrument. For interest-rate-based
derivatives, the types are: Bond, OptBond, CashFlow, Fixed, Float, Cap,
Floor, and Swap. For equity derivatives, the types are Asian, Barrier,
Compound, Lookback, and OptStock.

The input arguments following TypeString are specific to the type of
investment instrument. Thus, the TypeString argument determines how the
remainder of the input arguments is interpreted. For example, instadd with
the type string Bond creates a portfolio of bond instruments.

InstSet = instadd('Bond', CouponRate, Settle, Maturity, Period,
Basis, EndMonthRule, IssueDate, FirstCouponDate, LastCouponDate,
StartDate, Face)

Interest-Rate-Based Derivatives
In addition to the bond instrument already described, the toolbox can create
portfolios containing the following set of interest-rate-based derivatives:

• Bond option

InstSet = instadd('OptBond', BondIndex, OptSpec, Strike, ExerciseDates, AmericanOpt)

• Arbitrary cash flow instrument

InstSet = instadd('CashFlow', CFlowAmounts, CFlowDates, Settle, Basis)

1-6

Portfolio Creation

• Fixed-rate note instrument

InstSet = instadd('Fixed', CouponRate, Settle, Maturity, FixedReset, Basis, Principal)

• Floating-rate note instrument

InstSet = instadd('Float', Spread, Settle, Maturity, FloatReset, Basis, Principal)

• Cap instrument

InstSet = instadd('Cap', Strike, Settle, Maturity, CapReset, Basis, Principal)

• Floor instrument

InstSet = instadd('Floor', Strike, Settle, Maturity, FloorReset, Basis, Principal)

• Swap instrument

InstSet = instadd('Swap', LegRate, Settle, Maturity, LegReset, Basis, Principal, LegType)

• Swaption instrument

InstSet = instadd('Swaption', OptSpec, Strike, ExerciseDates, Spread, ...

Settle, Maturity, AmericanOpt, SwapReset, Basis, Principal)

• Bond with embedded option instrument

InstSet = instadd('OptEmBond', CouponRate, Settle, Maturity, OptSpec, Strike, ...

ExerciseDates, 'AmericanOpt', AmericanOpt, 'Period', Period,'Basis', Basis, ...

'EndMonthRule', EndMonthRule,'Face',Face,'IssueDate', IssueDate, 'FirstCouponDate', ...

FirstCouponDate, 'LastCouponDate', LastCouponDate,'StartDate', StartDate)

Equity Derivatives
The toolbox can create portfolios containing the following set of equity
derivatives:

• Asian instrument

InstSet = instadd('Asian', OptSpec, Strike, Settle, ExerciseDates, AmericanOpt, ...

AvgType, AvgPrice, AvgDate)

• Barrier instrument

1-7

1 Getting Started

InstSet = instadd('Barrier', OptSpec, Strike, Settle, ExerciseDates, AmericanOpt, ...

BarrierType, Barrier, Rebate)

• Compound instrument

InstSet = instadd('Compound', UOptSpec, UStrike, USettle, UExerciseDates, UAmericanOpt, ...

COptSpec, CStrike, CSettle, CExerciseDates, CAmericanOpt)

• Lookback instrument

InstSet = instadd('Lookback', OptSpec, Strike, Settle, ExerciseDates, AmericanOpt)

• Stock option instrument

InstSet = instadd('OptStock', OptSpec, Strike, Settle, Maturity, AmericanOpt)

Adding Instruments to an Existing Portfolio
To use the instadd function to add additional instruments to an existing
instrument portfolio, provide the name of an existing portfolio as the first
argument to the instadd function.

Consider, for example, a portfolio containing two cap instruments only:

Strike = [0.06; 0.07];
Settle = '08-Feb-2000';
Maturity = '15-Jan-2003';

Port_1 = instadd('Cap', Strike, Settle, Maturity);

These commands create a portfolio containing two cap instruments with the
same settlement and maturity dates, but with different strikes. In general,
the input arguments describing an instrument can be either a scalar, or
a number of instruments (NumInst)-by-1 vector in which each element
corresponds to an instrument. Using a scalar assigns the same value to all
instruments passed in the call to instadd.

Use the instdisp command to display the contents of the instrument set:

instdisp(Port_1)

Index Type Strike Settle Maturity CapReset Basis Principal

1-8

Portfolio Creation

1 Cap 0.06 08-Feb-2000 15-Jan-2003 1 0 100

2 Cap 0.07 08-Feb-2000 15-Jan-2003 1 0 100

Now add a single bond instrument to Port_1. The bond has a 4.0% coupon
and the same settlement and maturity dates as the cap instruments.

CouponRate = 0.04;

Port_1 = instadd(Port_1, 'Bond', CouponRate, Settle, Maturity);

Use instdisp again to see the resulting instrument set:

instdisp(Port_1)

Index Type Strike Settle Maturity CapReset Basis Principal

1 Cap 0.06 08-Feb-2000 15-Jan-2003 1 0 100

2 Cap 0.07 08-Feb-2000 15-Jan-2003 1 0 100

Index Type CouponRate Settle Maturity Period Basis EndMonthRule IssueDate ... Face

3 Bond 0.04 08-Feb-2000 15-Jan-2003 2 0 1 NaN ... 100

1-9

1 Getting Started

Portfolio Management

In this section...

“Instrument Constructors” on page 1-10

“Creating New Instruments or Properties” on page 1-11

“Searching or Subsetting a Portfolio” on page 1-13

Instrument Constructors
The toolbox provides constructors for the most common financial instruments.
A constructor is a function that builds a structure dedicated to a certain type
of object; in this toolbox, an object is a type of market instrument.

The instruments and their constructors in this toolbox are listed below.

Instrument Constructor

Asian option instasian

Barrier option instbarrier

Bond instbond

Bond option instoptbnd

Arbitrary cash flow instcf

Compound option instcompound

Fixed-rate note instfixed

Floating-rate note instfloat

Cap instcap

Floor instfloor

Lookback option instlookback

Stock option instoptstock

Swap instswap

Swaption instswaption

1-10

Portfolio Management

Each instrument has parameters (fields) that describe the instrument. The
toolbox functions let you do the following:

• Create an instrument or portfolio of instruments.

• Enumerate stored instrument types and information fields.

• Enumerate instrument field data.

• Search and select instruments.

The instrument structure consists of various fields according to instrument
type. A field is an element of data associated with the instrument. For
example, a bond instrument contains the fields CouponRate, Settle,
Maturity, and so on. Additionally, each instrument has a field that identifies
the investment type (bond, cap, floor, and so on).

In reality, the set of parameters for each instrument is not fixed. You have
the ability to add additional parameters. These additional fields are ignored
by the toolbox functions. They may be used to attach additional information
to each instrument, such as an internal code describing the bond.

Parameters not specified when creating an instrument default to NaN, which,
in general, means that the functions using the instrument set (such as
intenvprice or hjmprice) will use default values. At the time of pricing,
an error occurs if any of the required fields is missing, such as Strike in a
cap or CouponRate in a bond.

Creating New Instruments or Properties
Use the instaddfield function to create a kind of instrument or to add new
properties to the instruments in an existing instrument collection.

To create a kind of instrument with instaddfield, you must specify three
arguments:

• Type

• FieldName

• Data

1-11

1 Getting Started

Type defines the type of the new instrument, for example, Future. FieldName
names the fields uniquely associated with the new type of instrument. Data
contains the data for the fields of the new instrument.

An optional fourth argument is ClassList. ClassList specifies the data
types of the contents of each unique field for the new instrument.

Use either syntax to create a kind of instrument using instaddfield:

InstSet = instaddfield('FieldName', FieldList, 'Data', DataList,...

'Type', TypeString)

InstSet = instaddfield('FieldName', FieldList, 'FieldClass',...

ClassList, 'Data' , DataList, 'Type', TypeString)

To add new instruments to an existing set, use:

InstSetNew = instaddfield(InstSetOld, 'FieldName', FieldList,...

'Data', DataList, 'Type', TypeString)

As an example, consider a futures contract with a delivery date of July 15,
2000, and a quoted price of $104.40. Since Financial Derivatives Toolbox
software does not directly support this instrument, you must create it using
the function instaddfield. Use these parameters to create instruments:

• Type: Future

• Field names: Delivery and Price

• Data: Delivery is July 15, 2000, and price is $104.40.

Enter the data into MATLAB software:

Type = 'Future';
FieldName = {'Delivery', 'Price'};
Data = {'Jul-15-2000', 104.4};

Finally, create the portfolio with a single instrument:

Port = instaddfield('Type', Type, 'FieldName', FieldName,...
'Data', Data);

1-12

Portfolio Management

Now use the function instdisp to examine the resulting single-instrument
portfolio:

instdisp(Port)

Index Type Delivery Price
1 Future Jul-15-2000 104.4

Because your portfolio Port has the same structure as those created using
the function instadd, you can combine portfolios created using instadd with
portfolios created using instaddfield. For example, you can now add two
cap instruments to Port with instadd.

Strike = [0.06; 0.07];

Settle = '08-Feb-2000';

Maturity = '15-Jan-2003';

Port = instadd(Port, 'Cap', Strike, Settle, Maturity);

View the resulting portfolio using instdisp.

instdisp(Port)

Index Type Delivery Price

1 Future 15-Jul-2000 104.4

Index Type Strike Settle Maturity CapReset Basis Principal

2 Cap 0.06 08-Feb-2000 15-Jan-2003 1 0 100

3 Cap 0.07 08-Feb-2000 15-Jan-2003 1 0 100

Searching or Subsetting a Portfolio
Financial Derivatives Toolbox software provides functions that enable you to:

• Find specific instruments within a portfolio.

• Create a subset portfolio consisting of instruments selected from a larger
portfolio.

The instfind function finds instruments with a specific parameter value;
it returns an instrument index (position) in a large instrument set. The
instselect function, on the other hand, subsets a large instrument set into

1-13

1 Getting Started

a portfolio of instruments with designated parameter values; it returns an
instrument set (portfolio) rather than an index.

instfind
The general syntax for instfind is

IndexMatch = instfind(InstSet, 'FieldName', FieldList, 'Data',...

DataList, 'Index', IndexSet, 'Type', TypeList)

InstSet is the instrument set to search. Within InstSet instruments
categorized by type, each type can have different data fields. The stored data
field is a row vector or string for each instrument.

The FieldList, DataList, and TypeList arguments indicate values to
search for in the FieldName, Data, and Type data fields of the instrument
set. FieldList is a cell array of field name(s) specific to the instruments.
DataList is a cell array or matrix of acceptable values for the parameter(s)
specified in FieldList. FieldName and Data (consequently, FieldList and
DataList) parameters must appear together or not at all.

IndexSet is a vector of integer index(es) designating positions of instruments
in the instrument set to check for matches; the default is all indices available
in the instrument set. TypeList is a string or cell array of strings restricting
instruments to match one of the TypeList types; the default is all types in the
instrument set.

IndexMatch is a vector of positions of instruments matching the input
criteria. Instruments are returned in IndexMatch if all the FieldName, Data,
Index, and Type conditions are met. An instrument meets an individual
field condition if the stored FieldName data matches any of the rows listed
in the DataList for that FieldName.

instfind Examples. The examples use the provided MAT-file deriv.mat.

The MAT-file contains an instrument set, HJMInstSet, that contains eight
instruments of seven types.

1-14

Portfolio Management

load deriv.mat

instdisp(HJMInstSet)

Index Type CouponRate Settle Maturity Period Basis ... Name Quantity

1 Bond 0.04 01-Jan-2000 01-Jan-2003 1 NaN ... 4% bond 100

2 Bond 0.04 01-Jan-2000 01-Jan-2004 2 NaN ... 4% bond 50

Index Type UnderInd OptSpec Strike ExerciseDates AmericanOpt Name Quantity

3 OptBond 2 call 101 01-Jan-2003 NaN Option 101 -50

Index Type CouponRate Settle Maturity FixedReset Basis Principal Name Quantity

4 Fixed 0.04 01-Jan-2000 01-Jan-2003 1 NaN NaN 4% Fixed 80

Index Type Spread Settle Maturity FloatReset Basis Principal Name Quantity

5 Float 20 01-Jan-2000 01-Jan-2003 1 NaN NaN 20BP Float 8

Index Type Strike Settle Maturity CapReset Basis Principal Name Quantity

6 Cap 0.03 01-Jan-2000 01-Jan-2004 1 NaN NaN 3% Cap 30

Index Type Strike Settle Maturity FloorReset Basis Principal Name Quantity

7 Floor 0.03 01-Jan-2000 01-Jan-2004 1 NaN NaN 3% Floor 40

Index Type LegRate Settle Maturity LegReset Basis Principal LegType Name Quantity

8 Swap [0.06 20] 01-Jan-2000 01-Jan-2003 [1 1] NaN NaN [NaN] 6%/20BP Swap 10

Find all instruments with a maturity date of January 01, 2003.

Mat2003 = ...
instfind(HJMInstSet,'FieldName','Maturity','Data','01-Jan-2003')

Mat2003 =

1
4
5
8

Find all cap and floor instruments with a maturity date of January 01, 2004.

1-15

1 Getting Started

CapFloor = instfind(HJMInstSet,...
'FieldName','Maturity','Data','01-Jan-2004', 'Type',...
{'Cap';'Floor'})

CapFloor =

6
7

Find all instruments where the portfolio is long or short a quantity of 50.

Pos50 = instfind(HJMInstSet,'FieldName',...
'Quantity','Data',{'50';'-50'})

Pos50 =

2
3

instselect
The syntax for instselect is the same syntax as for instfind. instselect
returns a full portfolio instead of indexes into the original portfolio. Compare
the values returned by both functions by calling them equivalently.

Previously you used instfind to find all instruments in HJMInstSet with a
maturity date of January 01, 2003.

Mat2003 = ...
instfind(HJMInstSet,'FieldName','Maturity','Data','01-Jan-2003')

Mat2003 =

1
4
5
8

Now use the same instrument set as a starting point, but execute the
instselect function instead, to produce a new instrument set matching
the identical search criteria.

1-16

Portfolio Management

Select2003 = ...
instselect(HJMInstSet,'FieldName','Maturity','Data',...
'01-Jan-2003')

instdisp(Select2003)

Index Type CouponRate Settle Maturity Period Basis Name Quantity

1 Bond 0.04 01-Jan-2000 01-Jan-2003 1 NaN 4% bond 100

Index Type CouponRate Settle Maturity FixedReset Basis Principal Name Quantity

2 Fixed 0.04 01-Jan-2000 01-Jan-2003 1 NaN NaN 4% Fixed 80

Index Type Spread Settle Maturity FloatReset Basis Principal Name Quantity

3 Float 20 01-Jan-2000 01-Jan-2003 1 NaN NaN 20BP Float 8

Index Type LegRate Settle Maturity LegReset Basis Principal LegType Name Quantity

4 Swap [0.06 20] 01-Jan-2000 01-Jan-2003 [1 1] NaN NaN [NaN] 6%/20BP Swap 10

instselect Examples. These examples use the portfolio ExampleInst
provided with the MAT-file InstSetExamples.mat.

load InstSetExamples.mat
instdisp(ExampleInst)

Index Type Strike Price Opt Contracts
1 Option 95 12.2 Call 0
2 Option 100 9.2 Call 0
3 Option 105 6.8 Call 1000

Index Type Delivery F Contracts
4 Futures 01-Jul-1999 104.4 -1000

Index Type Strike Price Opt Contracts
5 Option 105 7.4 Put -1000
6 Option 95 2.9 Put 0

Index Type Price Maturity Contracts
7 TBill 99 01-Jul-1999 6

1-17

1 Getting Started

The instrument set contains 3 instrument types: Option, Futures, and TBill.
Use instselect to make a new instrument set containing only options struck
at 95. In other words, select all instruments containing the field Strike and
with the data value for that field equal to 95.

InstSet = instselect(ExampleInst,'FieldName','Strike','Data',95);

instdisp(InstSet)

Index Type Strike Price Opt Contracts

1 Option 95 12.2 Call 0

2 Option 95 2.9 Put 0

You can use all the various forms of instselect and instfind to locate
specific instruments within this instrument set.

1-18

2

Interest-Rate Derivatives

• “Understanding Interest-Rate Derivative Instruments” on page 2-2

• “Overview of Interest-Rate Tree Models” on page 2-17

• “Understanding the Interest-Rate Term Structure” on page 2-22

• “Computing Prices and Sensitivities Using the Interest-Rate Term
Structure” on page 2-37

• “Understanding Interest-Rate Tree Models” on page 2-42

• “Computing Prices and Sensitivities Using Interest-Rate Tree Models”
on page 2-64

• “Interest-Rate Derivatives Using Closed-Form Solutions” on page 2-87

• “Graphical Representation of Trees” on page 2-88

2 Interest-Rate Derivatives

Understanding Interest-Rate Derivative Instruments

In this section...

“Introduction” on page 2-2

“Bond” on page 2-3

“Bond Options” on page 2-6

“Bond with Embedded Options” on page 2-6

“Fixed-Rate Note” on page 2-10

“Floating-Rate Note” on page 2-11

“Cap” on page 2-12

“Floor” on page 2-13

“Range Note” on page 2-13

“Swap” on page 2-14

“Swaption” on page 2-15

Introduction
Financial Derivatives Toolbox software extends the Financial Toolbox™
capabilities in the areas of fixed-income derivatives and securities contingent
on interest rates. The toolbox provides components for analyzing individual
financial derivative instruments and portfolios. Specifically, it provides
functions for calculating prices and sensitivities, for hedging, and for
visualizing results.

The toolbox provides a set of functions that perform computations on portfolios
containing the following interest-rate based financial instruments:

• Bond

• Bond options

• Bond with embedded options

• Fixed-rate note

• Floating-rate note

2-2

Understanding Interest-Rate Derivative Instruments

• Cap

• Floor

• Range Note

• Swap

• Swaption

Additionally, Financial Derivatives Toolbox software lets you create and
price arbitrary cash flow instruments based on zero-coupon bonds or on any
supported interest-rate model. For more information, see “Interest-Rate
Modeling” on page 2-17.

Bond
A bond is a long-term debt security with a preset interest-rate and maturity.
At maturity you must pay the principal and interest.

The price or value of a bond is determined by discounting the expected cash
flows of the bond to the present, using the appropriate discount rate. The
following equation represents the relationship of the expected cash flows
and discount rate:

B
C

r

r
F

r

t

t0

2

1 1
2

2 1
2

2

2=
− +⎛

⎝⎜
⎞
⎠⎟

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

+
+⎛

⎝⎜
⎞
⎠⎟

−

where:

B0 is the bond value.

C is the annual coupon payment.

F is the face value of the bond.

r is the required return on the bond.

t is the number of years remaining until maturity.

2-3

2 Interest-Rate Derivatives

Financial Derivatives Toolbox supports the following for pricing and
specifying a bond.

Function Purpose

bondbybdt Price a bond using a BDT interest-rate tree.

bondbyhw Price a bond using an HW interest-rate tree.

bondbybk Price a bond using a BK interest-rate tree.

bondbyhjm Price a bond using an HJM interest-rate tree.

bondbyzero Price a bond using a set of zero curves.

instbond Construct a bond instrument.

Stepped Coupon Bonds
A step-up and step-down bond is a debt security with a predetermined coupon
structure over time. With these instruments, coupons increase (step up) or
decrease (step down) at specific times during the life of the bond. For more
information on options features (call and puts), see “Stepped Coupon Bonds
with Callable and Puttable Features” on page 2-8. The following functions
have a modified CouponRate argument to support a new variable coupon
schedule allowing pricing of stepped coupon bonds.

Function Purpose

bondbyzero Price bonds using a term structure model.

bondbybdt Price bonds using a BDT tree model.

bondbyhjm Price bonds using an HJM tree model.

bondbyhw Price bonds using an HW tree model.

bondbybk Price bonds using a BK tree model.

instbond Construct a bond instrument.

instoptbnd Construct a bond option instrument.

instdisp Display instruments stored in a variable.

2-4

Understanding Interest-Rate Derivative Instruments

Sinking Fund Bonds
A sinking fund bond is a coupon bond with a sinking fund provision. This
provision obligates the issuer to amortize portions of the principal before
maturity, affecting bond prices since the time of the principal repayment
changes. This means that investors receive the coupon and a portion of the
principal paid back over time. These types of bonds reduce credit risk, since
it lowers the probability of investors not receiving their principal payment
at maturity. For more information on options support for sinking fund
bonds, see “Sinking Fund Bonds with an Embedded Option” on page 2-9. The
following functions have a modified Face argument to support a variable face
schedule for pricing bonds with a sinking provisions.

Function Purpose

bondbyzero Price bonds using a term structure model.

bondbybdt Price bonds using a BDT tree model.

bondbyhjm Price bonds using an HJM tree model.

bondbyhw Price bonds using an HW tree model.

bondbybk Price bonds using a BK tree model.

instbond Construct a bond instrument.

instoptbnd Construct a bond option instrument.

instdisp Display instruments stored in a variable.

Bonds with an Amortization Schedule
A bond with an amortization schedule repays part of the principal (face value)
along with the coupon payments. An amortizing bond is a special case of
a sinking fund bond when there is no market purchase option and no call
provision.. The following functions have a modified Face argument to support
an amortization schedule.

Function Purpose

bondbyzero Price bonds using a term structure model.

bondbybdt Price bonds using a BDT tree model.

bondbyhjm Price bonds using an HJM tree model.

2-5

2 Interest-Rate Derivatives

Function Purpose

bondbyhw Price bonds using an HW tree model.

bondbybk Price bonds using a BK tree model.

Bond Options
Financial Derivatives Toolbox software supports three types of put and call
options on bonds:

• American option: An option that you exercise any time until its expiration
date.

• European option: An option that you exercise only on its expiration date.

• Bermuda option: A Bermuda option resembles a hybrid of American and
European options. You can exercise it on predetermined dates only, usually
monthly.

Financial Derivatives Toolbox supports the following for pricing and
specifying a bond option.

Function Purpose

optbndbybdt Price a bond option price using a BDT
interest-rate tree.

optbndbyhw Price a bond option price using an HW
interest-rate tree.

optbndbybk Price a bond option price using a BK
interest-rate tree.

optbndbyhjm Price a bond option price using an HJM
interest-rate tree.

instoptbnd Construct a bond option instrument.

Bond with Embedded Options
A bond with embedded options allows the issuer to buy back or redeem the
bond at a predetermined price at specified future dates. Financial Derivatives

2-6

Understanding Interest-Rate Derivative Instruments

Toolbox software supports American, European, and Bermuda callable and
puttable bonds.

The pricing for a bond with embedded options is as follows:

• For a callable bond: PriceCallableBond = BondPrice - BondCallOption

• For a puttable bond: PricePuttableBond = PriceBond + PricePutOption

Financial Derivatives Toolbox supports the following for pricing and
specifying a bond with embedded options.

Function Purpose

optembndbybdt Price a bond with embedded options using a
BDT interest-rate tree.

optembndbyhw Price a bond with embedded options using an
HW interest rate tree.

optembndbybk Price a bond with embedded options using a
BK interest-rate tree.

optembndbyhjm Price a bond with embedded options using an
HJM interest-rate tree.

instoptembnd Construct a bond-with-embedded-options
instrument.

OAS for Callable and Puttable Bonds
Option Adjusted Spread (OAS) is a useful way to value and compare securities
with embedded options, like callable or puttable bonds. Basically, when
the constant or flat spread is added to the interest-rate curve/rates in the
tree, the pricing model value equals the market price. Financial Derivatives
Toolbox supports pricing American, European and Bermuda callable and
puttable bonds using different interest rate models. The pricing for a bond
with embedded options is:

• For a callable bond, where the holder has bought a bond and sold a call
option to the issuer:

2-7

2 Interest-Rate Derivatives

Price callable bond = Price Option free bond Price call
option

• For a puttable bond, where the holder has bought a bond and a put option:

Price puttable bond = Price Option free bond + Price put option

There are two additional sensitivities related to OAS for bonds with embedded
options: Option Adjusted Duration and Option Adjusted Convexity. These
are similar to the concepts of modified duration and convexity for option-free
bonds. The measure Duration is a general term that describes how sensitive a
bond’s price is to a parallel shift in the yield curve. Modified Duration and
Modified Convexity assume that the bond’s cash flows do not change when the
yield curve shifts. This is not true for OA Duration or OA Convexity because
the cash flows may change due to the option risk component of the bond.

Function Purpose

oasbybdt Compute OAS using a BDT model.

oasbybk Compute OAS using a BK model.

oasbyhjm Compute OAS using an HJM model.

oasbyhw Compute OAS using an HW model.

Stepped Coupon Bonds with Callable and Puttable Features
A step-up and step-down bond is a debt security with a predetermined coupon
structure over time. For more information on stepped coupon bonds, see
“Stepped Coupon Bonds” on page 2-4. Stepped coupon bonds can have options
features (call and puts). The following functions have a modified CouponRate
argument to support a new variable coupon schedule allowing pricing stepped
coupon bonds with callable and puttable features:

Function Purpose

optembndbybdt Price bonds with embedded options using a BDT
model tree.

optembndbyhjm Price bonds with embedded options using an HJM
model tree.

2-8

Understanding Interest-Rate Derivative Instruments

Function Purpose

optembndbybk Price bonds with embedded options using a BK model
tree.

optembndbyhw Price bonds with embedded options using an HW
model tree.

instbond Construct a bond instrument.

instoptbnd Construct a bond option instrument.

instoptembnd Construct a bond with an embedded option
instrument.

instdisp Display instruments stored in a variable.

Sinking Fund Bonds with an Embedded Option
A sinking fund bond is a coupon bond with a sinking fund provision. For more
information on sinking fund bonds, see “Sinking Fund Bonds” on page 2-5.
The sinking fund bond can have a sinking fund option provision allowing the
issuer to retire the sinking fund obligation either by purchasing the bonds
to be redeemed from the market or by calling the bond via a sinking fund
call, whichever is cheaper.

If interest rates are high, then the issuer buys back the required amount of
bonds from the market since bonds will be cheap. But if interest rates are low
(bond prices are high), then most likely the issuer buys the bonds at the call
price. Unlike a call feature, however, if a bond has a sinking fund option
provision, it is an obligation, not an option, for the issuer to buy back the
increments of the issue as stated. Because of this, a sinking fund bond trades
at a lower price than a nonsinking fund bond. The following functions have a
modified Face argument to support a variable face schedule for pricing bonds
with a sinking fund option provision.

Function Purpose

optembndbybdt Price bonds with embedded options using a BDT
model tree.

optembndbyhjm Price bonds with embedded options using an HJM
model tree.

2-9

2 Interest-Rate Derivatives

Function Purpose

optembndbybk Price bonds with embedded options using a BK model
tree.

optembndbyhw Price bonds with embedded options using an HW
model tree.

instbond Construct a bond instrument.

instoptbnd Construct a bond option instrument.

instdisp Display instruments stored in a variable.

Fixed-Rate Note
A fixed-rate note is a long-term debt security with a preset interest rate and
maturity, by which the interest must be paid. The principal may or may not
be paid at maturity. In Financial Derivatives Toolbox software, the principal
is always paid at maturity.

Financial Derivatives Toolbox supports the following for pricing and
specifying a fixed-rate note.

Function Purpose

fixedbybdt Price a fixed-rate note using a BDT
interest-rate tree.

fixedbyhw Price a fixed-rate note using an HW
interest-rate tree.

fixedbybk Price a fixed-rate note using a BK interest-rate
tree.

fixedbyhjm Price a fixed-rate note using an HJM
interest-rate tree.

fixedbyzero Price a fixed-rate note using a set of zero
curves.

instfixed Construct a fixed-rate instrument.

2-10

Understanding Interest-Rate Derivative Instruments

Floating-Rate Note
A floating-rate note is a security like a bond, but the interest rate of the note
is reset periodically, relative to a reference index rate, to reflect fluctuations
in market interest rates.

Financial Derivatives Toolbox supports the following for pricing and
specifying a floating-rate note.

Function Purpose

floatbybdt Price a floating-rate note using a BDT
interest-rate tree.

floatbyhw Price a floating-rate note using an HW
interest-rate tree.

floatbybk Price a floating-rate note using a BK
interest-rate tree.

floatbyhjm Price a floating-rate note using an HJM
interest-rate tree.

floatbyzero Price a floating-rate note using a set of zero
curves.

instfloat Construct a floating-rate note instrument.

Floating-Rate Note with an Amortization Schedule
A floating-rate note with an amortization schedule repays part of the principal
(face value) along with the coupon payments. The following functions have a
Principal argument to support an amortization schedule.

Function Purpose

floatbyzero Price floating-rate note from set of zero curves.

floatbybdt Price floating-rate note from Black-Derman-Toy
interest-rate tree.

floatbyhjm Price floating-rate note from Heath-Jarrow-Morton
interest-rate tree.

2-11

2 Interest-Rate Derivatives

Function Purpose

floatbyhw Price floating-rate note from Hull-White interest-rate
tree.

floatbybk Price floating-rate note from Black-Karasinski
interest-rate tree.

Cap
A cap is a contract that includes a guarantee that sets the maximum interest
rate to be paid by the holder, based on an otherwise floating interest rate.
The payoff for a cap is:

max(,)CurrentRate CapRate− 0

Financial Derivatives Toolbox supports the following for pricing and
specifying a cap instrument.

Function Purpose

capbybdt Price a cap instrument using a BDT
interest-rate tree.

capbyhw Price a cap instrument using an HW
interest-rate tree.

capbybk Price a cap instrument using a BK interest-rate
tree.

capbyhjm Price a cap instrument using an HJM
interest-rate tree.

capbyblk Price a cap instrument using the Black option
pricing model.

instcap Construct a cap instrument.

2-12

Understanding Interest-Rate Derivative Instruments

Floor
A floor is a contract that includes a guarantee setting the minimum interest
rate to be received by the holder, based on an otherwise floating interest
rate. The payoff for a floor is:

max(,)FloorRate CurrentRate− 0

Financial Derivatives Toolbox supports the following for pricing and
specifying a floor instrument.

Function Purpose

floorbybdt Price a floor instrument using a BDT
interest-rate tree.

floorbyhw Price a floor instrument using an HW
interest-rate tree.

floorbybk Price a floor instrument using a BK
interest-rate tree.

floorbyhjm Price a floor instrument using an HJM
interest-rate tree.

instfloor Construct a floor instrument.

Range Note
A range note is a structured (market-linked) security whose coupon-rate is
equal to the reference rate as long as the reference rate is within a certain
range. If the reference rate is outside of the range, the coupon-rate is 0 for
that period. This type of instrument entitles the holder to cash flows that
depend on the level of some reference interest-rate that are floored to be
positive and gives the holder of the note direct exposure to the reference rate.
This type of instrument is useful for cases where you believe that interest
rates will stay within a certain range. In return for the drawback that no
interest will be paid for the time the range is left, a range note offers higher
coupon rates than comparable standard products, like vanilla floating notes.

Financial Derivatives Toolbox supports the following for pricing and
specifying a range note instrument.

2-13

2 Interest-Rate Derivatives

Function Purpose

instrangefloat Create a range note instrument.

rangefloatbybdt Price range floating note using a BDT tree.

rangefloatbybk Price range floating note using a BK tree.

rangefloatbyhjm Price range floating note using an HJM tree.

rangefloatbyhw Price range floating note using an HW tree.

Swap
A swap is contract between two parties obligating the parties to exchange
future cash flows. This toolbox version handles only the vanilla swap, which
is composed of a floating-rate leg and a fixed-rate leg.

Financial Derivatives Toolbox supports the following for pricing and
specifying a swap instrument.

Function Purpose

swapbybdt Price a swap instrument using a BDT
interest-rate tree.

swapbyhw Price a swap instrument using an HW
interest-rate tree.

swapbybk Price a swap instrument using a BK
interest-rate tree.

swapbyhjm Price a swap instrument using an HJM
interest-rate tree.

swapbyzero Price a swap instrument using a set of zero
curves.

instswap Construct a swap instrument.

Swap with an Amortization Schedule
A swap with an amortization schedule repays part of the principal (face value)
along with the coupon payments. A swap with an amortization schedule is
used to manage interest rate risk and serve as a cash flow management tool.

2-14

Understanding Interest-Rate Derivative Instruments

For this particular type of swap, the notional amount decreases over time.
This means that interest payments will decrease not only on the floating leg
but also on the fixed leg. The following swap functions have a Principal
argument to support an amortization schedule.

Function Purpose

swapbyzero Price swap instrument from set of zero curves.

swapbybdt Price swap instrument from Black-Derman-Toy
interest-rate tree.

swapbyhjm Price swap instrument from Heath-Jarrow-Morton
interest-rate tree.

swapbyhw Price swap instrument from Hull-White interest-rate
tree.

swapbybk Price swap instrument from Black-Karasinski
interest-rate tree.

instswap Construct swap instrument.

Swaption
A swaption is an option to enter into an interest-rate swap contract. A call
swaption allows the option buyer to enter into an interest-rate swap where the
buyer of the option pays the fixed-rate and receives the floating-rate. A put
swaption allows the option buyer to enter into an interest-rate swap where
the buyer of the option receives the fixed-rate and pays the floating-rate.

Financial Derivatives Toolbox supports the following for pricing and
specifying a swaption instrument.

Function Purpose

swaptionbybdt Price a swaption instrument using a BDT
interest-rate tree.

swaptionbyhw Price a swaption instrument using an HW
interest-rate tree.

2-15

2 Interest-Rate Derivatives

Function Purpose

swaptionbybk Price a swaption instrument using a BK
interest-rate tree.

swaptionbyhjm Price a swaption instrument using an HJM
interest-rate tree.

instswaption Construct a swaption instrument.

Price Swaption Using Black Model
The Financial Derivatives Toolbox supports swaptions using different
interest rate tree models. Tree models are complex models that describe
the evolution of interest rates in the future. They are accurate and provide
pricing information for different time steps and interest rate paths, but they
compute-intensive. The Black model is another standard model used in the
swaption market when pricing European swaptions. This type of model is
widely used by when speed is important to quickly obtain a price at settlement
date, even if the price is less accurate than other swaption pricing models
based on interest-rate tree models.

Function Purpose

swaptionbyblk Price swaptions using the Black model with a forward
on a swap.

2-16

Overview of Interest-Rate Tree Models

Overview of Interest-Rate Tree Models

In this section...

“Interest-Rate Modeling” on page 2-17

“Rate and Price Trees” on page 2-18

“Viewing Rate or Price Movement with This Toolbox” on page 2-19

Interest-Rate Modeling
Financial Derivatives Toolbox software computes prices and sensitivities of
interest-rate contingent claims based on several methods of modeling changes
in interest rates over time:

• The interest-rate term structure

This model uses sets of zero-coupon bonds to predict changes in interest
rates.

• Heath-Jarrow-Morton (HJM) model

The HJM model considers a given initial term structure of interest
rates and a specification of the volatility of forward rates to build a tree
representing the evolution of the interest rates, based on a statistical
process.

• Black-Derman-Toy (BDT) model

In the BDT model, all security prices and rates depend on the short rate
(annualized 1-period interest rate). The model uses long rates and their
volatilities to construct a tree of possible future short rates. The resulting
tree can then be used to determine the value of interest-rate sensitive
securities from this tree.

• Hull-White (HW) model

The Hull-White model incorporates the initial term structure of interest
rates and the volatility term structure to build a trinomial recombining tree
of short rates. The resulting tree is used to value interest-rate dependent
securities. The implementation of the HW model in Financial Derivatives
Toolbox software is limited to one factor.

• Black-Karasinski (BK) model

2-17

2 Interest-Rate Derivatives

The BK model is a single-factor, log-normal version of the HW model.

For detailed information about interest-rate models, see:

• “Computing Prices and Sensitivities Using the Interest-Rate Term
Structure” on page 2-37 for a discussion of price and sensitivity based on
portfolios of zero-coupon bonds

• “Computing Prices and Sensitivities Using Interest-Rate Tree Models” on
page 2-64 for a discussion of price and sensitivity based on the HJM and
BDT interest-rate models

Note Historically, the initial version of Financial Derivatives Toolbox
software provided only the HJM interest-rate model. A later version added
the BDT model. The current version adds both the HW and BK models.
This chapter provides extensive examples of using the HJM and BDT
models to compute prices and sensitivities of interest-rate based financial
derivatives.

The HW and BK tree structures are similar to the BDT tree structure.
To avoid needless repetition throughout this chapter, documentation is
provided only where significant deviations from the BDT structure exist.
Specifically, “HW and BK Tree Structures” on page 2-59 explains the few
noteworthy differences among the various formats.

If you need more detailed information about functions that use the HW and
BK tree structures, see Chapter 5, “Function Reference”, which provides
extensive reference information for all functions that compose this toolbox.

Rate and Price Trees
The interest-rate or price trees supported in this toolbox can be either
binomial (two branches per node) or trinomial (three branches per node).
Typically, binomial trees assume that underlying interest rates or prices can
only either increase or decrease at each node. Trinomial trees allow for a more
complex movement of rates or prices. With trinomial trees the movement
of rates or prices at each node is unrestricted (for example, up-up-up or
unchanged-down-down).

2-18

Overview of Interest-Rate Tree Models

Types of Trees
Financial Derivatives Toolbox trees can be classified as bushy or recombining.
A bushy tree is a tree in which the number of branches increases exponentially
relative to observation times; branches never recombine. In this context,
a recombining tree is the opposite of a bushy tree. A recombining tree has
branches that recombine over time. From any given node, the node reached
by taking the path up-down is the same node reached by taking the path
down-up. A bushy tree and a recombining binomial tree are illustrated next.

In this toolbox the Heath-Jarrow-Morton model works with bushy trees.
The Black-Derman-Toy model, on the other hand, works with recombining
binomial trees.

The other two interest rate models supported in this toolbox, Hull-White and
Black-Karasinski, work with recombining trinomial trees.

Viewing Rate or Price Movement with This Toolbox
This toolbox provides the data file deriv.mat that contains four interest-rate
based trees:

• HJMTree — A bushy binomial tree

• BDTTree — A recombining binomial tree

2-19

2 Interest-Rate Derivatives

• HWTree and BKTree — Recombining trinomial trees

The toolbox also provides the treeviewer function, which graphically displays
the shape and data of price, interest rate, and cash flow trees. Viewed with
treeviewer, the bushy shape of an HJM tree and the recombining shape
of a BDT tree are apparent.

With treeviewer, you can also see the recombining shape of HW and BK
trinomial trees.

2-20

Overview of Interest-Rate Tree Models

2-21

2 Interest-Rate Derivatives

Understanding the Interest-Rate Term Structure

In this section...

“Introduction” on page 2-22

“Interest Rates Versus Discount Factors” on page 2-22

“Interest-Rate Term Conversions” on page 2-27

“Functions That Model the Interest-Rate Term Structure” on page 2-31

Introduction
The interest-rate term structure represents the evolution of interest rates
through time. In MATLAB software, the interest-rate environment is
encapsulated in a structure called RateSpec (rate specification). This
structure holds all information required to completely identify the evolution
of interest rates. Several functions included in Financial Derivatives Toolbox
software are dedicated to the creating and managing of the RateSpec
structure. Many others take this structure as an input argument representing
the evolution of interest rates.

Before looking further at the RateSpec structure, examine three functions
that provide key functionality for working with interest rates: disc2rate, its
opposite, rate2disc, and ratetimes. The first two functions map between
discount factors and interest rates. The third function, ratetimes, calculates
the effect of term changes on the interest rates.

Interest Rates Versus Discount Factors
Discount factors are coefficients commonly used to find the current value
of future cash flows. As such, there is a direct mapping between the rate
applicable to a period of time, and the corresponding discount factor. The
function disc2rate converts discount factors for a given term (period) into
interest rates. The function rate2disc does the opposite; it converts interest
rates applicable to a given term (period) into the corresponding discount
factors.

Calculating Discount Factors from Rates
As an example, consider these annualized zero-coupon bond rates.

2-22

Understanding the Interest-Rate Term Structure

From To Rate

15 Feb 2000 15 Aug 2000 0.05

15 Feb 2000 15 Feb 2001 0.056

15 Feb 2000 15 Aug 2001 0.06

15 Feb 2000 15 Feb 2002 0.065

15 Feb 2000 15 Aug 2002 0.075

To calculate the discount factors corresponding to these interest rates, call
rate2disc using the syntax

Disc = rate2disc(Compounding, Rates, EndDates, StartDates,
ValuationDate)

where:

• Compounding represents the frequency at which the zero rates are
compounded when annualized. For this example, assume this value to be 2.

• Rates is a vector of annualized percentage rates representing the interest
rate applicable to each time interval.

• EndDates is a vector of dates representing the end of each interest-rate
term (period).

• StartDates is a vector of dates representing the beginning of each
interest-rate term.

• ValuationDate is the date of observation for which the discount factors
are calculated. In this particular example, use February 15, 2000 as the
beginning date for all interest-rate terms.

Next, set the variables in MATLAB.

StartDates = ['15-Feb-2000'];
EndDates = ['15-Aug-2000'; '15-Feb-2001'; '15-Aug-2001';...
'15-Feb-2002'; '15-Aug-2002'];
Compounding = 2;
ValuationDate = ['15-Feb-2000'];

2-23

2 Interest-Rate Derivatives

Rates = [0.05; 0.056; 0.06; 0.065; 0.075];

Finally, compute the discount factors.

Disc = rate2disc(Compounding, Rates, EndDates, StartDates,...
ValuationDate)

Disc =

0.9756
0.9463
0.9151
0.8799
0.8319

By adding a fourth column to the rates table (see “Calculating Discount
Factors from Rates” on page 2-22) to include the corresponding discounts, you
can see the evolution of the discount factors.

From To Rate Discount

15 Feb 2000 15 Aug 2000 0.05 0.9756

15 Feb 2000 15 Feb 2001 0.056 0.9463

15 Feb 2000 15 Aug 2001 0.06 0.9151

15 Feb 2000 15 Feb 2002 0.065 0.8799

15 Feb 2000 15 Aug 2002 0.075 0.8319

Optional Time Factor Outputs
The function rate2disc optionally returns two additional output arguments:
EndTimes and StartTimes. These vectors of time factors represent the start
dates and end dates in discount periodic units. The scale of these units is
determined by the value of the input variable Compounding.

To examine the time factor outputs, find the corresponding values in the
previous example.

[Disc, EndTimes, StartTimes] = rate2disc(Compounding, Rates,...

2-24

Understanding the Interest-Rate Term Structure

EndDates, StartDates, ValuationDate);

Arrange the two vectors into a single array for easier visualization.

Times = [StartTimes, EndTimes]

Times =

0 1
0 2
0 3
0 4
0 5

Because the valuation date is equal to the start date for all periods, the
StartTimes vector is composed of 0s. Also, since the value of Compounding is
2, the rates are compounded semiannually, which sets the units of periodic
discount to 6 months. The vector EndDates is composed of dates separated
by intervals of 6 months from the valuation date. This explains why the
EndTimes vector is a progression of integers from 1 to 5.

Alternative Syntax (rate2disc)
The function rate2disc also accommodates an alternative syntax that uses
periodic discount units instead of dates. Since the relationship between
discount factors and interest rates is based on time periods and not on
absolute dates, this form of rate2disc allows you to work directly with time
periods. In this mode, the valuation date corresponds to 0, and the vectors
StartTimes and EndTimes are used as input arguments instead of their date
equivalents, StartDates and EndDates. This syntax for rate2disc is:

Disc = rate2disc(Compounding, Rates, EndTimes, StartTimes)

Using as input the StartTimes and EndTimes vectors computed previously,
you should obtain the previous results for the discount factors.

Disc = rate2disc(Compounding, Rates, EndTimes, StartTimes)

Disc =

0.9756

2-25

2 Interest-Rate Derivatives

0.9463
0.9151
0.8799
0.8319

Calculating Rates from Discounts
The function disc2rate is the complement to rate2disc. It finds the rates
applicable to a set of compounding periods, given the discount factor in those
periods. The syntax for calling this function is:

Rates = disc2rate(Compounding, Disc, EndDates, StartDates,
ValuationDate)

Each argument to this function has the same meaning as in rate2disc.
Use the results found in the previous example to return the rate values you
started with.

Rates = disc2rate(Compounding, Disc, EndDates, StartDates,...
ValuationDate)

Rates =

0.0500
0.0560
0.0600
0.0650
0.0750

Alternative Syntax (disc2rate)
As in the case of rate2disc, disc2rate optionally returns StartTimes and
EndTimes vectors representing the start and end times measured in discount
periodic units. Again, working with the same values as before, you should
obtain the same numbers.

[Rates, EndTimes, StartTimes] = disc2rate(Compounding, Disc,...
EndDates, StartDates, ValuationDate);

Arrange the results in a matrix convenient to display.

2-26

Understanding the Interest-Rate Term Structure

Result = [StartTimes, EndTimes, Rates]

Result =

0 1.0000 0.0500
0 2.0000 0.0560
0 3.0000 0.0600
0 4.0000 0.0650
0 5.0000 0.0750

As with rate2disc, the relationship between rates and discount factors is
determined by time periods and not by absolute dates. Consequently, the
alternate syntax for disc2rate uses time vectors instead of dates, and it
assumes that the valuation date corresponds to time = 0. The time-based
calling syntax is:

Rates = disc2rate(Compounding, Disc, EndTimes, StartTimes);

Using this syntax, you again obtain the original values for the interest rates.

Rates = disc2rate(Compounding, Disc, EndTimes, StartTimes)

Rates =

0.0500
0.0560
0.0600
0.0650
0.0750

Interest-Rate Term Conversions
Interest rate evolution is typically represented by a set of interest rates,
including the beginning and end of the periods the rates apply to. For zero
rates, the start dates are typically at the valuation date, with the rates
extending from that valuation date until their respective maturity dates.

Spot Curve to Forward Curve Conversion
Frequently, given a set of rates including their start and end dates, you may
be interested in finding the rates applicable to different terms (periods). This

2-27

2 Interest-Rate Derivatives

problem is addressed by the function ratetimes. This function interpolates
the interest rates given a change in the original terms. The syntax for calling
ratetimes is

[Rates, EndTimes, StartTimes] = ratetimes(Compounding, RefRates,

RefEndDates, RefStartDates, EndDates, StartDates, ValuationDate);

where:

• Compounding represents the frequency at which the zero rates are
compounded when annualized.

• RefRates is a vector of initial interest rates representing the interest rates
applicable to the initial time intervals.

• RefEndDates is a vector of dates representing the end of the interest rate
terms (period) applicable to RefRates.

• RefStartDates is a vector of dates representing the beginning of the
interest rate terms applicable to RefRates.

• EndDates represent the maturity dates for which the interest rates are
interpolated.

• StartDates represent the starting dates for which the interest rates are
interpolated.

• ValuationDate is the date of observation, from which the StartTimes and
EndTimes are calculated. This date represents time = 0.

The input arguments to this function can be separated into two groups:

• The initial or reference interest rates, including the terms for which they
are valid

• Terms for which the new interest rates are calculated

As an example, consider the rate table specified in “Calculating Discount
Factors from Rates” on page 2-22.

From To Rate

15 Feb 2000 15 Aug 2000 0.05

15 Feb 2000 15 Feb 2001 0.056

2-28

Understanding the Interest-Rate Term Structure

From To Rate

15 Feb 2000 15 Aug 2001 0.06

15 Feb 2000 15 Feb 2002 0.065

15 Feb 2000 15 Aug 2002 0.075

Assuming that the valuation date is February 15, 2000, these rates represent
zero-coupon bond rates with maturities specified in the second column. Use
the function ratetimes to calculate the forward rates at the beginning of all
periods implied in the table. Assume a compounding value of 2.

% Reference Rates.
RefStartDates = ['15-Feb-2000'];
RefEndDates = ['15-Aug-2000'; '15-Feb-2001'; '15-Aug-2001';...
'15-Feb-2002'; '15-Aug-2002'];
Compounding = 2;
ValuationDate = ['15-Feb-2000'];
RefRates = [0.05; 0.056; 0.06; 0.065; 0.075];

% New Terms.
StartDates = ['15-Feb-2000'; '15-Aug-2000'; '15-Feb-2001';...
'15-Aug-2001'; '15-Feb-2002'];
EndDates = ['15-Aug-2000'; '15-Feb-2001'; '15-Aug-2001';...
'15-Feb-2002'; '15-Aug-2002'];
% Find the new rates.
Rates = ratetimes(Compounding, RefRates, RefEndDates,...
RefStartDates, EndDates, StartDates, ValuationDate)

Rates =

0.0500
0.0620
0.0680
0.0801
0.1155

Place these values in a table like the previous one. Observe the evolution of
the forward rates based on the initial zero-coupon rates.

2-29

2 Interest-Rate Derivatives

From To Rate

15 Feb 2000 15 Aug 2000 0.0500

15 Aug 2000 15 Feb 2001 0.0620

15 Feb 2001 15 Aug 2001 0.0680

15 Aug 2001 15 Feb 2002 0.0801

15 Feb 2002 15 Aug 2002 0.1155

Alternative Syntax (ratetimes)
The ratetimes function can provide the additional output arguments
StartTimes and EndTimes, which represent the time factor equivalents to
the StartDates and EndDates vectors. The ratetimes function uses time
factors for interpolating the rates. These time factors are calculated from
the start and end dates, and the valuation date, which are passed as input
arguments. ratetimes can also use time factors directly, assuming time =
0 as the valuation date. This alternate syntax is:

[Rates, EndTimes, StartTimes] = ratetimes(Compounding, RefRates,
RefEndTimes, RefStartTimes, EndTimes, StartTimes);

Use this alternate version of ratetimes to find the forward rates again. In
this case, you must first find the time factors of the reference curve. Use
date2time for this.

RefEndTimes = date2time(ValuationDate, RefEndDates, Compounding)

RefEndTimes =

1
2
3
4
5

RefStartTimes = date2time(ValuationDate, RefStartDates,...
Compounding)

2-30

Understanding the Interest-Rate Term Structure

RefStartTimes =

0

These are the expected values, given semiannual discounts (as denoted by a
value of 2 in the variable Compounding), end dates separated by 6-month
periods, and the valuation date equal to the date marking beginning of the
first period (time factor = 0).

Now call ratetimes with the alternate syntax.

[Rates, EndTimes, StartTimes] = ratetimes(Compounding,...
RefRates, RefEndTimes, RefStartTimes, EndTimes, StartTimes);
Rates =

0.0500
0.0620
0.0680
0.0801
0.1155

EndTimes and StartTimes have, as expected, the same values they had as
input arguments.

Times = [StartTimes, EndTimes]

Times =

0 1
1 2
2 3
3 4
4 5

Functions That Model the Interest-Rate Term Structure
Financial Derivatives Toolbox software includes a set of functions to
encapsulate interest-rate term information into a single structure. These
functions present a convenient way to package all information related to

2-31

2 Interest-Rate Derivatives

interest-rate terms into a common format, and to resolve interdependencies
when one or more of the parameters is modified. For information, see:

• “Creating or Modifying (intenvset)” on page 2-32 for a discussion of how
to create or modify an interest-rate term structure (RateSpec) using the
intenvset function

• “Obtaining Specific Properties (intenvget)” on page 2-34 for a discussion of
how to extract specific properties from a RateSpec

Creating or Modifying (intenvset)
The main function to create or modify an interest-rate term structure
RateSpec (rates specification) is intenvset. If the first argument to this
function is a previously created RateSpec, the function modifies the existing
rate specification and returns a new one. Otherwise, it creates a RateSpec.

When using RateSpec to specify the rate term structure to price instruments
based on yields (zero coupon rates) or forward rates, specify zero rates or
forward rates as the input argument. However, the RateSpec structure is not
limited or specific to this problem domain. RateSpec is an encapsulation
of rates-times relationships; intenvset acts as either a constructor or a
modifier, and intenvget as an accessor. The interest rate models supported
by the Financial Derivatives Toolbox software work either with zero coupon
rates or forward rates.

The other intenvset arguments are property-value pairs, indicating the new
value for these properties. The properties that can be specified or modified are:

• Basis

• Compounding

• Disc

• EndDates

• EndMonthRule

• Rates

• StartDates

• ValuationDate

2-32

Understanding the Interest-Rate Term Structure

To learn about the properties EndMonthRule and Basis, type
help ftbEndMonthRule and help ftbBasis or see the Financial Toolbox
documentation.

Consider again the original table of interest rates (see “Calculating Discount
Factors from Rates” on page 2-22).

From To Rate

15 Feb 2000 15 Aug 2000 0.05

15 Feb 2000 15 Feb 2001 0.056

15 Feb 2000 15 Aug 2001 0.06

15 Feb 2000 15 Feb 2002 0.065

15 Feb 2000 15 Aug 2002 0.075

Use the information in this table to populate the RateSpec structure.

StartDates = ['15-Feb-2000'];
EndDates = ['15-Aug-2000';

'15-Feb-2001';
'15-Aug-2001';
'15-Feb-2002';
'15-Aug-2002'];

Compounding = 2;
ValuationDate = ['15-Feb-2000'];
Rates = [0.05; 0.056; 0.06; 0.065; 0.075];

rs = intenvset('Compounding',Compounding,'StartDates',...
StartDates, 'EndDates', EndDates, 'Rates', Rates,...
'ValuationDate', ValuationDate)

rs =

FinObj: 'RateSpec'
Compounding: 2

Disc: [5x1 double]
Rates: [5x1 double]

2-33

2 Interest-Rate Derivatives

EndTimes: [5x1 double]
StartTimes: [5x1 double]

EndDates: [5x1 double]
StartDates: 730531

ValuationDate: 730531
Basis: 0

EndMonthRule: 1

Some of the properties filled in the structure were not passed explicitly in
the call to RateSpec. The values of the automatically completed properties
depend on the properties that are explicitly passed. Consider for example
the StartTimes and EndTimes vectors. Since the StartDates and EndDates
vectors are passed in, and the ValuationDate, intenvset has all the
information required to calculate StartTimes and EndTimes. Hence, these
two properties are read-only.

Obtaining Specific Properties (intenvget)
The complementary function to intenvset is intenvget, which gets function
specific properties from the interest-rate term structure. Its syntax is:

ParameterValue = intenvget(RateSpec, 'ParameterName')

To obtain the vector EndTimes from the RateSpec structure, enter:

EndTimes = intenvget(rs, 'EndTimes')

EndTimes =

1
2
3
4
5

To obtain Disc, the values for the discount factors that were calculated
automatically by intenvset, type:

Disc = intenvget(rs, 'Disc')

Disc =

2-34

Understanding the Interest-Rate Term Structure

0.9756
0.9463
0.9151
0.8799
0.8319

These discount factors correspond to the periods starting from StartDates
and ending in EndDates.

Caution Although you can directly access these fields within the structure
instead of using intenvget, it is advised not to do so. The format of the
interest-rate term structure could change in future versions of the toolbox.
Should that happen, any code accessing the RateSpec fields directly would
stop working.

Now use the RateSpec structure with its functions to examine how changes in
specific properties of the interest-rate term structure affect those depending
on it. As an exercise, change the value of Compounding from 2 (semiannual)
to 1 (annual).

rs = intenvset(rs, 'Compounding', 1);

Since StartTimes and EndTimes are measured in units of periodic discount, a
change in Compounding from 2 to 1 redefines the basic unit from semiannual
to annual. This means that a period of 6 months is represented with a value
of 0.5, and a period of 1 year is represented by 1. To obtain the vectors
StartTimes and EndTimes, enter:

StartTimes = intenvget(rs, 'StartTimes');
EndTimes = intenvget(rs, 'EndTimes');
Times = [StartTimes, EndTimes]

Times =

0 0.5000
0 1.0000
0 1.5000

2-35

2 Interest-Rate Derivatives

0 2.0000
0 2.5000

Since all the values in StartDates are the same as the valuation date, all
StartTimes values are 0. On the other hand, the values in the EndDates
vector are dates separated by 6-month periods. Since the redefined value
of compounding is 1, EndTimes becomes a sequence of numbers separated
by increments of 0.5.

2-36

Computing Prices and Sensitivities Using the Interest-Rate Term Structure

Computing Prices and Sensitivities Using the Interest-Rate
Term Structure

In this section...

“Introduction” on page 2-37

“Computing Instrument Prices” on page 2-38

“Computing Instrument Sensitivities” on page 2-40

Introduction
The instruments can be presented to the functions as a portfolio of different
types of instruments or as groups of instruments of the same type. The
current version of the toolbox can compute price and sensitivities for four
instrument types using interest-rate curves:

• Bonds

• Fixed-rate notes

• Floating-rate notes

• Swaps

In addition to these instruments, the toolbox also supports the calculation of
price and sensitivities of arbitrary sets of cash flows.

Note that options and interest-rate floors and caps are absent from the
above list of supported instruments. These instruments are not supported
because their pricing and sensitivity function require a stochastic model for
the evolution of interest rates. The interest-rate term structure used for
pricing is treated as deterministic, and as such is not adequate for pricing
these instruments.

Financial Derivatives Toolbox software also contains functions that use
the Heath-Jarrow-Morton (HJM) and Black-Derman-Toy (BDT) models to
compute prices and sensitivities for financial instruments. These models
support computations involving options and interest-rate floors and caps.
See “Computing Prices and Sensitivities Using Interest-Rate Tree Models”

2-37

2 Interest-Rate Derivatives

on page 2-64 for information on computing price and sensitivities of financial
instruments using the HJM and BDT models.

Computing Instrument Prices
The main function used for pricing portfolios of instruments is intenvprice.
This function works with the family of functions that calculate the prices of
individual types of instruments. When called, intenvprice classifies the
portfolio contained in InstSet by instrument type, and calls the appropriate
pricing functions. The map between instrument types and the pricing function
intenvprice calls is

bondbyzero: Price a bond by a set of zero curves

fixedbyzero: Price a fixed-rate note by a set of zero curves

floatbyzero: Price a floating-rate note by a set of zero curves

swapbyzero: Price a swap by a set of zero curves

You can use each of these functions individually to price an instrument.
Consult the reference pages for specific information on using these functions.

intenvprice takes as input an interest-rate term structure created with
intenvset, and a portfolio of interest-rate contingent derivatives instruments
created with instadd. To learn more about instadd and the interest-rate
term structure, see Chapter 1, “Getting Started”.

The syntax for using intenvprice to price an entire portfolio is

Price = intenvprice(RateSpec, InstSet)

where:

• RateSpec is the interest-rate term structure.

• InstSet is the name of the portfolio.

2-38

Computing Prices and Sensitivities Using the Interest-Rate Term Structure

Example: Pricing a Portfolio of Instruments
Consider this example of using the intenvprice function to price a portfolio
of instruments supplied with Financial Derivatives Toolbox software.

The provided MAT-file deriv.mat stores a portfolio as an instrument set
variable ZeroInstSet. The MAT-file also contains the interest-rate term
structure ZeroRateSpec. You can display the instruments with the function
instdisp.

load deriv.mat;

instdisp(ZeroInstSet)

Index Type CouponRate Settle Maturity Period Basis...

1 Bond 0.04 01-Jan-2000 01-Jan-2003 1 NaN...

2 Bond 0.04 01-Jan-2000 01-Jan-2004 2 NaN...

Index Type CouponRate Settle Maturity FixedReset Basis...

3 Fixed 0.04 01-Jan-2000 01-Jan-2003 1 NaN...

Index Type Spread Settle Maturity FloatReset Basis...

4 Float 20 01-Jan-2000 01-Jan-2003 1 NaN...

Index Type LegRate Settle Maturity LegReset Basis...

5 Swap [0.06 20] 01-Jan-2000 01-Jan-2003 [1 1] NaN...

Use intenvprice to calculate the prices for the instruments contained in
the portfolio ZeroInstSet.

format bank
Prices = intenvprice(ZeroRateSpec, ZeroInstSet)
Prices =

98.72
97.53
98.72

100.55
3.69

The output Prices is a vector containing the prices of all the instruments
in the portfolio in the order indicated by the Index column displayed by

2-39

2 Interest-Rate Derivatives

instdisp. Consequently, the first two elements in Prices correspond to the
first two bonds; the third element corresponds to the fixed-rate note; the
fourth to the floating-rate note; and the fifth element corresponds to the price
of the swap.

Computing Instrument Sensitivities
In general, you can compute sensitivities either as dollar price changes or
as percentage price changes. The toolbox reports all sensitivities as dollar
sensitivities.

Using the interest-rate term structure, you can calculate two types of
derivative price sensitivities, delta and gamma. Delta represents the dollar
sensitivity of prices to shifts in the observed forward yield curve. Gamma
represents the dollar sensitivity of delta to shifts in the observed forward
yield curve.

The intenvsens function computes instrument sensitivities and instrument
prices. If you need both the prices and sensitivity measures, use intenvsens.
A separate call to intenvprice is not required.

Here is the syntax

[Delta, Gamma, Price] = intenvsens(RateSpec, InstSet)

where, as before:

• RateSpec is the interest-rate term structure.

• InstSet is the name of the portfolio.

Example: Sensitivities and Prices
Here is an example that uses intenvsens to calculate both sensitivities and
prices.

format bank
load deriv.mat;
[Delta, Gamma, Price] = intenvsens(ZeroRateSpec, ZeroInstSet);

Display the results in a single matrix in bank format.

2-40

Computing Prices and Sensitivities Using the Interest-Rate Term Structure

All = [Delta Gamma Price]

All =

-272.64 1029.84 98.72
-347.44 1622.65 97.53
-272.64 1029.84 98.72

-1.04 3.31 100.55
-282.04 1059.62 3.69

To view the per-dollar sensitivity, divide the first two columns by the last one.

[Delta./Price, Gamma./Price, Price]

ans =

-2.76 10.43 98.72
-3.56 16.64 97.53
-2.76 10.43 98.72
-0.01 0.03 100.55

-76.39 286.98 3.69

2-41

2 Interest-Rate Derivatives

Understanding Interest-Rate Tree Models

In this section...

“Introduction” on page 2-42

“Building a Tree of Forward Rates” on page 2-43

“Specifying the Volatility Model (VolSpec)” on page 2-45

“Specifying the Interest-Rate Term Structure (RateSpec)” on page 2-48

“Specifying the Time Structure (TimeSpec)” on page 2-49

“Examples of Tree Creation” on page 2-51

“Examining Trees” on page 2-52

Introduction
Financial Derivatives Toolbox software supports the Black-Derman-Toy
(BDT), Black-Karasinski (BK), Heath-Jarrow-Morton (HJM), and Hull-White
(HW) interest-rate models. The Heath-Jarrow-Morton model is one of the
most widely used models for pricing interest-rate derivatives. The model
considers a given initial term structure of interest rates and a specification
of the volatility of forward rates to build a tree representing the evolution of
the interest rates, based on a statistical process. For further explanation,
see the book Modelling Fixed Income Securities and Interest Rate Options
by Robert A. Jarrow.

The Black-Derman-Toy model is another analytical model commonly used for
pricing interest-rate derivatives. The model considers a given initial zero rate
term structure of interest rates and a specification of the yield volatilities of
long rates to build a tree representing the evolution of the interest rates. For
further explanation, see the paper “A One Factor Model of Interest Rates
and its Application to Treasury Bond Options” by Fischer Black, Emanuel
Derman, and William Toy.

The Hull-White model incorporates the initial term structure of interest rates
and the volatility term structure to build a trinomial recombining tree of short
rates. The resulting tree is used to value interest rate dependent securities.
The implementation of the Hull-White model in Financial Derivatives Toolbox
software is limited to one factor.

2-42

Understanding Interest-Rate Tree Models

The Black-Karasinski model is a single factor, log-normal version of the
Hull-White model.

For further information on the Hull-White and Black-Karasinski models, see
the book Options, Futures, and Other Derivatives by John C. Hull.

Building a Tree of Forward Rates
The tree of forward rates is the fundamental unit representing the evolution
of interest rates in a given period of time. This section explains how to create
a forward-rate tree using Financial Derivatives Toolbox software.

Note To avoid needless repetition, this document uses the HJM and BDT
models to illustrate the creation and use of interest-rate trees. The HW and
BK models are similar to the BDT model. Where specific differences exist,
they are documented in “HW and BK Tree Structures” on page 2-59.

The MATLAB functions that create rate trees are hjmtree and bdttree.
The hjmtree function creates the structure, HJMTree, containing time and
forward-rate information for a bushy tree. The bdttree function creates a
similar structure, BDTTree, for a recombining tree.

This structure is a self-contained unit that includes the tree of rates (found
in the FwdTree field of the structure) and the volatility, rate, and time
specifications used in building this tree.

These functions take three structures as input arguments:

• The volatility model VolSpec. (See “Specifying the Volatility Model
(VolSpec)” on page 2-45.)

• The interest-rate term structure RateSpec. (See “Specifying the
Interest-Rate Term Structure (RateSpec)” on page 2-48.)

• The tree time layout TimeSpec. (See “Specifying the Time Structure
(TimeSpec)” on page 2-49.)

2-43

2 Interest-Rate Derivatives

An easy way to visualize any trees you create is with the treeviewer function,
which displays trees in a graphical manner. See “Graphical Representation of
Trees” on page 2-88 for information about treeviewer.

Calling Sequence
The calling syntax for hjmtree is

HJMTree = hjmtree(VolSpec, RateSpec, TimeSpec)

Similarly, the calling syntax for bdttree is

BDTTree = bdttree(VolSpec, RateSpec, TimeSpec)

Each of these functions requires VolSpec, RateSpec, and TimeSpec input
arguments:

• VolSpec is a structure that specifies the forward-rate volatility process. You
create VolSpec using either of the functions hjmvolspec or bdtvolspec.

The hjmvolspec function supports the specification of up to three factors.
It handles these models for the volatility of the interest-rate term structure:

- Constant

- Stationary

- Exponential

- Vasicek

- Proportional

A one-factor model assumes that the interest term structure is affected by
a single source of uncertainty. Incorporating multiple factors allows you to
specify different types of shifts in the shape and location of the interest-rate
structure. See hjmvolspec for details.

The bdtvolspec function supports only a single volatility factor. The
volatility remains constant between pairs of nodes on the tree. You supply
the input volatility values in a vector of decimal values. See bdtvolspec
for details.

2-44

Understanding Interest-Rate Tree Models

• RateSpec is the interest-rate specification of the initial rate curve. You
create this structure with the function intenvset. (See “Functions That
Model the Interest-Rate Term Structure” on page 2-31.)

• TimeSpec is the tree time layout specification. You create this variable with
the functions hjmtimespec or bdttimespec. It represents the mapping
between level times and level dates for rate quoting. This structure
indirectly determines the number of levels in the tree.

Specifying the Volatility Model (VolSpec)
Because HJM supports multifactor (up to 3) volatility models while BDT (also,
BK and HW) supports only a single volatility factor, the hjmvolspec and
bdtvolspec functions require different inputs and generate slightly different
outputs. For examples, see “Creating an HJM Volatility Model” on page 2-45.
For BDT examples see “Creating a BDT Volatility Model” on page 2-47.

Creating an HJM Volatility Model
The function hjmvolspec generates the structure VolSpec, which specifies

the volatility process  t T,() used in the creation of the forward-rate trees. In
this context capital T represents the starting time of the forward rate, and
t represents the observation time. The volatility process can be constructed
from a combination of factors specified sequentially in the call to function that
creates it. Each factor specification starts with a string specifying the name of
the factor, followed by the pertinent parameters.

HJM Volatility Specification Example. Consider an example that uses
a single factor, specifically, a constant-sigma factor. The constant factor
specification requires only one parameter, the value of  . In this case, the
value corresponds to 0.10.

HJMVolSpec = hjmvolspec('Constant', 0.10)

HJMVolSpec =

FinObj: 'HJMVolSpec'
FactorModels: {'Constant'}

FactorArgs: {{1x1 cell}}
SigmaShift: 0
NumFactors: 1

2-45

2 Interest-Rate Derivatives

NumBranch: 2
PBranch: [0.5000 0.5000]

Fact2Branch: [-1 1]

The NumFactors field of the VolSpec structure, VolSpec.NumFactors =
1, reveals that the number of factors used to generate VolSpec was one.
The FactorModels field indicates that it is a Constant factor, and the
NumBranches field indicates the number of branches. As a consequence, each
node of the resulting tree has two branches, one going up, and the other
going down.

Consider now a two-factor volatility process made from a proportional factor
and an exponential factor.

% Exponential factor

Sigma_0 = 0.1;

Lambda = 1;

% Proportional factor

CurveProp = [0.11765; 0.08825; 0.06865];

CurveTerm = [1 ; 2 ; 3];

% Build VolSpec

HJMVolSpec = hjmvolspec('Proportional', CurveProp, CurveTerm,...

1e6,'Exponential', Sigma_0, Lambda)

HJMVolSpec =

FinObj: 'HJMVolSpec'

FactorModels: {'Proportional' 'Exponential'}

FactorArgs: {{1x3 cell} {1x2 cell}}

SigmaShift: 0

NumFactors: 2

NumBranch: 3

PBranch: [0.2500 0.2500 0.5000]

Fact2Branch: [2x3 double]

The output shows that the volatility specification was generated using two
factors. The tree has 3 branches per node. Each branch has probabilities of
0.25, 0.25, and 0.5, going from top to bottom.

2-46

Understanding Interest-Rate Tree Models

Creating a BDT Volatility Model
The function bdtvolspec generates the structure VolSpec, which specifies
the volatility process. The function requires three input arguments:

• The valuation date ValuationDate

• The yield volatility end dates VolDates

• The yield volatility values VolCurve

An optional fourth argument InterpMethod, specifying the interpolation
method, can be included.

The syntax used for calling bdtvolspec is:

BDTVolSpec = bdtvolspec(ValuationDate, VolDates, VolCurve,...
InterpMethod)

where:

• ValuationDate is the first observation date in the tree.

• VolDates is a vector of dates representing yield volatility end dates.

• VolCurve is a vector of yield volatility values.

• InterpMethod is the method of interpolation to use. The default is linear.

BDT Volatility Specification Example. Consider the following example:

ValuationDate = datenum('01-01-2000');
EndDates = datenum(['01-01-2001'; '01-01-2002'; '01-01-2003';
'01-01-2004'; '01-01-2005']);
Volatility = [.2; .19; .18; .17; .16];

Use bdtvolspec to create a volatility specification. Because no interpolation
method is explicitly specified, the function uses the linear default.

BDTVolSpec = bdtvolspec(ValuationDate, EndDates, Volatility)

BDTVolSpec =
FinObj: 'BDTVolSpec'

ValuationDate: 730486

2-47

2 Interest-Rate Derivatives

VolDates: [5x1 double]
VolCurve: [5x1 double]

VolInterpMethod: 'linear'

Specifying the Interest-Rate Term Structure (RateSpec)
The structure RateSpec is an interest term structure that defines the initial
forward-rate specification from which the tree rates are derived. “Functions
That Model the Interest-Rate Term Structure” on page 2-31 explains how to
create these structures using the function intenvset, given the interest rates,
the starting and ending dates for each rate, and the compounding value.

Rate Specification Creation Example
Consider the following example:

Compounding = 1;
Rates = [0.02; 0.02; 0.02; 0.02];
StartDates = ['01-Jan-2000';

'01-Jan-2001';
'01-Jan-2002';
'01-Jan-2003'];

EndDates = ['01-Jan-2001';
'01-Jan-2002';
'01-Jan-2003';
'01-Jan-2004'];

ValuationDate = '01-Jan-2000';

RateSpec = intenvset('Compounding',1,'Rates', Rates,...
'StartDates', StartDates, 'EndDates', EndDates,...
'ValuationDate', ValuationDate)

RateSpec =

FinObj: 'RateSpec'
Compounding: 1

Disc: [4x1 double]
Rates: [4x1 double]

EndTimes: [4x1 double]
StartTimes: [4x1 double]

EndDates: [4x1 double]

2-48

Understanding Interest-Rate Tree Models

StartDates: [4x1 double]
ValuationDate: 730486

Basis: 0
EndMonthRule: 1

Use the function datedisp to examine the dates defined in the variable
RateSpec. For example:

datedisp(RateSpec.ValuationDate)
01-Jan-2000

Specifying the Time Structure (TimeSpec)
The structure TimeSpec specifies the time structure for an interest-rate tree.
This structure defines the mapping between the observation times at each
level of the tree and the corresponding dates.

TimeSpec is built using either the hjmtimespec or bdttimespec function.
These functions require three input arguments:

• The valuation date ValuationDate

• The maturity date Maturity

• The compounding rate Compounding

For example, the syntax used for calling hjmtimespec is

TimeSpec = hjmtimespec(ValuationDate, Maturity, Compounding)

where:

• ValuationDate is the first observation date in the tree.

• Maturity is a vector of dates representing the cash flow dates of the tree.
Any instrument cash flows with these maturities fall on tree nodes.

• Compounding is the frequency at which the rates are compounded when
annualized.

2-49

2 Interest-Rate Derivatives

Creating a Time Specification
Calling the time specification creation functions with the same data used to
create the interest-rate term structure, RateSpec builds the structure that
specifies the time layout for the tree.

HJM Time Specification Example. Consider the following example:

Maturity = EndDates;
HJMTimeSpec = hjmtimespec(ValuationDate, Maturity, Compounding)

HJMTimeSpec =

FinObj: 'HJMTimeSpec'
ValuationDate: 730486

Maturity: [4x1 double]
Compounding: 1

Basis: 0
EndMonthRule: 1

Note that maturities specified when building TimeSpec need not coincide
with the EndDates of the rate intervals in RateSpec. Since TimeSpec defines
the time-date mapping of the tree, the rates in RateSpec are interpolated to
obtain the initial rates with maturities equal to those in TimeSpec.

Creating a BDT Time Specification. Consider the following example:

Maturity = EndDates;
BDTTimeSpec = bdttimespec(ValuationDate, Maturity, Compounding)

BDTTimeSpec =

FinObj: 'BDTTimeSpec'
ValuationDate: 730486

Maturity: [4x1 double]
Compounding: 1

Basis: 0
EndMonthRule: 1

2-50

Understanding Interest-Rate Tree Models

Examples of Tree Creation
Use the VolSpec, RateSpec, and TimeSpec you have previously created as
inputs to the functions used to create HJM and BDT trees.

Creating an HJM Tree

% Reset the volatility factor to the Constant case

HJMVolSpec = hjmvolspec('Constant', 0.10);

HJMTree = hjmtree(HJMVolSpec, RateSpec, HJMTimeSpec)

HJMTree =

FinObj: 'HJMFwdTree'

VolSpec: [1x1 struct]

TimeSpec: [1x1 struct]

RateSpec: [1x1 struct]

tObs: [0 1 2 3]

TFwd: {[4x1 double] [3x1 double] [2x1 double] [3]}

CFlowT: {[4x1 double] [3x1 double] [2x1 double] [4]}

FwdTree:{[4x1 double][3x1x2 double][2x2x2 double][1x4x2 double]}

Creating a BDT Tree
Now use the previously computed values for VolSpec, RateSpec, and
TimeSpec as input to the function bdttree to create a BDT tree.

BDTTree = bdttree(BDTVolSpec, RateSpec, BDTTimeSpec)

BDTTree =

FinObj: 'BDTFwdTree'

VolSpec: [1x1 struct]

TimeSpec: [1x1 struct]

RateSpec: [1x1 struct]

tObs: [0 1.00 2.00 3.00]

TFwd: {[4x1 double] [3x1 double] [2x1 double] [3.00]}

CFlowT: {[4x1 double] [3x1 double] [2x1 double] [4.00]}

FwdTree: {[1.02] [1.02 1.02] [1.01 1.02 1.03] [1.01 1.02 1.02 1.03]}

2-51

2 Interest-Rate Derivatives

Examining Trees
When working with the models, Financial Derivatives Toolbox software uses
trees to represent forward rates, prices, and so on. At the highest level, these
trees have structures wrapped around them. The structures encapsulate
information required to interpret completely the information contained in a
tree.

Consider this example, which uses the interest rate and portfolio data in the
MAT-file deriv.mat included in the toolbox.

Load the data into the MATLAB workspace.

load deriv.mat

Display the list of the variables loaded from the MAT-file.

whos

Name Size Bytes Class Attributes

BDTInstSet 1x1 15956 struct
BDTTree 1x1 5138 struct
BKInstSet 1x1 15946 struct
BKTree 1x1 5904 struct
CRRInstSet 1x1 12434 struct
CRRTree 1x1 5058 struct
EQPInstSet 1x1 12434 struct
EQPTree 1x1 5058 struct
HJMInstSet 1x1 15948 struct
HJMTree 1x1 5838 struct
HWInstSet 1x1 15946 struct
HWTree 1x1 5904 struct
ITTInstSet 1x1 12438 struct
ITTTree 1x1 8862 struct
ZeroInstSet 1x1 10282 struct
ZeroRateSpec 1x1 1580 struct

2-52

Understanding Interest-Rate Tree Models

HJM Tree Structure
You can now examine in some detail the contents of the HJMTree structure
contained in this file.

HJMTree

HJMTree =

FinObj: 'HJMFwdTree'

VolSpec: [1x1 struct]

TimeSpec: [1x1 struct]

RateSpec: [1x1 struct]

tObs: [0 1 2 3]

TFwd: {[4x1 double] [3x1 double] [2x1 double] [3]}

CFlowT: {[4x1 double] [3x1 double] [2x1 double] [4]}

FwdTree:{[4x1 double][3x1x2 double][2x2x2 double][1x4x2 double]}

FwdTree contains the actual forward-rate tree. MATLAB software represents
it as a cell array with each cell array element containing a tree level.

The other fields contain other information relevant to interpreting the values
in FwdTree. The most important are VolSpec, TimeSpec, and RateSpec,
which contain the volatility, time structure, and rate structure information
respectively.

First Node. Observe the forward rates in FwdTree. The first node represents
the valuation date, tObs = 0.

HJMTree.FwdTree{1}

ans =

1.0356
1.0468
1.0523
1.0563

2-53

2 Interest-Rate Derivatives

Note Financial Derivatives Toolbox software uses inverse discount notation
for forward rates in the tree. An inverse discount represents a factor by which
the current value of an asset is multiplied to find its future value. In general,
these forward factors are reciprocals of the discount factors.

Look closely at the RateSpec structure used in generating this tree to see
where these values originate. Arrange the values in a single array.

[HJMTree.RateSpec.StartTimes HJMTree.RateSpec.EndTimes...
HJMTree.RateSpec.Rates]

ans =

0 1.0000 0.0356
1.0000 2.0000 0.0468
2.0000 3.0000 0.0523
3.0000 4.0000 0.0563

If you find the corresponding inverse discounts of the interest rates in the
third column, you have the values at the first node of the tree. You can turn
interest rates into inverse discounts using the function rate2disc.

Disc = rate2disc(HJMTree.TimeSpec.Compounding,...
HJMTree.RateSpec.Rates, HJMTree.RateSpec.EndTimes,...
HJMTree.RateSpec.StartTimes);
FRates = 1./Disc

FRates =
1.0356
1.0468
1.0523
1.0563

Second Node. The second node represents the first-rate observation time,
tObs = 1. This node displays two states: one representing the branch going
up and the other representing the branch going down.

Note that HJMTree.VolSpec.NumBranch = 2.

2-54

Understanding Interest-Rate Tree Models

HJMTree.VolSpec

ans =

FinObj: 'HJMVolSpec'
FactorModels: {'Constant'}

FactorArgs: {{1x1 cell}}
SigmaShift: 0
NumFactors: 1
NumBranch: 2

PBranch: [0.5000 0.5000]
Fact2Branch: [-1 1]

Examine the rates of the node corresponding to the up branch.

HJMTree.FwdTree{2}(:,:,1)

ans =

1.0364
1.0420
1.0461

Now examine the corresponding down branch.

HJMTree.FwdTree{2}(:,:,2)

ans =

1.0574
1.0631
1.0672

Third Node. The third node represents the second observation time, tObs
= 2. This node contains a total of four states, two representing the branches
going up and the other two representing the branches going down. Examine
the rates of the node corresponding to the up states.

HJMTree.FwdTree{3}(:,:,1)

ans =

2-55

2 Interest-Rate Derivatives

1.0317 1.0526
1.0358 1.0568

Next examine the corresponding down states.

HJMTree.FwdTree{3}(:,:,2)

ans =

1.0526 1.0738
1.0568 1.0781

Isolating a Specific Node. Starting at the third level, indexing within the
tree cell array becomes complex, and isolating a specific node can be difficult.
The function bushpath isolates a specific node by specifying the path to
the node as a vector of branches taken to reach that node. As an example,
consider the node reached by starting from the root node, taking the branch
up, then the branch down, and then another branch down. Given that the tree
has only two branches per node, branches going up correspond to a 1, and
branches going down correspond to a 2. The path up-down-down becomes the
vector [1 2 2].

FRates = bushpath(HJMTree.FwdTree, [1 2 2])

FRates =

1.0356
1.0364
1.0526
1.0674

bushpath returns the spot rates for all the nodes touched by the path specified
in the input argument, the first one corresponding to the root node, and the
last one corresponding to the target node.

Isolating the same node using direct indexing obtains

HJMTree.FwdTree{4}(:, 3, 2)

2-56

Understanding Interest-Rate Tree Models

ans =

1.0674

As expected, this single value corresponds to the last element of the rates
returned by bushpath.

You can use these techniques with any type of tree generated with Financial
Derivatives Toolbox software, such as forward-rate trees or price trees.

BDT Tree Structure
You can now examine in some detail the contents of the BDTTree structure.

BDTTree

BDTTree =

FinObj: 'BDTFwdTree'
VolSpec: [1x1 struct]

TimeSpec: [1x1 struct]
RateSpec: [1x1 struct]

tObs: [0 1 2 3]
TFwd: {[4x1 double] [3x1 double] [2x1 double] [3]}

CFlowT: {[4x1 double] [3x1 double] [2x1 double] [4]}
FwdTree: {1x4 cell}

FwdTree contains the actual rate tree. MATLAB software represents it as a
cell array with each cell array element containing a tree level.

The other fields contain other information relevant to interpreting the values
in FwdTree. The most important are VolSpec, TimeSpec, and RateSpec,
which contain the volatility, time structure, and rate structure information
respectively.

Look at the RateSpec structure used in generating this tree to see where
these values originate. Arrange the values in a single array.

[BDTTree.RateSpec.StartTimes BDTTree.RateSpec.EndTimes...
BDTTree.RateSpec.Rates]

2-57

2 Interest-Rate Derivatives

ans =

0 1.0000 0.1000
0 2.0000 0.1100
0 3.0000 0.1200
0 4.0000 0.1250

Look at the rates in FwdTree. The first node represents the valuation date,
tObs = 0. The second node represents tObs = 1. Examine the rates at the
second, third, and fourth nodes.

BDTTree.FwdTree{2}

ans =

1.0979 1.1432

The second node represents the first observation time, tObs = 1. This node
contains a total of two states, one representing the branch going up (1.0979)
and the other representing the branch going down (1.1432).

Note The convention in this document is to display prices going up on the
upper branch. Consequently, when displaying rates, rates are falling on the
upper branch and increasing on the lower branch.

BDTTree.FwdTree{3}

ans =

1.0976 1.1377 1.1942

The third node represents the second observation time, tObs = 2. This
node contains a total of three states, one representing the branch going up
(1.0976), one representing the branch in the middle (1.1377) and the other
representing the branch going down (1.1942).

BDTTree.FwdTree{4}

2-58

Understanding Interest-Rate Tree Models

ans =

1.0872 1.1183 1.1606 1.2179

The fourth node represents the third observation time, tObs = 3. This node
contains a total of four states, one representing the branch going up (1.0872),
two representing the branches in the middle (1.1183 and 1.1606), and the
other representing the branch going down (1.2179).

Isolating a Specific Node. The function treepath isolates a specific node
by specifying the path to the node as a vector of branches taken to reach that
node. As an example, consider the node reached by starting from the root
node, taking the branch up, then the branch down, and finally another branch
down. Given that the tree has only two branches per node, branches going
up correspond to a 1, and branches going down correspond to a 2. The path
up-down-down becomes the vector [1 2 2].

FRates = treepath(BDTTree.FwdTree, [1 2 2])

FRates =

1.1000
1.0979
1.1377
1.1606

treepath returns the short rates for all the nodes touched by the path
specified in the input argument, the first one corresponding to the root node,
and the last one corresponding to the target node.

HW and BK Tree Structures
The HW and BK tree structures are similar to the BDT tree structure. You can
see this if you examine the sample HW tree contained in the file deriv.mat.

load deriv.mat:

HWTree

FinObj: 'HWFwdTree'
VolSpec: [1x1 struct]

2-59

2 Interest-Rate Derivatives

TimeSpec: [1x1 struct]
RateSpec: [1x1 struct]
tObs: [0 1 2 3]
dObs: [731947 732313 732678 733043]
CFlowT: {[4x1 double] [3x1 double] [2x1 double] [4]}
Probs: {[3x1 double] [3x3 double] [3x5 double]}
Connect: {[2] [2 3 4] [2 2 3 4 4]}
FwdTree: {1x4 cell}

All fields of this structure are similar to their BDT counterparts. There are
two additional fields not present in BDT: Probs and Connect. The Probs field
represents the occurrence probabilities at each branch of each node in the
tree. The Connect field describes the connectivity of the nodes of a given tree
level to nodes to the next tree level.

Probs Field. While BDT and one-factor HJM models have equal probabilities
for each branch at a node, HW and BK do not. For HW and BK trees, the
Probs field indicates the likelihood that a particular branch will be taken in
moving from one node to another node on the next level.

The Probs field consists of a cell array with 1 cell per tree level. Each cell
is a 3-by-NUMNODES array with the top row representing the probability of
an up movement, the middle row representing the probability of a middle
movement, and the last row the probability of a down movement.

As an illustration, consider the first two elements of the Probs field of the
structure, corresponding to the first (root) and second levels of the tree.

HWTree.Probs{1}

0.16666666666667
0.66666666666667
0.16666666666667

HWTree.Probs{2}

0.12361333418768 0.16666666666667 0.21877591615172
0.65761074966060 0.66666666666667 0.65761074966060
0.21877591615172 0.16666666666667 0.12361333418768

2-60

Understanding Interest-Rate Tree Models

Reading from top to bottom, the values in HWTree.Probs{1} correspond to the
up, middle, and down probabilities at the root node.

HWTree.Probs{2} is a 3-by-3matrix of values. The first column represents the
top node, the second column represents the middle node, and the last column
represents the bottom node. As with the root node, the first, second, and third
rows hold the values for up, middle, and down branching off each node.

As expected, the sum of all the probabilities at any node equals 1.

sum(HWTree.Probs{2})

1.0000 1.0000 1.0000

Connect Field. The other field that distinguishes HW and BK tree structures
from the BDT tree structure is Connect. This field describes how each node in
a given level connects to the nodes of the next level. The need for this field
arises from the possibility of nonstandard branching in a tree.

The Connect field of the HW tree structure consists of a cell array with 1
cell per tree level.

HWTree.Connect

ans =

[2] [1x3 double] [1x5 double]

Each cell contains a 1-by-NUMNODES vector. Each value in the vector relates to
a node in the corresponding tree level and represents the index of the node in
the next tree level that the middle branch of the node connects to.

If you subtract 1 from the values contained in Connect, you reveal the index
of the nodes in the next level that the up branch connects to. If you add 1 to
the values, you reveal the index of the corresponding down branch.

As an illustration, consider HWTree.Connect{1}:

HWTree.Connect{1}

ans =

2-61

2 Interest-Rate Derivatives

2

This indicates that the middle branch of the root node connects to the second
(from the top) node of the next level, as expected. If you subtract 1 from
this value, you obtain 1, which tells you that the up branch goes to the top
node. If you add 1, you obtain 3, which points to the last node of the second
level of the tree.

Now consider level 3 in this example:

HWTree.Connect{3}

2 2 3 4 4

On this level, there is nonstandard branching. This can be easily recognized
because the middle branch of two nodes is connected to the same node on
the next level.

To visualize this, consider the following illustration of the tree.

Here it becomes apparent that there is nonstandard branching at the third
level of the tree, on the top and bottom nodes. The first and second nodes

2-62

Understanding Interest-Rate Tree Models

connect to the same trio of nodes on the next level. Similar branching occurs
at the bottom and next-to-bottom nodes of the tree.

2-63

2 Interest-Rate Derivatives

Computing Prices and Sensitivities Using Interest-Rate
Tree Models

In this section...

“Introduction” on page 2-64

“Computing Instrument Prices” on page 2-64

“Computing Instrument Sensitivities” on page 2-73

“Calibrating the Hull-White Model Using Market Data” on page 2-76

Introduction
For purposes of illustration, this section relies on the HJM and BDT models.
The HW and BK functions that perform price and sensitivity computations
are not explicitly shown here. Functions that use the HW and BK models
operate similarly to the BDT model.

Computing Instrument Prices
The portfolio pricing functions hjmprice and bdtprice calculate the price
of any set of supported instruments, based on an interest-rate tree. The
functions are capable of pricing these instrument types:

• Bonds

• Bond options

• Bond with embedded options

• Arbitrary cash flows

• Fixed-rate notes

• Floating-rate notes

• Caps

• Floors

• Range Notes

• Swaps

2-64

Computing Prices and Sensitivities Using Interest-Rate Tree Models

• Swaptions

For example, the syntax for calling hjmprice is:

[Price, PriceTree] = hjmprice(HJMTree, InstSet, Options)

Similarly, the calling syntax for bdtprice is:

[Price, PriceTree] = bdtprice(BDTTree, InstSet, Options)

Each function requires two input arguments: the interest-rate tree and the
set of instruments, InstSet. An optional argument Options further controls
the pricing and the output displayed. (See Appendix A, “Derivatives Pricing
Options” for information about the Options argument.)

HJMTree is the Heath-Jarrow-Morton tree sampling of a forward-rate process,
created using hjmtree. BDTTree is the Black-Derman-Toy tree sampling of an
interest-rate process, created using bdttree. See “Building a Tree of Forward
Rates” on page 2-43 to learn how to create these structures.

InstSet is the set of instruments to be priced. This structure represents the
set of instruments to be priced independently using the model. Chapter 1,
“Getting Started”, explains how to create this variable.

Options is an options structure created with the function derivset. This
structure defines how the tree is used to find the price of instruments in the
portfolio, and how much additional information is displayed in the command
window when calling the pricing function. If this input argument is not
specified in the call to the pricing function, a default Options structure is
used. The pricing options structure is described in “Pricing Options Structure”
on page A-2.

The portfolio pricing functions classify the instruments and call the
appropriate instrument-specific pricing function for each of the instrument
types. The HJM instrument-specific pricing functions are bondbyhjm,
cfbyhjm, fixedbyhjm, floatbyhjm, optbndbyhjm, rangefloatbyhjm,
swapbyhjm, and swaptionbyhjm. A similarly named set of functions exists
for BDT models. For a list of these, see “Black-Derman-Toy Tree Utilities”
on page 5-6.

2-65

2 Interest-Rate Derivatives

You can also use these functions directly to calculate the price of sets of
instruments of the same type. See Chapter 6, “Functions — Alphabetical List”
for these individual functions for further information.

HJM Pricing Example
Consider the following example, which uses the portfolio and interest-rate
data in the MAT-file deriv.mat included in the toolbox. Load the data into
the MATLAB workspace.

load deriv.mat

Use the MATLAB whos command to display a list of the variables loaded
from the MAT-file.

whos

Name Size Bytes Class Attributes

BDTInstSet 1x1 15956 struct
BDTTree 1x1 5138 struct
BKInstSet 1x1 15946 struct
BKTree 1x1 5904 struct
CRRInstSet 1x1 12434 struct
CRRTree 1x1 5058 struct
EQPInstSet 1x1 12434 struct
EQPTree 1x1 5058 struct
HJMInstSet 1x1 15948 struct
HJMTree 1x1 5838 struct
HWInstSet 1x1 15946 struct
HWTree 1x1 5904 struct
ITTInstSet 1x1 12438 struct
ITTTree 1x1 8862 struct
ZeroInstSet 1x1 10282 struct
ZeroRateSpec 1x1 1580 struct

HJMTree and HJMInstSet are the input arguments required to call the
function hjmprice.

Use the function instdisp to examine the set of instruments contained in the
variable HJMInstSet.

2-66

Computing Prices and Sensitivities Using Interest-Rate Tree Models

instdisp(HJMInstSet)

Index Type CouponRate Settle Maturity Period Basis ... Name Quantity

1 Bond 0.04 01-Jan-2000 01-Jan-2003 1 NaN ... 4% bond 100

2 Bond 0.04 01-Jan-2000 01-Jan-2004 2 NaN ... 4% bond 50

Index Type UnderInd OptSpec Strike ExerciseDates AmericanOpt Name Quantity

3 OptBond 2 call 101 01-Jan-2003 NaN Option 101 -50

Index Type CouponRate Settle Maturity FixedReset Basis Principal Name Quantity

4 Fixed 0.04 01-Jan-2000 01-Jan-2003 1 NaN NaN 4% Fixed 80

Index Type Spread Settle Maturity FloatReset Basis Principal Name Quantity

5 Float 20 01-Jan-2000 01-Jan-2003 1 NaN NaN 20BP Float 8

Index Type Strike Settle Maturity CapReset Basis Principal Name Quantity

6 Cap 0.03 01-Jan-2000 01-Jan-2004 1 NaN NaN 3% Cap 30

Index Type Strike Settle Maturity FloorReset Basis Principal Name Quantity

7 Floor 0.03 01-Jan-2000 01-Jan-2004 1 NaN NaN 3% Floor 40

Index Type LegRate Settle Maturity LegReset Basis Principal LegType Name Quantity

8 Swap [0.06 20] 01-Jan-2000 01-Jan-2003 [1 1] NaN NaN [NaN] 6%/20BP Swap 10

Note that there are eight instruments in this portfolio set: two bonds, one
bond option, one fixed-rate note, one floating-rate note, one cap, one floor, and
one swap. Each instrument has a corresponding index that identifies the
instrument prices in the price vector returned by hjmprice.

Now use hjmprice to calculate the price of each instrument in the instrument
set.

Price = hjmprice(HJMTree, HJMInstSet)

Warning: Not all cash flows are aligned with the tree. Result will

be approximated.

Price =

2-67

2 Interest-Rate Derivatives

98.7159

97.5280

0.0486

98.7159

100.5529

6.2831

0.0486

3.6923

Note The warning shown above appears because some of the cash flows for
the second bond do not fall exactly on a tree node.

BDT Pricing Example
Load the MAT-file deriv.mat into the MATLAB workspace.

load deriv.mat

Use the MATLAB whos command to display a list of the variables loaded
from the MAT-file.

whos

Name Size Bytes Class Attributes

BDTInstSet 1x1 15956 struct
BDTTree 1x1 5138 struct
BKInstSet 1x1 15946 struct
BKTree 1x1 5904 struct
CRRInstSet 1x1 12434 struct
CRRTree 1x1 5058 struct
EQPInstSet 1x1 12434 struct
EQPTree 1x1 5058 struct
HJMInstSet 1x1 15948 struct
HJMTree 1x1 5838 struct
HWInstSet 1x1 15946 struct
HWTree 1x1 5904 struct
ITTInstSet 1x1 12438 struct

2-68

Computing Prices and Sensitivities Using Interest-Rate Tree Models

ITTTree 1x1 8862 struct
ZeroInstSet 1x1 10282 struct
ZeroRateSpec 1x1 1580 struct

BDTTree and BDTInstSet are the input arguments required to call the
function bdtprice.

Use the function instdisp to examine the set of instruments contained in the
variable BDTInstSet.

instdisp(BDTInstSet)

Index Type CouponRate Settle Maturity Period Basis Name Quantity

1 Bond 0.1 01-Jan-2000 01-Jan-2003 1 NaN......... 10% bond 100

2 Bond 0.1 01-Jan-2000 01-Jan-2004 2 NaN......... 10% bond 50

Index Type UnderInd OptSpec Strike ExerciseDates AmericanOpt Name Quantity

3 OptBond 1 call 9501 Jan-2002 NaN Option 95 -50

Index Type CouponRate Settle Maturity FixedReset Basis Principal Name Quantity

4 Fixed 0.10 01-Jan-2000 01-Jan-2003 1 NaN NaN 10% Fixed 80

Index Type Spread Settle Maturity FloatReset Basis Principal Name Quantity

5 Float 20 01-Jan-2000 01-Jan-2003 1 NaN NaN 20BP Float 8

Index Type Strike Settle Maturity CapReset Basis Principal Name Quantity

6 Cap 0.15 01-Jan-2000 01-Jan-2004 1 NaN NaN 15% Cap 30

Index Type Strike Settle Maturity FloorReset Basis Principal Name Quantity

7 Floor 0.09 01-Jan-2000 01-Jan-2004 1 NaN NaN 9% Floor 40

Index Type LegRate Settle Maturity LegReset Basis Principal LegType Name Quantity

8 Swap [0.15 10] 01-Jan-2000 01-Jan-2003 [1 1] NaN NaN [NaN] 15%/10BP Swap 10

2-69

2 Interest-Rate Derivatives

Note that there are eight instruments in this portfolio set: two bonds, one
bond option, one fixed-rate note, one floating-rate note, one cap, one floor, and
one swap. Each instrument has a corresponding index that identifies the
instrument prices in the price vector returned by bdtprice.

Now use bdtprice to calculate the price of each instrument in the instrument
set.

Price = bdtprice(BDTTree, BDTInstSet)

Warning: Not all cash flows are aligned with the tree. Result will

be approximated.

Price =

95.5030

93.9079

1.7657

95.5030

100.4865

1.4863

0.0245

7.4222

Price Vector Output
The prices in the output vector Price correspond to the prices at observation
time zero (tObs = 0), which is defined as the valuation date of the
interest-rate tree. The instrument indexing within Price is the same as the
indexing within InstSet.

In the HJM example, the prices in the Price vector correspond to the
instruments in this order.

InstNames = instget(HJMInstSet, 'FieldName','Name')

InstNames =

4% bond
4% bond
Option 101
4% Fixed

2-70

Computing Prices and Sensitivities Using Interest-Rate Tree Models

20BP Float
3% Cap
3% Floor
6%/20BP Swap

Consequently, in the Price vector, the fourth element, 98.7159, represents
the price of the fourth instrument (4% fixed-rate note); the sixth element,
6.2831, represents the price of the sixth instrument (3% cap).

In the BDT example, the prices in the Price vector correspond to the
instruments in this order.

InstNames = instget(BDTInstSet, 'FieldName','Name')

InstNames =

10% Bond
10% Bond
Option 95
10% Fixed
20BP Float
15% Cap
9% Floor
15%/10BP Swap

Consequently, in the Price vector, the fourth element, 95.5030, represents
the price of the fourth instrument (10% fixed-rate note); the sixth element,
1.4863, represents the price of the sixth instrument (15% cap).

Price Tree Structure Output
If you call a pricing function with two output arguments, for example,

[Price, PriceTree] = hjmprice(HJMTree, HJMInstSet)

you generate a price tree along with the price information.

The optional output price tree structure PriceTree holds all the pricing
information.

2-71

2 Interest-Rate Derivatives

HJM Price Tree. In the HJM example, the first field of this structure,
FinObj, indicates that this structure represents a price tree. The second
field, PBush, is the tree holding the price of the instruments in each node of
the tree. The third field, AIBush, is the tree holding the accrued interest
of the instruments in each node of the tree. Finally, the fourth field, tObs,
represents the observation time of each level of PBush and AIBush, with units
in terms of compounding periods.

In this example, the price tree looks like

PriceTree =

FinObj: 'HJMPriceTree'
PBush: {[8x1 double] [8x1x2 double] ...[8x8 double]}

AIBush: {[8x1 double] [8x1x2 double] ... [8x8 double]}
tObs: [0 1 2 3 4]

Both PBush and AIBush are 1-by-5 cell arrays, consistent with the five
observation times of tObs. The data display has been shortened here to fit
on a single line.

Using the command line interface, you can directly examine PriceTree.PBush,
the field within the PriceTree structure that contains the price tree with
the price vectors at every state. The first node represents tObs = 0,
corresponding to the valuation date.

PriceTree.PBush{1}

ans =

98.7159
97.5280
0.0486

98.7159
100.5529

6.2831
0.0486
3.6923

2-72

Computing Prices and Sensitivities Using Interest-Rate Tree Models

With this interface, you can observe the prices for all instruments in the
portfolio at a specific time.

BDT Price Tree. The BDT output price tree structure PriceTree holds all the
pricing information. The first field of this structure, FinObj, indicates that
this structure represents a price tree. The second field, PTree, is the tree
holding the price of the instruments in each node of the tree. The third field,
AITree, is the tree holding the accrued interest of the instruments in each
node of the tree. The fourth field, tObs, represents the observation time of
each level of PTree and AITree, with units in terms of compounding periods.

You can directly examine the field within the PriceTree structure, which
contains the price tree with the price vectors at every state. The first node
represents tObs = 0, corresponding to the valuation date.

[Price, PriceTree] = bdtprice(BDTTree, BDTInstSet)

PriceTree.PTree{1}

ans =

95.5030
93.9079
1.7657

95.5030
100.4865

1.4863
0.0245
7.4222

Computing Instrument Sensitivities
Sensitivities can be reported either as dollar price changes or percentage price
changes. The delta, gamma, and vega sensitivities that the toolbox computes
are dollar sensitivities.

The functions hjmsens and bdtsens compute the delta, gamma, and vega
sensitivities of instruments using an interest-rate tree. They also optionally
return the calculated price for each instrument. The sensitivity functions
require the same two input arguments used by the pricing functions (HJMTree
and HJMInstSet for HJM; BDTTree and BDTInstSet for BDT).

2-73

2 Interest-Rate Derivatives

Sensitivity functions calculate the dollar value of delta and gamma by shifting
the observed forward yield curve by 100 basis points in each direction, and
the dollar value of vega by shifting the volatility process by 1%. To obtain
the per-dollar value of the sensitivities, divide the dollar sensitivity by the
price of the corresponding instrument.

HJM Sensitivities Example
The calling syntax for the function is:

[Delta, Gamma, Vega, Price] = hjmsens(HJMTree, HJMInstSet)

Use the previous example data to calculate the price of instruments.

load deriv.mat

[Delta, Gamma, Vega, Price] = hjmsens(HJMTree, HJMInstSet);

Warning: Not all cash flows are aligned with the tree. Result will

be approximated.

Note The warning appears because some of the cash flows for the second
bond do not fall exactly on a tree node.

You can conveniently examine the sensitivities and the prices by arranging
them into a single matrix.

All = [Delta, Gamma, Vega, Price]

All =

-272.65 1029.90 0.00 98.72
-347.43 1622.69 -0.04 97.53

-8.08 643.40 34.07 0.05
-272.65 1029.90 0.00 98.72

-1.04 3.31 0 100.55
294.97 6852.56 93.69 6.28
-47.16 8459.99 93.69 0.05

-282.05 1059.68 0.00 3.69

2-74

Computing Prices and Sensitivities Using Interest-Rate Tree Models

As with the prices, each row of the sensitivity vectors corresponds to
the similarly indexed instrument in HJMInstSet. To view the per-dollar
sensitivities, divide each dollar sensitivity by the corresponding instrument
price.

BDT Sensitivities Example
The calling syntax for the function is:

[Delta, Gamma, Vega, Price] = bdtsens(BDTTree, BDTInstSet);

Arrange the sensitivities and prices into a single matrix.

All = [Delta, Gamma, Vega, Price]

All =

-232.67 803.71 -0.00 95.50
-281.05 1181.93 -0.01 93.91
-50.54 246.02 5.31 1.77

-232.67 803.71 0 95.50
0.84 2.45 0 100.49

78.38 748.98 13.54 1.49
-4.36 382.06 2.50 0.02

-253.23 863.81 0 7.42

To view the per-dollar sensitivities, divide each dollar sensitivity by the
corresponding instrument price.

All = [Delta ./ Price, Gamma ./ Price, Vega ./ Price, Price]

All =

-2.44 8.42 -0.00 95.50
-2.99 12.59 -0.00 93.91

-28.63 139.34 3.01 1.77
-2.44 8.42 0 95.50
0.01 0.02 0 100.49

52.73 503.92 9.11 1.49
-177.89 15577.42 101.87 0.02
-34.12 116.38 0 7.42

2-75

2 Interest-Rate Derivatives

Calibrating the Hull-White Model Using Market Data
The pricing of interest rate derivative securities relies on models that describe
the underlying process. These interest rate models depend on one or more
parameters that you must determine by matching the model predictions to
the existing data available in the market. In the Hull-White model, there
are two parameters related to the short rate process: mean reversion and
volatility. Calibration is used to determine these parameters, such that the
model can reproduce, as close as possible, the prices of caps or floors observed
in the market. The calibration routines find the parameters that minimize
the difference between the model price predictions and the market prices for
caps and floors.

For a Hull-White model, the minimization is two dimensional, with respect
to mean reversion (α) and volatility (σ). That is, calibrating the Hull-White
model minimizes the difference between the model prices and market prices
for caps and floors:

(ModelPrice(,) - MarketPrice)
(MarketPrice)

 

Hull-White Model Calibration Example
Use market data to identify the implied volatility (σ) and mean reversion (α)
coefficients needed to build a Hull-White tree to price an instrument. The
ideal case is to use the volatilities of the caplets, or floorlets, that correspond
to the cap, or floor, used to calculate Alpha (α) and Sigma (σ). This will most
likely not be the case, so market data must be interpolated to obtain the
required values.

Consider a cap with these parameters:

Settle = ' Jan-21-2008';
Maturity = 'Mar-21-2011';
Strike = 0.0690;
Reset = 4;
Principal = 1000;
Basis = 0;

The caplets for this example would fall in:

2-76

Computing Prices and Sensitivities Using Interest-Rate Tree Models

capletDates = cfdates(Settle, Maturity, Reset, Basis);
datestr(capletDates')

ans =

21-Mar-2008
21-Jun-2008
21-Sep-2008
21-Dec-2008
21-Mar-2009
21-Jun-2009
21-Sep-2009
21-Dec-2009
21-Mar-2010
21-Jun-2010
21-Sep-2010
21-Dec-2010
21-Mar-2011

In the best case, look up the market volatilities for caplets with a Strike =
0.0690, and maturities in each reset date listed, but the likelihood of finding
these exact instruments is low. As a consequence, use data that is available in
the market and interpolate to find appropriate values for the caplets.

Based on the market data, you have the caplet information for the same
dates, but for different strikes. That is, the strike for the cap is not included.
Assume that instead of having the data for Strike = 0.0690, you have the
data for the same dates but for Strike1 = 0.0590 and Strike2 = 0.0790

Maturity Strike1 = 0.0590 Strike2 = 0.0790

21-Mar-2008 0.1533 0. 1526

21-Jun-2008 0.1731 0. 1730

21-Sep-2008 0. 1727 0. 1726

21-Dec-2008 0. 1752 0. 1747

21-Mar-2009 0. 1809 0. 1808

21-Jun-2009 0. 1809 0. 1792

2-77

2 Interest-Rate Derivatives

Maturity Strike1 = 0.0590 Strike2 = 0.0790

21-Sep-2009 0. 1805 0. 1797

21-Dec-2009 0. 1802 0. 1794

21-Mar-2010 0. 1802 0. 1733

21-Jun-2010 0. 1757 0. 1751

21-Sep-2010 0. 1755 0. 1750

21-Dec-2010 0. 1755 0. 1745

21-Mar-2011 0. 1726 0. 1719

The nature of this data lends itself to matrix nomenclature, which is perfect
for MATLAB. hwcalbycap requires that the dates, the strikes, and the actual
volatility be separated into three variables: MarketStrike, MarketMat, and
MarketVol.

MarketStrike = [0.0590; 0.0790];

MarketMat = {'21-Mar-2008';

'21-Jun-2008';

'21-Sep-2008';

'21-Dec-2008';

'21-Mar-2009';

'21-Jun-2009';

'21-Sep-2009';

'21-Dec-2009';

'21-Mar-2010';

'21-Jun-2010';

'21-Sep-2010';

'21-Dec-2010';

'21-Mar-2011'};

MarketVol = [0.1533 0.1731 0.1727 0.1752 0.1809 0.1800 0.1805 0.1802 0.1735 0.1757 ...

0.1755 0.1755 0.1726; % First column in table corresponding to Strike1

0.1526 0.1730 0.1726 0.1747 0.1808 0.1792 0.1797 0.1794 0.1733 0.1751 ...

0.1750 0.1745 0.1719]; % Second column in table corresponding to Strike2

Complete the input arguments using this data for RateSpec:

2-78

Computing Prices and Sensitivities Using Interest-Rate Tree Models

Rates= [0.0627;

0.0657;

0.0691;

0.0717;

0.0739;

0.0755;

0.0765;

0.0772;

0.0779;

0.0783;

0.0786;

0.0789;

0.0792;

0.0793];

ValuationDate = '21-Jan-2008';

EndDates = {'21-Mar-2008';'21-Jun-2008';'21-Sep-2008';'21-Dec-2008';...

'21-Mar-2009';'21-Jun-2009';'21-Sep-2009';'21-Dec-2009';....

'21-Mar-2010';'21-Jun-2010';'21-Sep-2010';'21-Dec-2010';....

'21-Mar-2011';'21-Jun-2011'};

Compounding = 4;

Basis = 0;

RateSpec = intenvset('ValuationDate', ValuationDate, ...

'StartDates', ValuationDate, 'EndDates', EndDates, ...

'Rates', Rates, 'Compounding', Compounding, 'Basis', Basis);

RateSpec =

FinObj: 'RateSpec'

Compounding: 4

Disc: [14x1 double]

Rates: [14x1 double]

EndTimes: [14x1 double]

StartTimes: [14x1 double]

EndDates: [14x1 double]

StartDates: 733428

ValuationDate: 733428

Basis: 0

EndMonthRule: 1

2-79

2 Interest-Rate Derivatives

Call the calibration routine to find values for volatility parameters
Alpha and Sigma. Use hwcalbycap to calculate the values of Alpha and
Sigma based on market data. Internally, hwcalbycap calls the Optimization
Toolbox™ function lsqnonlin. You can customize lsqnonlin by passing an
optimization options structure created by optimset and then this can be
passed to hwcalbycap using the name-value pair argument for OptimOptions.
For example, optimset defines the target objective function tolerance as
100*eps and then calls hwcalbycap:

o=optimset('TolFun',100*eps);

[Alpha, Sigma] = hwcalbycap(RateSpec, MarketStrike, MarketMat, MarketVol,...

Strike, Settle, Maturity, 'Reset', Reset, 'Principal', Principal, 'Basis',...

Basis, 'OptimOptions', o)

Local minimum possible.

Local minimum possible.

lsqnonlin stopped because the size of the current step is less than

the default value of the step size tolerance. Warning: LSQNONLIN did not converge to an optimal

solution. It exited with exitflag = 2.

> In hwcalbycapfloor at 97

In hwcalbycap at 77

Alpha =

1.0000e-006

Sigma =

0.0127

The previous warning indicates that the conversion was not optimal. The
search algorithm used by the Optimization Toolbox™ function lsqnonlin did
not find a solution that conforms to all the constraints. To discern whether
the solution is acceptable, look at the results of the optimization by specifying
a third output (OptimOut) for hwcalbycap:

[Alpha, Sigma, OptimOut] = hwcalbycap(RateSpec, MarketStrike, MarketMat,...

2-80

Computing Prices and Sensitivities Using Interest-Rate Tree Models

MarketVol, Strike, Settle, Maturity, 'Reset', Reset, 'Principal', Principal,...

'Basis', Basis, 'OptimOptions', o);

The OptimOut.residual field of the OptimOut structure is the optimization
residual. This value contains the difference between the Black caplets and
those calculated during the optimization. You can use the OptimOut.residual
value to calculate the percentual difference (error) compared to Black caplet
prices and then decide whether the residual is acceptable. There is almost
always some residual, so decide if parametrizing the market with a single
value of Alpha and Sigma is acceptable.

Price caplets using market data and Black’s formula to obtain
reference caplet values. To determine the effectiveness of the optimization,
calculate reference caplet values using Black’s formula and the market data.
Note, you must first interpolate the market data to obtain the caplets for
calculation:

MarketMatNum = datenum(MarketMat);

[Mats, Strikes] = meshgrid(MarketMatNum, MarketStrike);

FlatVol = interp2(Mats, Strikes, MarketVol, datenum(Maturity), Strike, 'spline');

Compute the price of the cap using the Black model:

[CapPrice, Caplets] = capbyblk(RateSpec, Strike, Settle, Maturity, FlatVol,...

'Reset', Reset, 'Basis', Basis, 'Principal', Principal);

Caplets = Caplets(2:end)';

Caplets =

0.3210

1.6355

2.4863

3.1903

3.4110

3.2685

3.2385

3.4803

3.2419

3.1949

3.2991

3.3750

2-81

2 Interest-Rate Derivatives

Compare optimized values and Black values and display graphically.
After calculating the reference values for the caplets, compare the values,
analytically and graphically, to determine whether the calculated single
values of Alpha and Sigma provide an adequate approximation:

OptimCaplets = Caplets+OptimOut.residual;

disp(' ');

disp(' Black76 Calibrated Caplets');

disp([Caplets OptimCaplets])

plot(MarketMatNum(2:end), Caplets, 'or', MarketMatNum(2:end), OptimCaplets, '*b');

datetick('x', 2)

xlabel('Caplet Maturity');

ylabel('Caplet Price');

title('Black and Calibrated Caplets');

h = legend('Black Caplets', 'Calibrated Caplets');

set(h, 'color', [0.9 0.9 0.9]);

set(h, 'Location', 'SouthEast');

set(gcf, 'NumberTitle', 'off')

grid on

Black76 Calibrated Caplets

0.3210 0.3636

1.6355 1.6603

2.4863 2.4974

3.1903 3.1874

3.4110 3.4040

3.2685 3.2639

3.2385 3.2364

3.4803 3.4683

3.2419 3.2408

3.1949 3.1957

3.2991 3.2960

3.3750 3.3663

2-82

Computing Prices and Sensitivities Using Interest-Rate Tree Models

Compare cap prices using the Black, HW analytical, and HW
tree models. Using the calculated caplet values, compare the prices of
the corresponding cap using the Black model, Hull-White analytical, and
Hull-White tree models. To calculate a Hull-White tree based on Alpha and
Sigma, use these calibration routines:

• Black model:

CapPriceBLK = CapPrice;

• HW analytical model:

CapPriceHWAnalytical = sum(OptimCaplets);

• HW tree model to price the cap derived from the calibration process:

1 Create VolSpec from the calibration parameters Alpha and Sigma:

VolDates = EndDates;

VolCurve = Sigma*ones(14,1);

AlphaDates = EndDates;

AlphaCurve = Alpha*ones(14,1);

2-83

2 Interest-Rate Derivatives

HWVolSpec = hwvolspec(ValuationDate, VolDates, VolCurve,AlphaDates, AlphaCurve);

2 Create the TimeSpec:

HWTimeSpec = hwtimespec(ValuationDate, EndDates, Compounding);

3 Build the HW tree using the HW2000 method:

HWTree = hwtree(HWVolSpec, RateSpec, HWTimeSpec, 'Method', 'HW2000');

4 Price the cap:

Price = capbyhw(HWTree, Strike, Settle, Maturity, Reset, Basis, Principal);

disp(' ');

disp([' CapPrice Black76: ', num2str(CapPriceBLK,'%15.5f')]);

disp([' CapPrice HW analytical..........: ', num2str(CapPriceHWAnalytical,'%15.5f')]);

disp([' CapPrice HW from capbyhw ..: ', num2str(Price,'%15.5f')]);

disp(' ');

CapPrice Black76: 34.14220

CapPrice HW analytical.....: 34.18008

CapPrice HW from capbyhw ..: 34.14192

Price a portfolio of instruments using the calibrated HW tree. After
building a Hull-White tree, based on parameters calibrated from market data,
use HWTree to price a portfolio of these instruments:

• Two bonds

CouponRate = [0.07; 0.09];
Settle= ' Jan-21-2008';
Maturity = {'Mar-21-2010';'Mar-21-2011'};
Period = 1;
Face = 1000;
Basis = 0;

• Bond with an embedded American call option

CouponRateOEB = 0.08;
SettleOEB = ' Jan-21-2008';
MaturityOEB = 'Mar-21-2011';

2-84

Computing Prices and Sensitivities Using Interest-Rate Tree Models

OptSpec = 'call';
StrikeOEB = 950;
ExerciseDatesOEB = 'Mar-21-2011';
AmericanOpt= 1;
Period =1;
Face = 1000;
Basis =0;

To price this portfolio of instruments using the calibrated HWTree:

1 Use instadd to create the portfolio InstSet:

InstSet = instadd('Bond', CouponRate, Settle, Maturity, Period, Basis, [], [], [], [], [], Face);

InstSet = instadd(InstSet,'OptEmBond', CouponRateOEB, SettleOEB, MaturityOEB, OptSpec,...

StrikeOEB, ExerciseDatesOEB, 'AmericanOpt', AmericanOpt, 'Period', Period,...

'Face',Face, 'Basis', Basis);

2 Add the cap instrument used in the calibration:

SettleCap = ' Jan-21-2008';

MaturityCap = 'Mar-21-2011';

StrikeCap = 0.0690;

Reset = 4;

Principal = 1000;

InstSet = instadd(InstSet,'Cap', StrikeCap, SettleCap, MaturityCap, Reset, Basis, Principal);

3 Assign names to the portfolio instruments:

Names = {'7% Bond'; '8% Bond'; 'BondEmbCall'; '6.9% Cap'};

InstSet = instsetfield(InstSet, 'Index',1:4, 'FieldName', {'Name'}, 'Data', Names);

4 Examine the set of instruments contained in InstSet:

2-85

2 Interest-Rate Derivatives

instdisp(InstSet)

IdxType CoupRate Settle Mature Period Basis EOMRule IssueDate 1stCoupDate LastCoupDate StartDate Face Name

1 Bond 0.07 21-Jan-2008 21-Mar-2010 1 0 NaN NaN NaN NaN NaN 1000 7% Bond

2 Bond 0.09 21-Jan-2008 21-Mar-2011 1 0 NaN NaN NaN NaN NaN 1000 8% Bond

IdxType CoupRate Settle Mature OptSpec Stke ExDate Per Basis EOMRule IssDate 1stCoupDate LstCoupDate StrtDate Face AmerOpt Name

3 OptEmBond 0.08 21-Jan-2008 21-Mar-2011 call 950 21-Jan-2008 21-Mar-2011 1 0 1 NaN NaN NaN NaN 1000 1 BondEmbCall

Index Type Strike Settle Maturity CapReset Basis Principal Name

4 Cap 0.069 21-Jan-2008 21-Mar-2011 4 0 1000 6.9% Cap

5 Use hwprice to price the portfolio using the calibrated HWTree:

format bank

PricePortfolio = hwprice(HWTree, InstSet)

PricePortfolio =

980.45

1023.05

945.73

34.14

2-86

Interest-Rate Derivatives Using Closed-Form Solutions

Interest-Rate Derivatives Using Closed-Form Solutions

Pricing Caps and Floors Using the Black Option Model
Caps and floors are contracts that allow the holder to be protected if interest
rates rise or decrease. The Black model uses a forward price as an underlier
in place of a spot price. The assumption is that the forward price at maturity
of the option is log-normally distributed.

Closed-form solutions for pricing caps and floors using the Black model
support the following tasks:

Task Function

Price the interest rate caps using the Black
option pricing model.

capbyblk

Price the interest rate floors using the Black
option pricing model.

floorbyblk

2-87

2 Interest-Rate Derivatives

Graphical Representation of Trees

In this section...

“Introduction” on page 2-88

“Observing Interest Rates” on page 2-88

“Observing Instrument Prices” on page 2-92

Introduction
You can use the function treeviewer to display a graphical representation
of a tree, allowing you to examine interactively the prices and rates on the
nodes of the tree until maturity. To get started with this process, first load
the data file deriv.mat included in this toolbox.

load deriv.mat

Note treeviewer price tree diagrams follow the convention that increasing
prices appear on the upper branch of a tree and, consequently, decreasing
prices appear on the lower branch. Conversely, for interest rate displays,
decreasing interest rates appear on the upper branch (prices are rising) and
increasing interest rates on the lower branch (prices are falling).

For information on the use of treeviewer to observe interest rate movement,
see “Observing Interest Rates” on page 2-88. For information on using
treeviewer to observe the movement of prices, see “Observing Instrument
Prices” on page 2-92.

Observing Interest Rates
If you provide the name of an interest rate tree to the treeviewer function, it
displays a graphical view of the path of interest rates. For example, here is
the treeviewer representation of all the rates along both the up and down
branches of HJMTree.

treeviewer(HJMTree)

2-88

Graphical Representation of Trees

The example in “Isolating a Specific Node for a CRRTree” on page 3-19 used
bushpath to find the path of forward rates along an HJM tree by taking the
first branch up and then two branches down the rate tree.

FRates = bushpath(HJMTree.FwdTree, [1 2 2])

FRates =

1.0356
1.0364
1.0526
1.0674

With the treeviewer function you can display the identical information by
clicking along the same sequence of nodes, as shown next.

2-89

2 Interest-Rate Derivatives

Next is a treeviewer representation of interest rates along several branches
of BDTTree.

treeviewer(BDTTree)

2-90

Graphical Representation of Trees

Note When using treeviewer with recombining trees, such as BDT, BK,
and HW, you must click each node in succession from the beginning to the
end. Because these trees can recombine, treeviewer is unable to complete
the path automatically.

The example in “Isolating a Specific Node for a CRRTree” on page 3-19 used
treepath to find the path of interest rates taking the first branch up and
then two branches down the rate tree.

FRates = treepath(BDTTree.FwdTree, [1 2 2])

FRates =

1.1000
1.0979
1.1377
1.1606

2-91

2 Interest-Rate Derivatives

You can display the identical information by clicking along the same sequence
of nodes, as shown next.

Observing Instrument Prices
To use treeviewer to display a tree of instrument prices, provide the name
of an instrument set along with the name of a price tree in your call to
treeviewer, for example:

load deriv.mat
[Price, PriceTree] = hjmprice(HJMTree, HJMInstSet);
treeviewer(PriceTree, HJMInstSet)

2-92

Graphical Representation of Trees

With treeviewer you select each instrument individually in the instrument
portfolio for display.

You can use an analogous process to view instrument prices based on the BDT
interest rate tree included in deriv.mat.

load deriv.mat
[BDTPrice, BDTPriceTree] = bdtprice(BDTTree, BDTInstSet);
treeviewer(BDTPriceTree, BDTInstSet)

2-93

2 Interest-Rate Derivatives

Valuation Date Prices
You can use treeviewer instrument-by-instrument to observe instrument
prices through time. For the first 4% bond in the HJM instrument portfolio,
treeviewer indicates a valuation date price of 98.72, the same value obtained
by accessing the PriceTree structure directly.

2-94

Graphical Representation of Trees

As a further example, look at the sixth instrument in the price vector, the 3%
cap. At the valuation date, its value obtained directly from the structure is
6.2831. Use treeviewer on this instrument to confirm this price.

2-95

2 Interest-Rate Derivatives

Additional Observation Times
The second node represents the first-rate observation time, tObs = 1. This
node displays two states, one representing the branch going up and the other
one representing the branch going down.

Examine the prices of the node corresponding to the up branch.

PriceTree.PBush{2}(:,:,1)

ans =

100.1563
99.7309
0.1007

100.1563
100.3782

3.2594
0.1007
3.5597

2-96

Graphical Representation of Trees

As before, you can use treeviewer, this time to examine the price for the 4%
bond on the up branch. treeviewer displays a price of 100.2 for the first
node of the up branch, as expected.

Now examine the corresponding down branch.

PriceTree.PBush{2}(:,:,2)

ans =

96.3041
94.1986

0
96.3041

100.3671
8.6342

0
-0.3923

2-97

2 Interest-Rate Derivatives

Use treeviewer once again, now to observe the price of the 4% bond on the
down branch. The displayed price of 96.3 conforms to the price obtained from
direct access of the PriceTree structure. You may continue this process as
far along the price tree as you want.

2-98

3

Equity Derivatives

• “Understanding Equity Trees” on page 3-2

• “Understanding Equity Exotic Options” on page 3-22

• “Computing Prices and Sensitivities for Equity Derivatives Using Trees”
on page 3-33

• “Equity Derivatives Using Closed-Form Solutions” on page 3-51

3 Equity Derivatives

Understanding Equity Trees

In this section...

“Introduction” on page 3-2

“Building Equity Binary Trees” on page 3-3

“Building Implied Trinomial Trees” on page 3-8

“Examining Equity Trees ” on page 3-16

“Differences Between CRR and EQP Tree Structures” on page 3-21

Introduction
Financial Derivatives Toolbox software supports three types of recombining
tree models to represent the evolution of stock prices:

• Cox-Ross-Rubinstein (CRR) model

• Equal probabilities (EQP) model

• Leisen-Reimer (LR) model

• Implied trinomial tree (ITT) model

For a discussion of recombining trees, see “Rate and Price Trees” on page 2-18.

The CRR, EQP, LR, and ITT models are examples of discrete time models.
A discrete time model divides time into discrete bits; prices can only be
computed at these specific times.

The CRR model is one of the most common methods used to model the
evolution of stock processes. The strength of the CRR model lies in its
simplicity. It is a good model when dealing with many tree levels. The
CRR model yields the correct expected value for each node of the tree and
provides a good approximation for the corresponding local volatility. The
approximation becomes better as the number of time steps represented in
the tree is increased.

The EQP model is another discrete time model. It has the advantage of
building a tree with the exact volatility in each tree node, even with small

3-2

Understanding Equity Trees

numbers of time steps. It also provides better results than CRR in some
given trading environments, for example, when stock volatility is low and
interest rates are high. However, this additional precision causes increased
complexity, which is reflected in the number of calculations required to build
a tree.

The LR model is another discrete time model. It has the advantage of
producing estimates close to the Black-Scholes model using only a small
number of steps, while also minimizing the oscillation.

The ITT model is a CRR-style implied trinomial tree which takes advantage
of prices quoted from liquid options in the market with varying strikes and
maturities to build a tree that more accurately represents the market. An ITT
model is commonly used to price exotic options in such a way that they are
consistent with the market prices of standard options.

Building Equity Binary Trees
The tree of stock prices is the fundamental unit representing the evolution
of the price of a stock over a given period of time. The MATLAB functions
crrtree, eqptree, and lrtree create CRR trees, EQP trees, and LR trees,
respectively. These functions create an output tree structure along with
information about the parameters used for creating the tree.

The functions crrtree, eqptree, and lrtree take three structures as input
arguments:

• The stock parameter structure StockSpec

• The interest-rate term structure RateSpec

• The tree time layout structure TimeSpec

Calling Sequence for Equity Binary Trees
The calling syntax for crrtree is:

CRRTree = crrtree (StockSpec, RateSpec, TimeSpec)

Similarly, the calling syntax for eqptree is:

EQPTree = eqptree (StockSpec, RateSpec, TimeSpec)

3-3

3 Equity Derivatives

And, the calling syntax for lrtree is:

LRTree = lrtree(StockSpec, RateSpec, TimeSpec, Strike)

All three functions require the structures StockSpec, RateSpec, and
TimeSpec as input arguments:

• StockSpec is a structure that specifies parameters of the stock whose price
evolution is represented by the tree. This structure, created using the
function stockspec, contains information such as the stock’s original price,
its volatility, and its dividend payment information.

• RateSpec is the interest-rate specification of the initial rate curve. Create
this structure with the function intenvset.

• TimeSpec is the tree time layout specification. Create these structures with
the functions crrtimespec, eqptimespec, and lrtimespec. The structures
contain information regarding the mapping of relevant dates into the tree
structure, plus the number of time steps used for building the tree.

Specifying the Stock Structure for Equity Binary Trees
The structure StockSpec encapsulates the stock-specific information required
for building the binary tree of an individual stock’s price movement.

You generate StockSpec with the function stockspec. This function requires
two input arguments and accepts up to three additional input arguments that
depend on the existence and type of dividend payments.

The syntax for calling stockspec is:

StockSpec = stockspec(Sigma, AssetPrice, DividendType, ...
DividendAmounts, ExDividendDates)

where:

• Sigma is the decimal annual volatility of the underlying security.

• AssetPrice is the price of the stock at the valuation date.

• DividendType is a string specifying the type of dividend paid by the stock.
Allowed values are cash, constant, or continuous.

3-4

Understanding Equity Trees

• DividendAmounts has a value that depends on the specification of
DividendType. For DividendType cash, DividendAmounts is a vector of
cash dividends. For DividendType constant, it is a vector of constant
annualized dividend yields. For DividendType continuous, it is a scalar
representing a continuously annualized dividend yield.

• ExDividendDates also has a value that depends on the nature of
DividendType. For DividendType cash or constant, ExDividendDates is
vector of dividend dates. For DividendType continuous, ExDividendDates
is ignored.

Stock Structure Example Using a Binary Tree
Consider a stock with a price of $100 and an annual volatility of 15%. Assume
that the stock pays three cash $5.00 dividends on dates January 01, 2003; July
01, 2003; and January 01, 2004. You specify these parameters in MATLAB as:

Sigma = 0.15;

AssetPrice = 100;

DividendType = 'cash';

DividendAmounts = [5; 5; 5];

ExDividendDates = {'jan-01-2004', 'july-01-2005', 'jan-01-2006'};

StockSpec = stockspec(Sigma, AssetPrice, DividendType, ...

DividendAmounts, ExDividendDates)

StockSpec =

FinObj: 'StockSpec'

Sigma: 0.1500

AssetPrice: 100

DividendType: 'cash'

DividendAmounts: [3x1 double]

ExDividendDates: [3x1 double]

Specifying the Interest-Rate Term Structure for Equity Binary
Trees
The RateSpec structure defines the interest rate environment used when
building the stock price binary tree. “Functions That Model the Interest-Rate
Term Structure” on page 2-31 explains how to create these structures using

3-5

3 Equity Derivatives

the function intenvset, given the interest rates, the starting and ending
dates for each rate, and the compounding value.

Specifying the Tree-Time Term Structure for Equity Binary Trees
The TimeSpec structure defines the tree layout of the binary tree:

• It maps the valuation and maturity dates to their corresponding times.

• It defines the time of the levels of the tree by dividing the time span between
valuation and maturity into equally spaced intervals. By specifying the
number of intervals, you define the granularity of the tree time structure.

The syntax for building a TimeSpec structure is:

TimeSpec = crrtimespec(ValuationDate, Maturity, NumPeriods)
TimeSpec = eqptimespec(ValuationDate, Maturity, NumPeriods)

TimeSpec = lrtimespec(ValuationDate, Maturity, NumPeriods)

where:

• ValuationDate is a scalar date marking the pricing date and first
observation in the tree (location of the root node). You enter ValuationDate
either as a serial date number (generated with datenum) or a date string.

• Maturity is a scalar date marking the maturity of the tree, entered as a
serial date number or a date string.

• NumPeriods is a scalar defining the number of time steps in the tree; for
example, NumPeriods = 10 implies 10 time steps and 11 tree levels (0, 1,
2, ..., 9, 10).

TimeSpec Example Using a Binary Tree
Consider building a CRR tree, with a valuation date of January 1, 2003,
a maturity date of January 1, 2008, and 20 time steps. You specify these
parameters in MATLAB as:

ValuationDate = 'Jan-1-2003';
Maturity = 'Jan-1-2008';
NumPeriods = 20;

3-6

Understanding Equity Trees

TimeSpec = crrtimespec(ValuationDate, Maturity, NumPeriods)
TimeSpec =

FinObj: 'BinTimeSpec'
ValuationDate: 731582

Maturity: 733408
NumPeriods: 20

Basis: 0
EndMonthRule: 1

tObs: [1x21 double]
dObs: [1x21 double]

Two vector fields in the TimeSpec structure are of particular interest: dObs
and tObs. These two fields represent the observation times and corresponding
dates of all tree levels, with dObs(1) and tObs(1), respectively, representing
the root node (ValuationDate), and dObs(end) and tObs(end) representing
the last tree level (Maturity).

Note There is no relationship between the dates specified for the tree and the
implied tree level times, and the maturities specified in the interest rate term
structure. The rates in RateSpec are interpolated or extrapolated as required
to meet the time distribution of the tree.

Examples of Binary Tree Creation
You can now use the StockSpec and TimeSpec structures described previously
to build an equal probability tree (EQPTree), a CRR tree (CRRTree), or a LR
tree (LRTree). First, you must define the interest rate term structure. For
this example, assume that the interest rate is fixed at 10% annually between
the valuation date of the tree (January 1, 2003) until its maturity.

ValuationDate = 'Jan-1-2003';
Maturity = 'Jan-1-2008';
Rate = 0.1;
RateSpec = intenvset('Rates', Rate, 'StartDates', ...
ValuationDate, 'EndDates', Maturity, 'Compounding', -1);

To build a CRRTree, enter:

3-7

3 Equity Derivatives

CRRTree = crrtree(StockSpec, RateSpec, TimeSpec)

CRRTree =

FinObj: 'BinStockTree'
Method: 'CRR'

StockSpec: [1x1 struct]
TimeSpec: [1x1 struct]
RateSpec: [1x1 struct]

tObs: [1x21 double]
dObs: [1x21 double]

STree: {1x21 cell}
UpProbs: [1x20 double]

To build an EQPTree, enter:

EQPTree = eqptree(StockSpec, RateSpec, TimeSpec)

EQPTree =

FinObj: 'BinStockTree'
Method: 'EQP'

StockSpec: [1x1 struct]
TimeSpec: [1x1 struct]
RateSpec: [1x1 struct]

tObs: [1x21 double]
dObs: [1x21 double]

STree: {1x21 cell}
UpProbs: [1x20 double]

Building Implied Trinomial Trees
The tree of stock prices is the fundamental unit representing the evolution
of the price of a stock over a given period of time. The MATLAB function
itttree creates an output tree structure along with the information about
the parameters used to create the tree.

The function itttree takes four structures as input arguments:

• The stock parameter structure StockSpec

3-8

Understanding Equity Trees

• The interest-rate term structure RateSpec

• The tree time layout structure TimeSpec

• The stock option specification structure StockOptSpec

Calling Sequence for Implied Trinomial Trees
The calling syntax for itttree is:

ITTTree = itttree (StockSpec,RateSpec,TimeSpec,StockOptSpec)

• StockSpec is a structure that specifies parameters of the stock whose price
evolution is represented by the tree. This structure, created using the
function stockspec, contains information such as the stock’s original price,
its volatility, and its dividend payment information.

• RateSpec is the interest-rate specification of the initial rate curve. Create
this structure with the function intenvset.

• TimeSpec is the tree time layout specification. Create these structures with
the function itttimespec. This structure contains information regarding
the mapping of relevant dates into the tree structure, plus the number of
time steps used for building the tree.

• StockOptSpec is a structure containing parameters of European stock
options instruments. Create this structure with the function stockoptspec.

Specifying the Stock Structure for Implied Trinomial Trees
The structure StockSpec encapsulates the stock-specific information required
for building the trinomial tree of an individual stock’s price movement.

You generate StockSpec with the function stockspec. This function requires
two input arguments and accepts up to three additional input arguments that
depend on the existence and type of dividend payments.

The syntax for calling stockspec is:

StockSpec = stockspec(Sigma, AssetPrice, DividendType, ...
DividendAmounts, ExDividendDates)

where:

3-9

3 Equity Derivatives

• Sigma is the decimal annual volatility of the underlying security.

• AssetPrice is the price of the stock at the valuation date.

• DividendType is a string specifying the type of dividend paid by the stock.
Allowed values are cash, constant, or continuous.

• DividendAmounts has a value that depends on the specification of
DividendType. For DividendType cash, DividendAmounts is a vector of
cash dividends. For DividendType constant, it is a vector of constant
annualized dividend yields. For DividendType continuous, it is a scalar
representing a continuously annualized dividend yield.

• ExDividendDates also has a value that depends on the nature of
DividendType. For DividendType cash or constant, ExDividendDates is
vector of dividend dates. For DividendType continuous, ExDividendDates
is ignored.

Stock Structure Example Using an Implied Trinomial Tree
Consider a stock with a price of $100 and an annual volatility of 12%. Assume
that the stock is expected to pay a dividend yield of 6%. You specify these
parameters in MATLAB as:

So=100;

DividendYield = 0.06;

Sigma=.12;

StockSpec = stockspec(Sigma, So, 'continuous', DividendYield)

StockSpec =

FinObj: 'StockSpec'

Sigma: 0.1200

AssetPrice: 100

DividendType: 'continuous'

DividendAmounts: 0.0600

ExDividendDates: []

3-10

Understanding Equity Trees

Specifying the Interest-Rate Term Structure for Implied
Trinomial Trees
The structure RateSpec defines the interest rate environment used when
building the stock price binary tree. “Functions That Model the Interest-Rate
Term Structure” on page 2-31 explains how to create these structures using
the function intenvset, given the interest rates, the starting and ending
dates for each rate, and the compounding value.

Specifying the Tree-Time Term Structure for Implied Trinomial
Trees
The TimeSpec structure defines the tree layout of the trinomial tree:

• It maps the valuation and maturity dates to their corresponding times.

• It defines the time of the levels of the tree by dividing the time span between
valuation and maturity into equally spaced intervals. By specifying the
number of intervals, you define the granularity of the tree time structure.

The syntax for building a TimeSpec structure is:

TimeSpec = itttimespec(ValuationDate, Maturity, NumPeriods)

where:

• ValuationDate is a scalar date marking the pricing date and first
observation in the tree (location of the root node). You enter ValuationDate
either as a serial date number (generated with datenum) or a date string.

• Maturity is a scalar date marking the maturity of the tree, entered as a
serial date number or a date string.

• NumPeriods is a scalar defining the number of time steps in the tree; for
example, NumPeriods = 10 implies 10 time steps and 11 tree levels (0, 1,
2, ..., 9, 10).

TimeSpec Example Using an Implied Trinomial Tree
Consider building an ITT tree, with a valuation date of January 1, 2006, a
maturity date of January 1, 2008, and four time steps. You specify these
parameters in MATLAB as:

3-11

3 Equity Derivatives

ValuationDate = '01-01-2006';
EndDate = '01-01-2008';
NumPeriods = 4;

TimeSpec = itttimespec(ValuationDate, EndDate, NumPeriods)

TimeSpec =

FinObj: 'ITTTimeSpec'
ValuationDate: 732678

Maturity: 733408
NumPeriods: 4

Basis: 0
EndMonthRule: 1

tObs: [0 0.5000 1 1.5000 2]
dObs: [732678 732860 733043 733225 733408]

Two vector fields in the TimeSpec structure are of particular interest: dObs
and tObs. These two fields represent the observation times and corresponding
dates of all tree levels, with dObs(1) and tObs(1), respectively, representing
the root node (ValuationDate), and dObs(end) and tObs(end) representing
the last tree level (Maturity).

Specifying the Option Stock Structure for Implied Trinomial
Trees
The StockOptSpec structure encapsulates the option-stock-specific
information required for building the implied trinomial tree. You generate
StockOptSpec with the function stockoptspec. This function requires five
input arguments. An optional sixth argument InterpMethod, specifying the
interpolation method, can be included. The syntax for calling stockoptspec
is:

[StockOptSpec] = stockoptspec(OptPrice, Strike, Settle, Maturity, OptSpec)

where:

• Optprice is a NINST-by-1 vector of European option prices.

• Strike is a NINST-by-1 vector of strike prices.

• Settle is a scalar date marking the settlement date.

3-12

Understanding Equity Trees

• Maturity is a NINST-by-1 vector of maturity dates.

• OptSpec is a NINST-by-1 cell array of strings 'call' or 'put'.

Option Stock Structure Example Using an Implied Trinomial
Tree
Consider the following data quoted from liquid options in the market with
varying strikes and maturity. You specify these parameters in MATLAB as:

Settle = '01/01/06';

Maturity = ['07/01/06';

'07/01/06';

'07/01/06';

'07/01/06';

'01/01/07';

'01/01/07';

'01/01/07';

'01/01/07';

'07/01/07';

'07/01/07';

'07/01/07';

'07/01/07';

'01/01/08';

'01/01/08';

'01/01/08';

'01/01/08'];

Strike = [113;

101;

100;

88;

128;

112;

100;

78;

144;

112;

100;

69;

3-13

3 Equity Derivatives

162;

112;

100;

61];

OptPrice =[0;

4.807905472659144;

1.306321897011867;

0.048039195057173;

0;

2.310953054191461;

1.421950392866235;

0.020414826276740;

0;

5.091986935627730;

1.346534812295291;

0.005101325584140;

0;

8.047628153217246;

1.219653432150932;

0.001041436654748];

OptSpec = { 'call';

'call';

'put';

'put';

'call';

'call';

'put';

'put';

'call';

'call';

'put';

'put';

'call';

'call';

'put';

'put'};

3-14

Understanding Equity Trees

StockOptSpec = stockoptspec(OptPrice, Strike, Settle, Maturity, OptSpec)

StockOptSpec =

FinObj: 'StockOptSpec'

OptPrice: [16x1 double]

Strike: [16x1 double]

Settle: 732678

Maturity: [16x1 double]

OptSpec: {16x1 cell}

InterpMethod: 'price'

Note The algorithm for building the ITT tree requires specifying option
prices for all tree nodes. The maturities of those options correspond to those
of the tree levels, and the strike to the prices on the tree nodes. The types of
option are Calls for the nodes above the central nodes, and Puts for those
below and including the central nodes.

Clearly, all these options will not be available in the market, hence making
interpolation and extrapolation necessary to obtain the node option prices.
The degree to which the tree reflects the market will unavoidably be tied to
the results of these interpolations and extrapolations. Keeping in mind that
extrapolation is less accurate than interpolation, and more so the further away
the extrapolated points are from the data points, the function itttree issues
a warning with a list of the options for which extrapolation was necessary.

In some cases, it may be desirable to view a list of ideal option prices to form
an idea of the ranges needed. This can be achieved by calling the function
itttree specifying only the first three input arguments. The second output
argument is a structure array containing the list of ideal options needed.

Creating an Implied Trinomial Tree
You can now use the StockSpec, TimeSpec, and StockOptSpec structures
described in “Stock Structure Example Using an Implied Trinomial Tree” on
page 3-10, “TimeSpec Example Using an Implied Trinomial Tree” on page
3-11, and “Option Stock Structure Example Using an Implied Trinomial Tree”
on page 3-13 to build an implied trinomial tree (ITT). First, you must define

3-15

3 Equity Derivatives

the interest rate term structure. For this example, assume that the interest
rate is fixed at 8% annually between the valuation date of the tree (January
1, 2006) until its maturity.

Rate = 0.08;

ValuationDate = '01-01-2006';

EndDate = '01-01-2008';

RateSpec = intenvset('StartDates', ValuationDate, 'EndDates', EndDate, ...

'ValuationDate', ValuationDate, 'Rates', Rate, 'Compounding', -1);

To build an ITTTree, enter:

ITTTree = itttree(StockSpec, RateSpec, TimeSpec, StockOptSpec)

ITTTree =

FinObj: 'ITStockTree'

StockSpec: [1x1 struct]

StockOptSpec: [1x1 struct]

TimeSpec: [1x1 struct]

RateSpec: [1x1 struct]

tObs: [0 0.500000000000000 1 1.500000000000000 2]

dObs: [732678 732860 733043 733225 733408]

STree: {1x5 cell}

Probs: {[3x1 double] [3x3 double] [3x5 double] [3x7 double]}

Examining Equity Trees
Financial Derivatives Toolbox software uses equity binary and implied
trinomial trees to represent prices of equity options and of underlying stocks.
At the highest level, these trees have structures wrapped around them. The
structures encapsulate information required to interpret information in the
tree.

To examine an equity binary or trinomial tree, load the data in the MAT-file
deriv.mat into the MATLAB workspace.

load deriv.mat

Display the list of variables loaded from the MAT-file with the whos command.

3-16

Understanding Equity Trees

Name Size Bytes Class Attributes

BDTInstSet 1x1 15956 struct

BDTTree 1x1 5138 struct

BKInstSet 1x1 15946 struct

BKTree 1x1 5904 struct

CRRInstSet 1x1 12434 struct

CRRTree 1x1 5058 struct

EQPInstSet 1x1 12434 struct

EQPTree 1x1 5058 struct

HJMInstSet 1x1 15948 struct

HJMTree 1x1 5838 struct

HWInstSet 1x1 15946 struct

HWTree 1x1 5904 struct

ITTInstSet 1x1 12438 struct

ITTTree 1x1 8862 struct

ZeroInstSet 1x1 10282 struct

ZeroRateSpec 1x1 1580 struct

Examining a CRRTree
You can examine in some detail the contents of the CRRTree structure
contained in this file.

CRRTree

FinObj: 'BinStockTree'

Method: 'CRR'

StockSpec: [1x1 struct]

TimeSpec: [1x1 struct]

RateSpec: [1x1 struct]

tObs: [0 1 2 3 4]

dObs: [731582 731947 732313 732678 733043]

STree: {[100] [110.5171 90.4837] [122.1403 100 81.8731]

[1x4 double] [1x5 double]}

UpProbs: [0.7309 0.7309 0.7309 0.7309]

The Method field of the structure indicates that this is a CRR tree, not an
EQP tree.

3-17

3 Equity Derivatives

The fields StockSpec, TimeSpec and RateSpec hold the original structures
passed into the function crrtree. They contain all the context information
required to interpret the tree data.

The fields tObs and dObs are vectors containing the observation times and
dates, the times and dates of the levels of the tree. In this particular case,
tObs reveals that the tree has a maturity of 4 years (tObs(end) = 4) and that
it has four time steps (the length of tObs is five).

The field dObs shows the specific dates for the tree levels, with a granularity
of 1 day. This means that all values in tObs that correspond to a given day
from 00:00 hours to 24:00 hours are mapped to the corresponding value in
dObs. You can use the function datestr to convert these MATLAB serial
dates into their string representations.

The field UpProbs is a vector representing the probabilities for up movements
from any node in each level. This vector has 1 element per tree level. All
nodes for a given level have the same probability of an up movement. In the
specific case being examined, the probability of an up movement is 0.7309 for
all levels, and the probability for a down movement is 0.2691 (1 - 0.7309).

Finally, the field STree contains the actual stock tree. It is represented in
MATLAB as a cell array with each cell array element containing a vector of
prices corresponding to a tree level. The prices are in descending order, that
is, CRRTree.STree{3}(1) represents the topmost element of the third level of
the tree, and CRRTree.STree{3}(end) represents the bottom element of the
same level of the tree.

Examining an ITTTree
You can examine in some detail the contents of the ITTTree structure
contained in this file.

TTTree =

FinObj: 'ITStockTree'

StockSpec: [1x1 struct]

StockOptSpec: [1x1 struct]

TimeSpec: [1x1 struct]

RateSpec: [1x1 struct]

3-18

Understanding Equity Trees

tObs: [0 1 2 3 4]

dObs: [732678 733043 733408 733773 734139]

STree: {1x5 cell}

Probs: {[3x1 double] [3x3 double] [3x5 double] [3x7 double]}

The fields StockSpec, StockOptSpec, TimeSpec, and RateSpec hold the
original structures passed into the function itttree. They contain all the
context information required to interpret the tree data.

The fields tObs and dObs are vectors containing the observation times and
dates, the times and dates of the levels of the tree. In this particular case,
tObs reveals that the tree has a maturity of 4 years (tObs(end) = 4) and that
it has four time steps (the length of tObs is five).

The field dObs shows the specific dates for the tree levels, with a granularity
of 1 day. This means that all values in tObs that correspond to a given day
from 00:00 hours to 24:00 hours are mapped to the corresponding value in
dObs. You can use the function datestr to convert these MATLAB serial
dates into their string representations.

The field Probs is a vector representing the probabilities for movements from
any node in each level. This vector has three elements per tree node. In the
specific case being examined, at tObs= 1, the probability for an up movement
is 0.4675, and the probability for a down movement is 0.1934.

Finally, the field STree contains the actual stock tree. It is represented in
MATLAB as a cell array with each cell array element containing a vector of
prices corresponding to a tree level. The prices are in descending order, that
is, ITTTree.STree{4}(1) represents the top element of the fourth level of
the tree, and ITTTree.STree{4}(end) represents the bottom element of the
same level of the tree.

Isolating a Specific Node for a CRRTree
The function treepath can isolate a specific set of nodes of a binary tree by
specifying the path used to reach the final node. As an example, consider
the nodes touched by starting from the root node, then following a down
movement, then an up movement, and finally a down movement. You use a
vector to specify the path, with 1 corresponding to an up movement and 2

3-19

3 Equity Derivatives

corresponding to a down movement. An up-down-up path is then represented
as [2 1 2]. To obtain the values of all nodes touched by this path, enter:

SVals = treepath(CRRTree.STree, [2 1 2])

SVals =

100.0000
90.4837

100.0000
90.4837

The first value in the vector SVals corresponds to the root node, and the last
value corresponds to the final node reached by following the path indicated.

Isolating a Specific Node for an ITTTree
The function trintreepath can isolate a specific set of nodes of a trinomial
tree by specifying the path used to reach the final node. As an example,
consider the nodes touched by starting from the root node, then following an
up movement, then a middle movement, and finally a down movement. You
use a vector to specify the path, with 1 corresponding to an up movement,
2 corresponding to a middle movement, and 3 corresponding to a down
movement. An up-down-middle-down path is then represented as [1 3 2 3].
To obtain the values of all nodes touched by this path, enter:

pathSVals = trintreepath(ITTTree, [1 3 2 3])

pathSVals =

50.0000
66.3448
50.0000
50.0000
37.6819

The first value in the vector pathSVals corresponds to the root node, and
the last value corresponds to the final node reached by following the path
indicated.

3-20

Understanding Equity Trees

Differences Between CRR and EQP Tree Structures
In essence, the structures representing CRR trees and EQP trees are similar.
If you create a CRR or an EQP tree using identical input arguments, only a
few of the tree structure fields differ:

• The Method field has a value of 'CRR' or 'EQP' indicating the method used
to build the structure.

• The prices in the STree cell array have the same structure, but the prices
within the cell array are different.

• For EQP, the structure field UpProb always holds a vector with all elements
set to 0.5, while for CRR, these probabilities are calculated based on the
input arguments passed when building the tree.

3-21

3 Equity Derivatives

Understanding Equity Exotic Options

In this section...

“Introduction” on page 3-22

“Asian Option” on page 3-22

“Barrier Option” on page 3-23

“Basket Option” on page 3-25

“Compound Option” on page 3-26

“Lookback Option” on page 3-27

“Digital Option” on page 3-28

“Rainbow Option” on page 3-29

“Vanilla Option” on page 3-30

Introduction
Financial Derivatives Toolbox software supports eight types of equity exotic
options. Support for all of these equity exotic option types additionally
includes American and European puts and calls.

Asian Option
An Asian option is a path-dependent option with a payoff linked to the
average value of the underlying asset during the life (or some part of the life)
of the option. They are similar to lookback options in that there are two types
of Asian options: fixed (average price option) and floating (average strike
option). Fixed Asian options have a specified strike, while floating Asian
options have a strike equal to the average value of the underlying asset over
the life of the option.

There are four Asian option types, each with its own characteristic payoff
formula:

• Fixed call: max(,)0 S Xav −

• Fixed put: max(,)0 X Sav−

3-22

Understanding Equity Exotic Options

• Floating call: max(,)0 S Sav−

• Floating put: max(,)0 S Sav −

where:

Sav is the average price of underlying stock found along the particular path
followed to the node.

S is the price of the underlying stock on the node.

X is the strike price (applicable only to fixed Asian options).

Sav is defined using either a geometric or an arithmetic average.

The following functions support Asian options.

Function Purpose

asianbycrr Price Asian options from a CRR binomial tree.

asianbyeqp Price Asian options from an EQP binomial tree.

asianbyitt Price Asian options using an implied trinomial tree
(ITT).

instasian Construct an Asian option.

Barrier Option
A barrier option is similar to a vanilla put or call option, but its life either
begins or ends when the price of the underlying stock passes a predetermined
barrier value. There are four types of barrier options.

Up Knock-In
This option becomes effective when the price of the underlying stock passes
above a barrier that is above the initial stock price. Once the barrier has
knocked in, it will not knock out even if the price of the underlying instrument
moves below the barrier again.

3-23

3 Equity Derivatives

Up Knock-Out
This option terminates when the price of the underlying stock passes above
a barrier that is above the initial stock price. Once the barrier has knocked
out, it will not knock in even if the price of the underlying instrument moves
below the barrier again.

Down Knock-In
This option becomes effective when the price of the underlying stock passes
below a barrier that is below the initial stock price. Once the barrier has
knocked in, it will not knock out even if the price of the underlying instrument
moves above the barrier again.

Down Knock-Out
This option terminates when the price of the underlying stock passes below
a barrier that is below the initial stock price. Once the barrier has knocked
out, it will not knock in even if the price of the underlying instrument moves
above the barrier again.

Rebates
If a barrier option fails to exercise, the seller may pay a rebate to the buyer
of the option. Knock-outs may pay a rebate when they are knocked out, and
knock-ins may pay a rebate if they expire without ever knocking in.

The following functions support barrier options.

Function Purpose

barrierbycrr Price barrier options from a CRR binomial tree.

barrierbyeqp Price barrier options from an EQP binomial tree.

barrierbyitt Price barrier options using an implied trinomial tree
(ITT).

instbarrier Construct a barrier option.

3-24

Understanding Equity Exotic Options

Basket Option
A basket option is an option on a portfolio of several underlying equity assets.
Payout for a basket option depends on the cumulative performance of the
collection of the individual assets. A basket option tends to be cheaper than
the corresponding portfolio of plain vanilla options for these reasons:

• If the basket components correlate negatively, movements in the value
of one component neutralize opposite movements of another component.
Unless all the components correlate perfectly, the basket option is cheaper
than a series of individual options on each of the assets in the basket.

• A basket option minimizes transaction costs because an investor has to
purchase only one option instead of several individual options.

The payoff for a basket option is as follows:

• For a call: max(;)Wi Si K∗ −∑ 0

• For a put: max(;)K Wi Si− ∗∑ 0

where:

Si is the price of asset i in the basket.

Wi is the quantity of asset i in the basket.

K is the strike price.

Financial Derivatives Toolbox software supports Longstaff-Schwartz and
Nengiu Ju models for pricing basket options. The Longstaff-Schwartz model
supports both European, Bermuda, and American basket options. The Nengiu
Ju model only supports European basket options. If you want to price
either an American or Bermuda basket option, use the functions for the
Longstaff-Schwartz model. To price a European basket option, use either the
functions for the Longstaff-Schwartz model or the Nengiu Ju model.

3-25

3 Equity Derivatives

Function Purpose

basketbyls Price basket options using the Longstaff-Schwartz
model.

basketsensbyls Calculate price and sensitivities for basket options
using the Longstaff-Schwartz model.

basketbyju Price European basket options using the Nengjiu Ju
approximation model.

basketsensbyju Calculate European basket options price and
sensitivity using the Nengjiu Ju approximation
model.

basketstockspec Specify a basket stock structure.

Compound Option
A compound option is basically an option on an option; it gives the holder the
right to buy or sell another option. With a compound option, a vanilla stock
option serves as the underlying instrument. Compound options thus have two
strike prices and two exercise dates.

There are four types of compound options:

• Call on a call

• Put on a put

• Call on a put

• Put on a call

Note The payoff formulas for compound options are too complex for this
discussion. If you are interested in the details, consult the paper by Mark
Rubinstein entitled “Double Trouble,” published in Risk 5 (1991).

Consider the third type, a call on a put. It gives the holder the right to buy a
put option. In this case, on the first exercise date, the holder of the compound
option pay the first strike price and receives a put option. The put option

3-26

Understanding Equity Exotic Options

gives the holder the right to sell the underlying asset for the second strike
price on the second exercise date.

The following functions support compound options.

Function Purpose

compoundbycrr Price compound options from a CRR binomial tree.

compoundbyeqp Price compound options from an EQP binomial tree.

compoundbyitt Price compound options using an implied trinomial
tree (ITT).

instcompound Construct a compound option.

Lookback Option
A lookback option is a path-dependent option based on the maximum or
minimum value the underlying asset achieves during the entire life of the
option.

Financial Derivatives Toolbox software supports two types of lookback
options: fixed and floating. Fixed lookback options have a specified strike
price, while floating lookback options have a strike price determined by the
asset path. Consequently, there are a total of four lookback option types, each
with its own characteristic payoff formula:

• Fixed call: max(,)max0 S X−

• Fixed put: max(,)min0 X S−

• Floating call: max(,)min0 S S−

• Floating put: max(,)max0 S S−

where:

Smax is the maximum price of underlying stock found along the particular
path followed to the node.

3-27

3 Equity Derivatives

Smin is the minimum price of underlying stock found along the particular path
followed to the node.

S is the price of the underlying stock on the node.

X is the strike price (applicable only to fixed lookback options).

The following functions support lookback options.

Function Purpose

lookbackbycrr Price lookback options from a CRR binomial tree.

lookbackbyeqp Price lookback options from an EQP binomial tree.

lookbackbyitt Price lookback options using an implied trinomial
tree (ITT).

instlookback Construct a lookback option.

Digital Option
A digital option is an option whose payoff is characterized as having only two
potential values: a fixed payout, when the option is in the money or a zero
payout otherwise. This is the case irrespective of how far the asset price at
maturity is above (call) or below (put) the strike.

Digital options are attractive to sellers because they guarantee a known
maximum loss in the event that the option is exercised. This overcomes a
fundamental problem with the vanilla options, where the potential loss is
unlimited. Digital options are attractive to buyers because the option payoff is
a known constant amount, and this amount can be adjusted to provide the
exact quantity of protection required.

Financial Derivatives Toolbox supports four types of digital options:

• Cash-or-nothing option — Pays some fixed amount of cash if the option
expires in the money.

• Asset-or-nothing option — Pays the value of the underlying security if the
option expires in the money.

3-28

Understanding Equity Exotic Options

• Gap option — One strike decides if the option is in or out of money; another
strike decides the size the size of the payoff.

• Supershare — Pays out a proportion of the assets underlying a portfolio
if the asset lies between a lower and an upper bound at the expiry of the
option.

The following functions calculate pricing and sensitivity for digital options.

Function Purpose

cashbybls Calculate the price of cash-or-nothing digital
options using the Black-Scholes model.

assetbybls Calculate the price of asset-or-nothing digital
options using the Black-Scholes model.

gapbybls Calculate the price of gap digital options
using the Black-Scholes model.

supersharebybls Calculate the price of supershare digital
options using the Black-Scholes model.

cashsensbybls Calculate the price and sensitivities of
cash-or-nothing digital options using the
Black-Scholes model.

assetsensbybls Calculate the price and sensitivities of
asset-or-nothing digital options using the
Black-Scholes model.

gapsensbybls Calculate the price and sensitivities of gap
digital options using the Black-Scholes
model.

supersharesensbybls Calculate the price and sensitivities of
supershare digital options using the
Black-Scholes model.

Rainbow Option
A rainbow option payoff depends on the relative price performance of two or
more assets. A rainbow option gives the holder the right to buy or sell the best
or worst of two securities, or options that pay the best or worst of two assets.

3-29

3 Equity Derivatives

Rainbow options are popular because of the lower premium cost of the
structure relative to the purchase of two separate options. The lower cost
reflects the fact that the payoff is generally lower than the payoff of the two
separate options.

Financial Derivatives Toolbox supports two types of rainbow options:

• Minimum of two assets — The option holder has the right to buy(sell) one
of two risky assets, whichever one is worth less.

• Maximum of two assets — The option holder has the right to buy(sell) one
of two risky assets, whichever one is worth more.

The following rainbow options speculate/hedge on two equity assets.

Function Purpose

minassetbystulz Calculate the European rainbow option price
on minimum of two risky assets using the
Stulz option pricing model.

minassetsensbystulz Calculate the European rainbow option prices
and sensitivities on minimum of two risky
assets using the Stulz pricing model.

maxassetbystulz Calculate the European rainbow option price
on maximum of two risky assets using the
Stulz option pricing model.

maxassetsensbystulz Calculate the European rainbow option prices
and sensitivities on maximum of two risky
assets using the Stulz pricing model.

Vanilla Option
A vanilla option is a category of options that includes only the most standard
components. A vanilla option has an expiration date and straightforward
strike price. American-style options and European-style options are both
categorized as vanilla options.

The payoff for a vanilla option is as follows:

3-30

Understanding Equity Exotic Options

• For a call: max(,)St K− 0

• For a put: max(,)K St− 0

where:

St is the price of the underlying stock at time t.

K is the strike price.

The following functions support specifying or pricing a vanilla option.

Function Purpose

optstockbycrr Calculate the price of a European, Bermuda,
or American stock option using a CRR tree.

optstockbyeqp Calculate the price of a European, Bermuda,
or American stock option using an EQP tree.

optstockbyitt Calculate the price of a European, Bermuda,
or American stock option using an ITT tree.

optstockbylr Calculate the price of a European, Bermuda, or
American stock option using the Leisen-Reimer
(LR) binomial tree model.

optstockbybls Price options using the Black-Scholes option
pricing model.

optstocksensbybls Calculate option prices and sensitivities using
the Black-Scholes option pricing model.

optstockbyrgw Calculate American call option prices using
the Roll-Geske-Whaley option pricing model.

optstocksensbyrgw Calculate American call option prices and
sensitivities using the Roll-Geske-Whaley
option pricing model.

optstockbybjs Price American options using the
Bjerksund-Stensland 2002 option pricing
model.

3-31

3 Equity Derivatives

Function Purpose

optstocksensbybjs Calculate American option prices and
sensitivities using the Bjerksund-Stensland
2002 option pricing model.

instoptstock Specify a European or Bermuda option.

Bermuda Put and Call Schedule
A Bermuda option resembles a hybrid of American and European options.
You exercise it on predetermined dates only, usually monthly. In Financial
Derivatives Toolbox software, you indicate the relevant information for a
Bermuda option in two input matrices:

• Strike— Contains the strike price values for the option.

• ExerciseDates— Contains the schedule when you can exercise the option.

3-32

Computing Prices and Sensitivities for Equity Derivatives Using Trees

Computing Prices and Sensitivities for Equity Derivatives
Using Trees

In this section...

“Computing Instrument Prices” on page 3-33

“Computing Prices Using CRR” on page 3-35

“Computing Prices Using EQP” on page 3-37

“Computing Prices Using ITT” on page 3-39

“Examining Output from the Pricing Functions” on page 3-41

“Computing Instrument Sensitivities” on page 3-45

“Graphical Representation of CRR, EQP, LR, and ITT Trees” on page 3-49

Computing Instrument Prices
The portfolio pricing functions crrprice, eqpprice, and ittprice calculate
the price of any set of supported instruments based on a binary equity price
tree or an implied trinomial price tree. These functions are capable of pricing
the following instrument types:

• Vanilla stock options

- American and European puts and calls

• Exotic options

- Asian

- Barrier

- Compound

- Lookback

- Stock options (Bermuda put and call schedules)

The syntax for calling the function crrprice is:

[Price, PriceTree] = crrprice(CRRTree, InstSet, Options)

3-33

3 Equity Derivatives

The syntax for eqpprice is:

[Price, PriceTree] = eqpprice(EQPTree, InstSet, Options)

The syntax for ittprice is:

Price = ittprice(ITTTree, ITTInstSet, Options)

These functions require two input arguments: the equity price tree and the
set of instruments, InstSet, and allow a third optional argument.

Required Arguments
CRRTree is a CRR equity price tree created using crrtree. EQPTree is an
equal probability equity price tree created using eqptree. ITTTree is an ITT
equity price tree created using itttree. See “Building Equity Binary Trees”
on page 3-3 and “Building Implied Trinomial Trees” on page 3-8 to learn
how to create these structures.

InstSet is a structure that represents the set of instruments to be priced
independently using the model. Chapter 1, “Getting Started”, explains how to
create this variable.

Optional Argument
You can enter a third optional argument, Options, used when pricing barrier
options. For more specific information, see Appendix A, “Derivatives Pricing
Options”.

These pricing functions internally classify the instruments and call
the appropriate individual instrument pricing function for each of the
instrument types. The CRR pricing functions are asianbycrr, barrierbycrr,
compoundbycrr, lookbackbycrr, and optstockbycrr. A similar set of
functions exists for EQP and ITT pricing. You can also use these functions
directly to calculate the price of sets of instruments of the same type. See the
reference pages for these individual functions for further information.

3-34

Computing Prices and Sensitivities for Equity Derivatives Using Trees

Computing Prices Using CRR
Consider the following example, which uses the portfolio and stock price data
in the MAT-file deriv.mat included in the toolbox. Load the data into the
MATLAB workspace.

load deriv.mat

Use the MATLAB whos command to display a list of the variables loaded
from the MAT-file.

Name Size Bytes Class Attributes

BDTInstSet 1x1 15956 struct
BDTTree 1x1 5138 struct
BKInstSet 1x1 15946 struct
BKTree 1x1 5904 struct
CRRInstSet 1x1 12434 struct
CRRTree 1x1 5058 struct
EQPInstSet 1x1 12434 struct
EQPTree 1x1 5058 struct
HJMInstSet 1x1 15948 struct
HJMTree 1x1 5838 struct
HWInstSet 1x1 15946 struct
HWTree 1x1 5904 struct
ITTInstSet 1x1 12438 struct
ITTTree 1x1 8862 struct
ZeroInstSet 1x1 10282 struct
ZeroRateSpec 1x1 1580 struct

CRRTree and CRRInstSet are the required input arguments to call the
function crrprice.

Use instdisp to examine the set of instruments contained in the variable
CRRInstSet.

instdisp(CRRInstSet)

3-35

3 Equity Derivatives

Note Because of space considerations, the compound option above (Index
4) has been condensed to fit the page. The instdisp command displays all
compound option fields on your computer screen.

The instrument set contains eight instruments:

• Two vanilla options (Call1, Put1)

• One barrier option (Barrier1)

• One compound option (Compound1)

• Two lookback options (Lookback1, Lookback2)

• Two Asian options (Asian1, Asian2)

Each instrument has a corresponding index that identifies the instrument
prices in the price vector returned by crrprice.

Now use crrprice to calculate the price of each instrument in the instrument
set.

Price = crrprice(CRRTree, CRRInstSet)

Price =

3-36

Computing Prices and Sensitivities for Equity Derivatives Using Trees

8.2863
2.5016

12.1272
3.3241
7.6015

11.7772
4.1797
3.4219

Computing Prices Using EQP
Load the data into the MATLAB workspace.

load deriv.mat

Use the MATLAB whos command to display a list of the variables loaded
from the MAT-file.

Name Size Bytes Class Attributes

BDTInstSet 1x1 15956 struct
BDTTree 1x1 5138 struct
BKInstSet 1x1 15946 struct
BKTree 1x1 5904 struct
CRRInstSet 1x1 12434 struct
CRRTree 1x1 5058 struct
EQPInstSet 1x1 12434 struct
EQPTree 1x1 5058 struct
HJMInstSet 1x1 15948 struct
HJMTree 1x1 5838 struct
HWInstSet 1x1 15946 struct
HWTree 1x1 5904 struct
ITTInstSet 1x1 12438 struct
ITTTree 1x1 8862 struct
ZeroInstSet 1x1 10282 struct
ZeroRateSpec 1x1 1580 struct

EQPTree and EQPInstSet are the input arguments required to call the
function eqpprice.

3-37

3 Equity Derivatives

Use the command instdisp to examine the set of instruments contained
in the variable EQPInstSet.

instdisp(EQPInstSet)

Note Because of space considerations, the compound option above (Index
4) has been condensed to fit the page. The instdisp command displays all
compound option fields on your computer screen.

The instrument set contains eight instruments:

• Two vanilla options (Call1, Put1)

• One barrier option (Barrier1)

• One compound option (Compound1)

• Two lookback options (Lookback1, Lookback2)

• Two Asian options (Asian1, Asian2)

Each instrument has a corresponding index that identifies the instrument
prices in the price vector returned by eqpprice.

Now use eqpprice to calculate the price of each instrument in the instrument
set.

3-38

Computing Prices and Sensitivities for Equity Derivatives Using Trees

Price = eqpprice(EQPTree, EQPInstSet)

Price =

8.4791
2.6375

12.2632
3.5091
8.7941

12.9577
4.7444
3.9178

Computing Prices Using ITT
Consider the following example, which uses the portfolio and stock price data
in the MAT-file deriv.mat included in the toolbox. Load the data into the
MATLAB workspace.

load deriv.mat

Use the MATLAB whos command to display a list of the variables loaded
from the MAT-file.

Name Size Bytes Class Attributes

BDTInstSet 1x1 15956 struct
BDTTree 1x1 5138 struct
BKInstSet 1x1 15946 struct
BKTree 1x1 5904 struct
CRRInstSet 1x1 12434 struct
CRRTree 1x1 5058 struct
EQPInstSet 1x1 12434 struct
EQPTree 1x1 5058 struct
HJMInstSet 1x1 15948 struct
HJMTree 1x1 5838 struct
HWInstSet 1x1 15946 struct
HWTree 1x1 5904 struct
ITTInstSet 1x1 12438 struct
ITTTree 1x1 8812 struct
ZeroInstSet 1x1 10282 struct

3-39

3 Equity Derivatives

ZeroRateSpec 1x1 1580 struct

ITTTree and ITTInstSet are the input arguments required to call the
function ittprice. Use the command instdisp to examine the set of
instruments contained in the variable ITTInstSet.

instdisp(ITTInstSet)

The instrument set contains eight instruments:

• Two vanilla options (Call1, Put1)

• One barrier option (Barrier1)

• One compound option (Compound1)

• Two lookback options (Lookback1, Lookback2)

• Two Asian options (Asian1, Asian2)

Each instrument has a corresponding index that identifies the instrument
prices in the price vector returned by ittprice.

Now use ittprice to calculate the price of each instrument in the instrument
set.

Price = ittprice(ITTTree, ITTInstSet)

Price =

1.650

3-40

Computing Prices and Sensitivities for Equity Derivatives Using Trees

10.68
2.407
3.229
0.542
6.184
3.205
6.607

Examining Output from the Pricing Functions
The prices in the output vector Price correspond to the prices at observation
time zero (tObs = 0), which is defined as the valuation date of the equity
tree. The instrument indexing within Price is the same as the indexing
within InstSet.

In the CRR example, the prices in the Price vector correspond to the
instruments in this order.

InstNames = instget(CRRInstSet, 'FieldName','Name')

InstNames =

Call1

Put1

Barrier1

Compound1

Lookback1

Lookback2

Asian1

Asian2

Consequently, in the Price vector, the fourth element, 3.3241, represents the
price of the fourth instrument (Compound1), and the sixth element, 11.7772,
represents the price of the sixth instrument (Lookback2).

In the ITT example, the prices in the Price vector correspond to the
instruments in this order.

InstNames = instget(ITTInstSet, 'FieldName','Name')

InstNames =

3-41

3 Equity Derivatives

Call1

Put1

Barrier1

Compound1

Lookback1

Lookback2

Asian1

Asian2

Consequently, in the Price vector, the first element, 1.650, represents the
price of the first instrument (Call1), and the eight element, 6.607, represents
the price of the eighth instrument (Asian2).

Price Tree Output for CRR
If you call a pricing function with two output arguments, for example:

[Price, PriceTree] = crrprice(CRRTree, CRRInstSet)

you generate a price tree structure along with the price information.

This price tree structure PriceTree holds all pricing information.

PriceTree =

FinObj: 'BinPriceTree'

PTree: {[8x1 double] [8x2 double] [8x3 double] [8x4 double] [8x5 double]}

tObs: [0 1 2 3 4]

dObs: [731582 731947 732313 732678 733043]

The first field of this structure, FinObj, indicates that this structure
represents a price tree. The second field, PTree, is the tree holding the prices
of the instruments in each node of the tree. Finally, the third and fourth
fields, tObs and dObs, represent the observation time and date of each level of
PTree, with tObs using units in terms of compounding periods.

Using the command-line interface, you can directly examine
PriceTree.PTree, the field within the PriceTree structure that contains the
price tree with the price vectors at every state. The first node represents tObs
= 0, corresponding to the valuation date.

3-42

Computing Prices and Sensitivities for Equity Derivatives Using Trees

PriceTree.PTree{1}
ans =
8.2863
2.5016
12.1272
3.3241
7.6015
11.7772
4.1797
3.4219

With this interface, you can observe the prices for all instruments in the
portfolio at a specific time.

The function eqpprice also returns a price tree that you can examine in
the same way.

Price Tree Output for ITT
If you call a pricing function with two output arguments, for example:

[Price, PriceTree] = ittprice(ITTTree, ITTInstSet)

you generate a price tree structure along with the price information.

This price tree structure PriceTree holds all pricing information.

PriceTree =

FinObj: 'TrinPriceTree'

PTree: {[8x1 double] [8x3 double] [8x5 double] [8x7 double] [8x9 double]}

tObs: [0 1 2 3 4]

dObs: [732678 733043 733408 733773 734139]

The first field of this structure, FinObj, indicates that this structure
represents a trinomial price tree. The second field, PTree is the tree holding
the prices of the instruments in each node of the tree. Finally, the third and
fourth fields, tObs and dObs, represent the observation time and date of each
level of PTree, with tObs using units in terms of compounding periods.

3-43

3 Equity Derivatives

Using the command-line interface, you can directly examine
PriceTree.PTree, the field within the PriceTree structure that contains the
price tree with the price vectors at every state. The first node represents tObs
= 0, corresponding to the valuation date.

PriceTree.PTree{1}

1.6506
10.6832
2.4074
3.2294
0.5426
6.1845
3.2052
6.6074

With this interface, you can observe the prices for all instruments in the
portfolio at a specific time.

Prices for Lookback and Asian Options for Equity Trees
Lookback options and Asian options are path dependent, and, as such, there
are no unique prices for any node except the root node. Consequently, the
corresponding values for lookback and Asian options in the price tree are set
to NaN, the only exception being the root node. This becomes apparent if you
examine the prices in the second node (tobs = 1) of the CRR price tree:

PriceTree.PTree{2}

ans =

11.9176 0
0.9508 7.1914

16.4600 2.6672
2.5896 5.0000

NaN NaN
NaN NaN
NaN NaN
NaN NaN

3-44

Computing Prices and Sensitivities for Equity Derivatives Using Trees

Examining the prices in the second node (tobs = 1) of the ITT price tree
displays:

PriceTree.PTree{2}

ans =

3.9022 0 0
6.3736 13.3743 22.1915
5.6914 0 0
2.7663 3.8594 5.0000

NaN NaN NaN
NaN NaN NaN
NaN NaN NaN
NaN NaN NaN

Computing Instrument Sensitivities
Sensitivities can be reported either as dollar price changes or percentage price
changes. The delta, gamma, and vega sensitivities that the toolbox computes
are dollar sensitivities.

The functions crrsens, eqpsens, and ittsens compute the delta, gamma,
and vega sensitivities of instruments using a stock tree. They also optionally
return the calculated price for each instrument. The sensitivity functions
require the same two input arguments used by the pricing functions (CRRTree
and CRRInstSet for CRR, EQPTree and EQPInstSet for EQP, andITTTree and
ITTInstSet for ITT).

As with the instrument pricing functions, the optional input argument
Options is also allowed. You would include this argument if you want a
sensitivity function to generate a price for a barrier option as one of its
outputs and want to control the method that the toolbox uses to perform
the pricing operation. See Appendix A, “Derivatives Pricing Options” or the
derivset function for more information.

For path-dependent options (lookback and Asian), delta and gamma are
computed by finite differences in calls to crrprice, eqpprice, and ittprice.
For the other options (stock option, barrier, and compound), delta and gamma
are computed from the CRR, EQP, and ITT trees and the corresponding option
price tree. (See Chriss, Neil, Black-Scholes and Beyond, pp. 308-312.)

3-45

3 Equity Derivatives

CRR Sensitivities Example
The calling syntax for the sensitivity function is:

[Delta, Gamma, Vega, Price] = crrsens(CRRTree, InstSet, Options)

Using the example data in deriv.mat, calculate the sensitivity of the
instruments.

load deriv.mat
[Delta, Gamma, Vega, Price] = crrsens(CRRTree, CRRInstSet);

You can conveniently examine the sensitivities and the prices by arranging
them into a single matrix.

format bank
All = [Delta, Gamma, Vega, Price]

All =

0.59 0.04 53.45 8.29
-0.31 0.03 67.00 2.50
0.69 0.03 67.00 12.13

-0.12 -0.01 -98.08 3.32
-0.40 -45926.32 88.18 7.60
-0.42 -112143.15 119.19 11.78
0.60 45926.32 49.21 4.18
0.82 112143.15 41.71 3.42

As with the prices, each row of the sensitivity vectors corresponds to
the similarly indexed instrument in CRRInstSet. To view the per-dollar
sensitivities, divide each dollar sensitivity by the corresponding instrument
price.

All = [Delta ./ Price, Gamma ./ Price, Vega ./ Price, Price]
All =

0.07 0.00 6.45 8.29
-0.12 0.01 26.78 2.50
0.06 0.00 5.53 12.13

-0.04 -0.00 -29.51 3.32

3-46

Computing Prices and Sensitivities for Equity Derivatives Using Trees

-0.05 -6041.77 11.60 7.60
-0.04 -9522.02 10.12 11.78
0.14 10987.98 11.77 4.18
0.24 32771.92 12.19 3.42

ITT Sensitivities Example
The calling syntax for the sensitivity function is:

[Delta, Gamma, Vega, Price] = ittsens(ITTTree, ITTInstSet,
Options)

Using the example data in deriv.mat, calculate the sensitivity of the
instruments.

load deriv.mat
warning('off', 'finderiv:itttree:Extrapolation');
[Delta, Gamma, Vega, Price] = ittsens(ITTTree, ITTInstSet);

You can conveniently examine the sensitivities and the prices by arranging
them into a single matrix.

format bank
All = [Delta, Gamma, Vega, Price]

All =

0.24 0.03 19.35 1.65
-0.43 0.02 49.69 10.68
0.35 0.04 12.29 2.41

-0.07 0.00 6.73 3.23
0.63 142945.66 38.90 0.54
0.60 22703.21 68.92 6.18
0.32 -142945.66 18.48 3.21
0.67 -22703.21 17.75 6.61

As with the prices, each row of the sensitivity vectors corresponds to the
similarly indexed instrument in ITTInstSet.

3-47

3 Equity Derivatives

Note In this example, the extrapolation warnings are turned off before
calculating the sensitivities to avoid displaying many warnings on the
Command Window as the sensitivities are calculated.

If the extrapolation warnings are turned on

warning('on', 'finderiv:itttree:Extrapolation');

and ittsens is rerun, the extrapolation warnings scroll as the command
executes:

[Delta, Gamma, Vega, Price] = ittsens(ITTTree, ITTInstSet)

Warning: The option set specified in StockOptSpec was too narrow for the generated tree.

This makes extrapolation necessary. The list of options outside of the

range of those specified in StockOptSpec are:

Option Type: 'call' Maturity: 01-Jan-2007 Strike=66.3529

Option Type: 'put' Maturity: 01-Jan-2007 Strike=50.0061

Option Type: 'put' Maturity: 01-Jan-2008 Strike=50.0061

Option Type: 'put' Maturity: 31-Dec-2008 Strike=50.0061

Option Type: 'call' Maturity: 01-Jan-2010 Strike=155.0141

Option Type: 'put' Maturity: 01-Jan-2010 Strike=50.006

> In itttree>InterpOptPrices at 675

In itttree at 277

In stocktreesens>stocktreedeltagamma_PD at 127

In stocktreesens at 83

In ittsens at 81

Warning: The option set specified in StockOptSpec was too narrow for the generated tree.

This made extrapolation necessary. Below is a list of the options that were outside of the

range of those specified in StockOptSpec.

Option Type: 'call' Maturity: 01-Jan-2007 Strike=66.3367

Option Type: 'put' Maturity: 01-Jan-2007 Strike=37.6773

Option Type: 'call' Maturity: 01-Jan-2008 Strike=66.3367

Option Type: 'put' Maturity: 01-Jan-2008 Strike=28.3951

Option Type: 'call' Maturity: 31-Dec-2008 Strike=66.3367

Option Type: 'call' Maturity: 01-Jan-2010 Strike=66.3367

3-48

Computing Prices and Sensitivities for Equity Derivatives Using Trees

Option Type: 'put' Maturity: 01-Jan-2010 Strike=16.1276

> In itttree>InterpOptPrices at 675

In itttree at 277

In stocktreesens>stocktreedeltagamma_PD at 131

In stocktreesens at 83

In ittsens at 81

Warning: The option set specified in StockOptSpec was too narrow for the generated tree.

This made extrapolation necessary. Below is a list of the options that were outside of the

range of those specified in StockOptSpec.

Option Type: 'call' Maturity: 01-Jan-2007 Strike=67.2897

Option Type: 'put' Maturity: 01-Jan-2007 Strike=37.1528

Option Type: 'put' Maturity: 01-Jan-2008 Strike=27.6066

Option Type: 'put' Maturity: 31-Dec-2008 Strike=20.5132

Option Type: 'call' Maturity: 01-Jan-2010 Strike=164.0157

Option Type: 'put' Maturity: 01-Jan-2010 Strike=15.2424

> In itttree>InterpOptPrices at 675

In itttree at 277

In stocktreesens>stocktreevega at 191

In stocktreesens at 92

In ittsens at 81

These warnings are a consequence of having to extrapolate to find the option
price of the tree nodes. In this example, the set of inputs options was too
narrow for the shift in the tree nodes introduced by the disturbance used to
calculate the sensitivities. As a consequence extrapolation for some of the
nodes was needed. Since the input data is quite close the extrapolated data,
the error introduced by extrapolation is fairly low.

Graphical Representation of CRR, EQP, LR, and ITT
Trees
You can use the function treeviewer to display a graphical representation of
a tree, allowing you to examine interactively the prices and rates on the nodes
of the tree until maturity. The graphical representations of CRR, EQP, and
LR trees are equivalent to Black-Derman-Toy (BDT) trees, given that they
are all binary recombining trees. The graphical representations of ITT trees

3-49

3 Equity Derivatives

are equivalent to Hull-White (HW) trees, given that they are all trinomial
recombining trees. See “Graphical Representation of Trees” on page 2-88
for an overview on the use of treeviewer with CRR trees, EQP trees, LR
trees, and ITT trees and their corresponding option price trees. Follow the
instructions for BDT trees.

3-50

Equity Derivatives Using Closed-Form Solutions

Equity Derivatives Using Closed-Form Solutions

In this section...

“Introduction” on page 3-51

“Computing Prices and Sensitivities Using the Black-Scholes Model” on
page 3-55

“Computing Prices and Sensitivities Using the Black Model” on page 3-57

“Computing Prices and Sensitivities Using the Roll-Geske-Whaley Model”
on page 3-59

“Computing Prices and Sensitivities Using the Bjerksund-Stensland Model”
on page 3-60

Introduction
Financial Derivatives Toolbox software supports four types of closed-form
solutions and analytical approximations to calculate price and sensitivities
(greeks) of vanilla options:

• Black-Scholes model

• Black model

• Roll-Geske-Whaley model

• Bjerksund-Stensland 2002 model

Black-Scholes Model
The Black-Scholes model is one of the most commonly used models to price
European calls and puts. It serves as a basis for many closed-form solutions
used for pricing options. The standard Black-Scholes model is based on the
following assumptions:

• There are no dividends paid during the life of the option.

• The option can only be exercised at maturity.

• The markets operate under a Markov process in continuous time.

• No commissions are paid.

3-51

3 Equity Derivatives

• The risk-free interest rate is known and constant.

• Returns on the underlying stocks are log-normally distributed.

Note The Black-Scholes model implemented in Financial Derivatives
Toolbox software allows dividends. The following three dividend methods
are supported:

• Cash dividend

• Continuous dividend yield

• Constant dividend yield

However, not all Black-Scholes closed-form pricing functions support all three
dividend methods. For more information on specifying the dividend methods,
see stockspec.

Closed-form solutions based on a Black-Scholes model support the following
tasks.

Task Function

Price European options with different
dividends using the Black-Scholes option
pricing model.

optstockbybls

Calculate European option prices and
sensitivities using the Black-Scholes option
pricing model.

optstocksensbybls

Calculate implied volatility on European
options using the Black-Scholes option
pricing model.

impvbybls

Price European simple chooser options
using Black-Scholes model.

chooserbybls

For an example using the Black-Scholes model, see “Computing Prices and
Sensitivities Using the Black-Scholes Model” on page 3-55.

3-52

Equity Derivatives Using Closed-Form Solutions

Black Model
Use the Black model for pricing European options on physical commodities,
forwards or futures. The Black model supported by Financial Derivatives
Toolbox software is a special case of the Black-Scholes model. The Black model
uses a forward price as an underlier in place of a spot price. The assumption
is that the forward price at maturity of the option is log-normally distributed.

Closed-form solutions for a Black model support the following tasks.

Task Function

Price European options on futures using the
Black option pricing model.

optstockbyblk

Calculate European option prices and
sensitivities on futures using the Black
option pricing model.

optstocksensbyblk

Calculate implied volatility for European
options using the Black option pricing
model.

impvbyblk

For an example using the Black model, see “Computing Prices and
Sensitivities Using the Black Model” on page 3-57.

Roll-Geske-Whaley Model
Use the Roll-Geske-Whaley approximation method to price American call
options paying a single cash dividend. This model is based on the modification
of the observed stock price for the present value of the dividend and also
supports a compound option to account for the possibility of early exercise.
The Roll-Geske-Whaley model has drawbacks due to an escrowed dividend
price approach which may lead to arbitrage. For further explanation, see
Options, Futures, and Other Derivatives by John Hull.

Closed-form solutions for a Roll-Geske-Whaley model support the following
tasks.

3-53

3 Equity Derivatives

Task Function

Price American call options with a single
cash dividend using the Roll-Geske-Whaley
option pricing model.

optstockbyrgw

Calculate American call prices and
sensitivities using the Roll-Geske-Whaley
option pricing model.

optstocksensbyrgw

Calculate implied volatility for American
call options using the Roll-Geske-Whaley
option pricing model.

impvbyrgw

For an example using the Roll-Geske-Whaley model, see “Computing Prices
and Sensitivities Using the Roll-Geske-Whaley Model” on page 3-59.

Bjerksund-Stensland 2002 Model
Use the Bjerksund-Stensland 2002 model for pricing American puts and
calls with continuous dividend yield. This model works by dividing the
time to maturity of the option in two separate parts, each with its own flat
exercise boundary (trigger price). The Bjerksund-Stensland 2002 method is a
generalization of the Bjerksund and Stensland 1993 method and is considered
to be computationally efficient . For further explanation, see Closed Form
Valuation of American Options by Bjerksund and Stensland.

Closed-form solutions for a Bjerksund-Stensland 2002 model support the
following tasks.

Task Function

Price American options with
continuous dividend yield using the

optstockbybjs

3-54

Equity Derivatives Using Closed-Form Solutions

Task Function

Bjerksund-Stensland 2002 option pricing
model.

Calculate American options prices and
sensitivities using the Bjerksund-Stensland
2002 option pricing model.

optstocksensbybjs

Calculate implied volatility for American
options using the Bjerksund-Stensland 2002
option pricing model.

impvbybjs

For an example using the Bjerksund-Stensland 2002 model, see “Computing
Prices and Sensitivities Using the Bjerksund-Stensland Model” on page 3-60.

Computing Prices and Sensitivities Using the
Black-Scholes Model
Consider a European stock option with an exercise price of $40 on January
1, 2008 that expires on July 1, 2008. Assume the underlying stock pays
dividends of $0.50 on March 1 and June 1. The stock is trading at $40 and
has a volatility of 30% per annum. The risk-free rate is 4% per annum. Using
this data, calculate the price of a call and a put option on the stock using the
Black-Scholes option pricing model:

Strike = 40;
AssetPrice = 40;
Sigma = .3;
Rates = 0.04;
Settle = 'Jan-01-08';
Maturity = 'Jul-01-08';

Div1 = 'March-01-2008';
Div2 = 'Jun-01-2008';

Create RateSpec and StockSpec:

RateSpec = intenvset('ValuationDate', Settle, 'StartDates', Settle, 'EndDates',...

Maturity, 'Rates', Rates, 'Compounding', -1);

3-55

3 Equity Derivatives

StockSpec = stockspec(Sigma, AssetPrice, {'cash'}, 0.50,{Div1,Div2});

Define two options, one call and one put:

OptSpec = {'call'; 'put'};

Calculate the price of the European options:

Price = optstockbybls(RateSpec, StockSpec, Settle, Maturity, OptSpec, Strike)

Price =

3.2063

3.4027

The first element of the Price vector represents the price of the call ($3.21);
the second is the price of the put ($3.40). Use the function optstocksensbybls
to compute six sensitivities for the Black-Scholes model: delta, gamma, vega,
lambda, rho, and theta and the price of the option.

The selection of output parameters and their order is determined by the
optional input parameter OutSpec. This parameter is a cell array of strings,
each one specifying a desired output parameter. The order in which these
output parameters are returned by the function is the same as the order
of the strings contained in OutSpec.

As an example, consider the same options as the previous example. To
calculate their Delta, Rho, Price, and Gamma, build the cell array OutSpec as
follows:

OutSpec = {'delta', 'rho', 'price', 'gamma'};

[Delta, Rho, Price, Gamma] =optstocksensbybls(RateSpec, StockSpec, Settle,...

Maturity, OptSpec, Strike, 'OutSpec', OutSpec)

Delta =

0.5328

-0.4672

3-56

Equity Derivatives Using Closed-Form Solutions

Rho =

8.7902

-10.8138

Price =

3.2063

3.4027

Gamma =

0.0480

0.0480

Computing Prices and Sensitivities Using the Black
Model

Consider two European call options on a futures contract with exercise prices
of $20 and $25 that expire on September 1, 2008. Assume that on May 1, 2008
the contract is trading at $20 and has a volatility of 35% per annum. The
risk-free rate is 4% per annum. Using this data, calculate the price of the call
futures options using the Black model:

Strike = [20; 25];
AssetPrice = 20;
Sigma = .35;
Rates = 0.04;
Settle = 'May-01-08';
Maturity = 'Sep-01-08';

Create RateSpec and StockSpec:

RateSpec = intenvset('ValuationDate', Settle, 'StartDates', Settle,...

'EndDates', Maturity, 'Rates', Rates, 'Compounding', -1);

StockSpec = stockspec(Sigma, AssetPrice);

3-57

3 Equity Derivatives

Define the call option:

OptSpec = {'call'};

Calculate price and all sensitivities of the European futures options:

OutSpec = {'All'}

[Delta, Gamma, Vega, Lambda, Rho, Theta, Price] = optstocksensbyblk(RateSpec,...

StockSpec, Settle, Maturity, OptSpec, Strike, 'OutSpec', OutSpec);

Price =

1.5903

0.3037

The first element of the Price vector represents the price of the call with
an exercise price of $20 ($1.59); the second is the price of the call with an
exercise price of $25 ($2.89).

The function impvbyblk is used to compute the implied volatility using the
Black option pricing model. Assuming that the previous European call futures
are trading at $1.5903 and $0.3037, you can calculate their implied volatility:

Volatility = impvbyblk(RateSpec, StockSpec, Settle, Maturity,...
OptSpec, Strike, Price);

As expected, you get volatilities of 35%. If the call futures were trading at
$1.50 and $0.50 in the market, the implied volatility would be 33% and 42%:

Volatility = impvbyblk(RateSpec, StockSpec, Settle, Maturity,...
OptSpec, Strike, [1.50;0.5])

Volatility =

0.3301
0.4148

3-58

Equity Derivatives Using Closed-Form Solutions

Computing Prices and Sensitivities Using the
Roll-Geske-Whaley Model
Consider two American call options, with exercise prices of $110 and $100 on
June 1, 2008, that expire on June 1, 2009. Assume the underlying stock pays
dividends of $0.001 on December 1, 2008. The stock is trading at $80 and has
a volatility of 20% per annum. The risk-free rate is 6% per annum. Using this
data, calculate the price of the American calls using the Roll-Geske-Whaley
option pricing model:

AssetPrice = 80;
Settle = 'Jun-01-2008';
Maturity = 'Jun-01-2009';
Strike = [110; 100];

Rate = 0.06;
Sigma = 0.2;

DivAmount = 0.001;
DivDate = 'Dec-01-2008';

Create RateSpec and StockSpec:

StockSpec = stockspec(Sigma, AssetPrice, {'cash'}, DivAmount, DivDate);

RateSpec = intenvset('ValuationDate', Settle, 'StartDates', Settle,...

'EndDates', Maturity, 'Rates', Rate, 'Compounding', -1);

Calculate the call prices:

Price = optstockbyrgw(RateSpec, StockSpec, Settle, Maturity, Strike)

Price =

0.8398

2.0236

The first element of the Price vector represents the price of the call with
an exercise price of $110 ($0.84); the second is the price of the call with an
exercise price of $100 ($2.02).

3-59

3 Equity Derivatives

Computing Prices and Sensitivities Using the
Bjerksund-Stensland Model
Consider four American stock options (two calls and two puts) with an
exercise price of $100 that expire on July 1, 2008. Assume the underlying
stock pays a continuous dividend yield of 4% as of January 1, 2008. The stock
has a volatility of 20% per annum and the risk-free rate is 8% per annum.
Using this data, calculate the price of the American calls and puts assuming
the following current prices of the stock: $80, $90 (for the calls) and $100
and $110 (for the puts):

Settle = 'Jan-1-2008';
Maturity = 'Jul-1-2008';
Strike = 100;
AssetPrice = [80; 90; 100; 110];
DivYield = 0.04;

Rate = 0.08;
Sigma = 0.20;

Create RateSpec and StockSpec:

StockSpec = stockspec(Sigma, AssetPrice, {'continuous'}, DivYield);

RateSpec = intenvset('ValuationDate', Settle, 'StartDates', Settle,...

'EndDates', Maturity, 'Rates', Rate, 'Compounding', -1);

Define the option type:

OptSpec = {'call'; 'call'; 'put'; 'put'};

Compute the option prices:

Price = optstockbybjs(RateSpec, StockSpec, Settle, Maturity, OptSpec, Strike)

Price =

0.4144

2.1804

4.7253

1.7164

3-60

Equity Derivatives Using Closed-Form Solutions

The first two elements of the Price vector represent the price of the calls
($0.41 and $2.18), the last two elements represent the price of the put
options ($4.72 and $1.72). Use the function optstocksensbybjs to compute
six sensitivities for the Bjerksund-Stensland model: delta, gamma, vega,
lambda, rho, and theta and the price of the option. The selection of output
parameters and their order is determined by the optional input parameter
OutSpec. This parameter is a cell array of strings, each one specifying a
desired output parameter. The order in which these output parameters are
returned by the function is the same as the order of the strings contained in
OutSpec. As an example, consider the same options as the previous example.
To calculate their delta, gamma, and price, build the cell array OutSpec as
follows:

OutSpec = {'delta', 'gamma', 'price'};

The outputs of optstocksensbybjs will be in the same order as in OutSpec.

[Delta ,Gamma, Price]= optstocksensbybjs(RateSpec, StockSpec, Settle,...

Maturity, OptSpec, Strike, 'OutSpec', OutSpec)

Delta =

0.0843

0.2912

0.4803

0.2261

Gamma =

0.0136

0.0267

0.0304

0.0217

Price =

0.4144

2.1804

4.7253

1.7164

3-61

3 Equity Derivatives

3-62

4

Hedging Portfolios

• “Hedging” on page 4-2

• “Hedging Functions” on page 4-3

• “Specifying Constraints with ConSet” on page 4-16

• “Hedging with Constrained Portfolios” on page 4-21

4 Hedging Portfolios

Hedging
Hedging is an important consideration in modern finance. Whether or not to
hedge, how much portfolio insurance is adequate, and how often to rebalance
a portfolio are important considerations for traders, portfolio managers, and
financial institutions alike.

If there were no transaction costs, financial professionals would prefer to
rebalance portfolios continually, thereby minimizing exposure to market
movements. However, in practice, the transaction costs associated with
frequent portfolio rebalancing may be expensive. Therefore, traders and
portfolio managers must carefully assess the cost required to achieve a
particular portfolio sensitivity (for example, maintaining delta, gamma,
and vega neutrality). Thus, the hedging problem involves the fundamental
tradeoff between portfolio insurance and the cost of such insurance coverage.

4-2

Hedging Functions

Hedging Functions

In this section...

“Introduction” on page 4-3

“Hedging with hedgeopt” on page 4-4

“Self-Financing Hedges with hedgeslf” on page 4-12

Introduction
Financial Derivatives Toolbox software offers two functions for assessing the
fundamental hedging tradeoff, hedgeopt and hedgeslf.

The first function, hedgeopt, addresses the most general hedging problem. It
allocates an optimal hedge to satisfy either of two goals:

• Minimize the cost of hedging a portfolio given a set of target sensitivities.

• Minimize portfolio sensitivities for a given set of maximum target costs.

hedgeopt allows investors to modify portfolio allocations among instruments
according to either of the goals. The problem is cast as a constrained linear
least-squares problem. For additional information about hedgeopt, see
“Hedging with hedgeopt” on page 4-4.

The second function, hedgeslf, attempts to allocate a self-financing hedge
among a portfolio of instruments. In particular, hedgeslf attempts to
maintain a constant portfolio value consistent with reduced portfolio
sensitivities (that is, the rebalanced portfolio is hedged against market moves
and is closest to being self-financing). If hedgeslf cannot find a self-financing
hedge, it rebalances the portfolio to minimize overall portfolio sensitivities.
For additional information on hedgeslf, see “Self-Financing Hedges with
hedgeslf” on page 4-12.

The examples in this section consider the delta, gamma, and vega sensitivity
measures. In this toolbox, when you work with interest-rate derivatives, delta
is the price sensitivity measure of shifts in the forward yield curve, gamma is
the delta sensitivity measure of shifts in the forward yield curve, and vega is
the price sensitivity measure of shifts in the volatility process. See bdtsens

4-3

4 Hedging Portfolios

or hjmsens for details on the computation of sensitivities for interest-rate
derivatives.

For equity exotic options, the underlying instrument is the stock price instead
of the forward yield curve. Consequently, delta now represents the price
sensitivity measure of shifts in the stock price, gamma is the delta sensitivity
measure of shifts in the stock price, and vega is the price sensitivity measure
of shifts in the volatility of the stock. See crrsens, eqpsens, or ittsens for
details on the computation of sensitivities for equity derivatives.

For examples showing the computation of sensitivities for interest-rate
based derivatives, see “Computing Instrument Sensitivities” on page 2-40.
Likewise, for examples showing the computation of sensitivities for equity
exotic options, see “Computing Instrument Sensitivities” on page 3-45.

Note The delta, gamma, and vega sensitivities that the toolbox calculates
are dollar sensitivities.

Hedging with hedgeopt

Note The numerical results in this section are displayed in the MATLAB
bank format. Although the calculations are performed in floating-point double
precision, only two decimal places are displayed.

To illustrate the hedging facility, consider the portfolio HJMInstSet obtained
from the example file deriv.mat. The portfolio consists of eight instruments:
two bonds, one bond option, one fixed-rate note, one floating-rate note, one
cap, one floor, and one swap.

Both hedging functions require some common inputs, including the current
portfolio holdings (allocations), and a matrix of instrument sensitivities. To
create these inputs, load the example portfolio into memory

load deriv.mat;

compute price and sensitivities

4-4

Hedging Functions

[Delta, Gamma, Vega, Price] = hjmsens(HJMTree, HJMInstSet);

Warning: Not all cash flows are aligned with the tree. Result will

be approximated.

and extract the current portfolio holdings.

Holdings = instget(HJMInstSet, 'FieldName', 'Quantity');

For convenience place the delta, gamma, and vega sensitivity measures into a
matrix of sensitivities.

Sensitivities = [Delta Gamma Vega];

Each row of the Sensitivities matrix is associated with a different
instrument in the portfolio, and each column with a different sensitivity
measure.

To summarize the portfolio information

disp([Price Holdings Sensitivities])

98.72 100.00 -272.65 1029.90 0.00
97.53 50.00 -347.43 1622.69 -0.04
0.05 -50.00 -8.08 643.40 34.07

98.72 80.00 -272.65 1029.90 0.00
100.55 8.00 -1.04 3.31 0

6.28 30.00 294.97 6852.56 93.69
0.05 40.00 -47.16 8459.99 93.69
3.69 10.00 -282.05 1059.68 0.00

The first column above is the dollar unit price of each instrument, the
second is the holdings of each instrument (the quantity held or the number
of contracts), and the third, fourth, and fifth columns are the dollar delta,
gamma, and vega sensitivities, respectively.

The current portfolio sensitivities are a weighted average of the instruments
in the portfolio.

TargetSens = Holdings' * Sensitivities

TargetSens =

4-5

4 Hedging Portfolios

-61910.22 788946.21 4852.91

Maintaining Existing Allocations
To illustrate using hedgeopt, suppose that you want to maintain your
existing portfolio. The first form of hedgeopt minimizes the cost of hedging
a portfolio given a set of target sensitivities. If you want to maintain your
existing portfolio composition and exposure, you should be able to do so
without spending any money. To verify this, set the target sensitivities to the
current sensitivities.

[Sens, Cost, Quantity] = hedgeopt(Sensitivities, Price,...
Holdings, [], [], [], TargetSens)

Sens =

-61910.22 788946.21 4852.91

Cost =

0

Quantity' =

100.00
50.00

-50.00
80.00
8.00

30.00
40.00
10.00

Portfolio composition and sensitivities are unchanged, and the cost associated
with doing nothing is zero. The cost is defined as the change in portfolio
value. This number cannot be less than zero because the rebalancing cost
is defined as a nonnegative number.

4-6

Hedging Functions

If Value0 and Value1 represent the portfolio value before and after
rebalancing, respectively, the zero cost can also be verified by comparing
the portfolio values.

Value0 = Holdings' * Price

Value0 =

23674.62

Value1 = Quantity * Price

Value1 =

23674.62

Partially Hedged Portfolio
Building on the example in “Maintaining Existing Allocations” on page
4-6, suppose you want to know the cost to achieve an overall portfolio
dollar sensitivity of [-23000 -3300 3000], while allowing trading only in
instruments 2, 3, and 6 (holding the positions of instruments 1, 4, 5, 7, and 8
fixed). To find the cost, first set the target portfolio dollar sensitivity.

TargetSens = [-23000 -3300 3000];

Then, specify the instruments to be fixed.

FixedInd = [1 4 5 7 8];

Finally, call hedgeopt

[Sens, Cost, Quantity] = hedgeopt(Sensitivities, Price,...
Holdings, FixedInd, [], [], TargetSens);

and again examine the results.

Sens =

-23000.00 -3300.00 3000.00

4-7

4 Hedging Portfolios

Cost =

19174.02

Quantity' =

100.00
-141.03
137.26
80.00
8.00

-57.96
40.00
10.00

Recompute Value1, the portfolio value after rebalancing.

Value1 = Quantity * Price

Value1 =

4500.60

As expected, the cost, $19174.02, is the difference between Value0 and
Value1, $23674.62 — $4500.60. Only the positions in instruments 2, 3, and
6 have been changed.

Fully Hedged Portfolio
The example in “Partially Hedged Portfolio” on page 4-7 illustrates a partial
hedge, but perhaps the most interesting case involves the cost associated with
a fully hedged portfolio (simultaneous delta, gamma, and vega neutrality).
In this case, set the target sensitivity to a row vector of 0s and call hedgeopt
again. The following example uses data from “Hedging with hedgeopt” on
page 4-4.

TargetSens = [0 0 0];
[Sens, Cost, Quantity] = hedgeopt(Sensitivities, Price, ...
Holdings, FixedInd, [], [], TargetSens);

4-8

Hedging Functions

Examining the outputs reveals that you have obtained a fully hedged portfolio

Sens =

-0.00 -0.00 -0.00

but at an expense of over $20,000.

Cost =

23055.90

The positions required to achieve a fully hedged portfolio

Quantity' =

100.00
-182.36
-19.55
80.00
8.00

-32.97
40.00
10.00

result in the new portfolio value

Value1 = Quantity * Price

Value1 =

618.72

Minimizing Portfolio Sensitivities
The examples in “Fully Hedged Portfolio” on page 4-8 illustrate how to use
hedgeopt to determine the minimum cost of hedging a portfolio given a set
of target sensitivities. In these examples, portfolio target sensitivities are
treated as equality constraints during the optimization process. You tell
hedgeopt what sensitivities you want, and it tells you what it will cost to
get those sensitivities.

4-9

4 Hedging Portfolios

A related problem involves minimizing portfolio sensitivities for a given set of
maximum target costs. For this goal, the target costs are treated as inequality
constraints during the optimization process. You tell hedgeopt the most
you are willing spend to insulate your portfolio, and it tells you the smallest
portfolio sensitivities you can get for your money.

To illustrate this use of hedgeopt, compute the portfolio dollar sensitivities
along the entire cost frontier. From the previous examples, you know that
spending nothing replicates the existing portfolio, while spending $23,055.90
completely hedges the portfolio.

Assume, for example, you are willing to spend as much as $50,000, and
want to see what portfolio sensitivities will result along the cost frontier.
Assume that the same instruments are held fixed, and that the cost frontier is
evaluated from $0 to $50,000 at increments of $1000.

MaxCost = [0:1000:50000];

Now, call hedgeopt.

[Sens, Cost, Quantity] = hedgeopt(Sensitivities, Price, ...
Holdings, FixedInd, [], MaxCost);

With this data, you can plot the required hedging cost versus the funds
available (the amount you are willing to spend)

plot(MaxCost/1000, Cost/1000, 'red'), grid
xlabel('Funds Available for Rebalancing ($1000''s)')
ylabel('Actual Rebalancing Cost ($1000''s)')
title ('Rebalancing Cost Profile')

4-10

Hedging Functions

Rebalancing Cost Profile

and the portfolio dollar sensitivities versus the funds available.

figure
plot(MaxCost/1000, Sens(:,1), '-red')
hold('on')
plot(MaxCost/1000, Sens(:,2), '-.black')
plot(MaxCost/1000, Sens(:,3), '--blue')
grid
xlabel('Funds Available for Rebalancing ($1000''s)')
ylabel('Delta, Gamma, and Vega Portfolio Dollar Sensitivities')
title ('Portfolio Sensitivities Profile')
legend('Delta', 'Gamma', 'Vega', 0)

4-11

4 Hedging Portfolios

Funds Available for Rebalancing

Self-Financing Hedges with hedgeslf
The figures Rebalancing Cost Profile on page 4-11 and Funds Available for
Rebalancing on page 4-12 indicate that there is no benefit because the funds
available for hedging exceed $23,055.90, the point of maximum expense
required to obtain simultaneous delta, gamma, and vega neutrality. You can
also find this point of delta, gamma, and vega neutrality using hedgeslf.

[Sens, Value1, Quantity] = hedgeslf(Sensitivities, Price,...
Holdings, FixedInd);

Sens =

-0.00
-0.00
-0.00

Value1 =

618.72

4-12

Hedging Functions

Quantity =

100.00
-182.36
-19.55
80.00
8.00

-32.97
40.00
10.00

Similar to hedgeopt, hedgeslf returns the portfolio dollar sensitivities and
instrument quantities (the rebalanced holdings). However, in contrast, the
second output parameter of hedgeslf is the value of the rebalanced portfolio,
from which you can calculate the rebalancing cost by subtraction.

Value0 - Value1

ans =

23055.90

In this example, the portfolio is clearly not self-financing, so hedgeslf finds
the best possible solution required to obtain zero sensitivities.

There is, in fact, a third calling syntax available for hedgeopt directly
related to the results shown above for hedgeslf. Suppose, instead of directly
specifying the funds available for rebalancing (the most money you are
willing to spend), you want to simply specify the number of points along the
cost frontier. This call to hedgeopt samples the cost frontier at 10 equally
spaced points between the point of minimum cost (and potentially maximum
exposure) and the point of minimum exposure (and maximum cost).

[Sens, Cost, Quantity] = hedgeopt(Sensitivities, Price,...
Holdings, FixedInd, 10);

Sens =
-32784.46 2231.83 -49694.33
-29141.74 1983.85 -44172.74

4-13

4 Hedging Portfolios

-25499.02 1735.87 -38651.14
-21856.30 1487.89 -33129.55
-18213.59 1239.91 -27607.96
-14570.87 991.93 -22086.37
-10928.15 743.94 -16564.78
-7285.43 495.96 -11043.18
-3642.72 247.98 -5521.59

0.00 -0.00 0.00

Cost =
0.00

2561.77
5123.53
7685.30

10247.07
12808.83
15370.60
17932.37
20494.14
23055.90

Now plot this data.

figure
plot(Cost/1000, Sens(:,1), '-red')
hold('on')
plot(Cost/1000, Sens(:,2), '-.black')
plot(Cost/1000, Sens(:,3), '--blue')
grid
xlabel('Rebalancing Cost ($1000''s)')
ylabel('Delta, Gamma, and Vega Portfolio Dollar Sensitivities')
title ('Portfolio Sensitivities Profile')
legend('Delta', 'Gamma', 'Vega', 0)

4-14

Hedging Functions

Rebalancing Cost

In this calling form, hedgeopt calls hedgeslf internally to determine the
maximum cost needed to minimize the portfolio sensitivities ($23,055.90), and
evenly samples the cost frontier between $0 and $23,055.90.

Note that both hedgeopt and hedgeslf cast the optimization problem as a
constrained linear least squares problem. Depending on the instruments
and constraints, neither function is guaranteed to converge to a solution. In
some cases, the problem space may be unbounded, and additional instrument
equality constraints, or user-specified constraints, may be necessary for
convergence. See “Hedging with Constrained Portfolios” on page 4-21 for
additional information.

4-15

4 Hedging Portfolios

Specifying Constraints with ConSet

In this section...

“Introduction” on page 4-16

“Setting Constraints” on page 4-16

“Portfolio Rebalancing” on page 4-19

Introduction
Both hedgeopt and hedgeslf accept an optional input argument, ConSet,
that allows you to specify a set of linear inequality constraints for instruments
in your portfolio. The examples in this section are brief. For additional
information regarding portfolio constraint specifications, refer to “Analyzing
Portfolios” in the Financial Toolbox documentation.

Setting Constraints
For the first example of setting constraints, return to the fully hedged portfolio
example that used hedgeopt to determine the minimum cost of obtaining
simultaneous delta, gamma, and vega neutrality (target sensitivities all 0).
Recall that when hedgeopt computes the cost of rebalancing a portfolio, the
input target sensitivities you specify are treated as equality constraints during
the optimization process. The situation is reproduced next for convenience.

TargetSens = [0 0 0];
[Sens, Cost, Quantity] = hedgeopt(Sensitivities, Price,...
Holdings, FixedInd, [], [], TargetSens);

The outputs provide a fully hedged portfolio

Sens =
-0.00 -0.00 -0.00

at an expense of over $23,000.

Cost =
23055.90

4-16

Specifying Constraints with ConSet

The positions required to achieve this fully hedged portfolio are

Quantity' =

100.00
-182.36
-19.55
80.00
8.00

-32.97
40.00
10.00

Suppose now that you want to place some upper and lower bounds on the
individual instruments in your portfolio. You can specify these constraints,
along with a variety of general linear inequality constraints, with Financial
Toolbox function portcons.

As an example, assume that, in addition to holding instruments 1, 4, 5, 7, and
8 fixed as before, you want to bound the position of all instruments to within
+/- 180 contracts (for each instrument, you cannot short or long more than
180 contracts). Applying these constraints disallows the current position in
the second instrument (short 182.36). All other instruments are currently
within the upper/lower bounds.

You can generate these constraints by first specifying the lower and upper
bounds vectors and then calling portcons.

LowerBounds = [-180 -180 -180 -180 -180 -180 -180 -180];
UpperBounds = [180 180 180 180 180 180 180 180];
ConSet = portcons('AssetLims', LowerBounds, UpperBounds);

To impose these constraints, call hedgeopt with ConSet as the last input.

[Sens, Cost, Quantity] = hedgeopt(Sensitivities, Price,...
Holdings, FixedInd, [], [], TargetSens, ConSet);

Examine the outputs and see that they are all set to NaN, indicating that the
problem, given the constraints, is not solvable. Intuitively, the results mean

4-17

4 Hedging Portfolios

that you cannot obtain simultaneous delta, gamma, and vega neutrality with
these constraints at any price.

To see how close you can get to portfolio neutrality with these constraints,
call hedgeslf.

[Sens, Value1, Quantity] = hedgeslf(Sensitivities, Price,...
Holdings, FixedInd, ConSet);

Sens =

-352.43
21.99

-498.77

Value1 =

855.10

Quantity =

100.00
-180.00
-37.22
80.00
8.00

-31.86
40.00
10.00

hedgeslf enforces the lower bound for the second instrument, but the
sensitivity is far from neutral. The cost to obtain this portfolio is

Value0 - Value1

ans =

22819.52

4-18

Specifying Constraints with ConSet

Portfolio Rebalancing
As a final example of user-specified constraints, rebalance the portfolio using
the second hedging goal of hedgeopt. Assume that you are willing to spend
as much as $20,000 to rebalance your portfolio, and you want to know what
minimum portfolio sensitivities you can get for your money. In this form,
recall that the target cost ($20,000) is treated as an inequality constraint
during the optimization process.

For reference, startup hedgeopt without any user-specified linear inequality
constraints.

[Sens, Cost, Quantity] = hedgeopt(Sensitivities, Price,...
Holdings, FixedInd, [], 20000);

Sens =

-4345.36 295.81 -6586.64
Cost =

20000.00

Quantity' =

100.00
-151.86
-253.47

80.00
8.00

-18.18
40.00
10.00

This result corresponds to the $20,000 point along the Portfolio Sensitivities
Profile shown in the figure Rebalancing Cost on page 4-15.

Assume that, in addition to holding instruments 1, 4, 5, 7, and 8 fixed as
before, you want to bound the position of all instruments to within +/- 150
contracts (for each instrument, you cannot short more than 150 contracts and
you cannot long more than 150 contracts). These bounds disallow the current

4-19

4 Hedging Portfolios

position in the second and third instruments (-151.86 and -253.47). All other
instruments are currently within the upper/lower bounds.

As before, you can generate these constraints by first specifying the lower and
upper bounds vectors and then calling portcons.

LowerBounds = [-150 -150 -150 -150 -150 -150 -150 -150];
UpperBounds = [150 150 150 150 150 150 150 150];
ConSet = portcons('AssetLims', LowerBounds, UpperBounds);

To impose these constraints, again call hedgeopt with ConSet as the last
input.

[Sens, Cost, Quantity] = hedgeopt(Sensitivities, Price,...
Holdings,FixedInd, [], 20000, [], ConSet);

Sens =

-8818.47 434.43 -4010.79

Cost =

19876.89

Quantity' =

100.00
-150.00
-150.00

80.00
8.00

-28.32
40.00
10.00

With these constraints, hedgeopt enforces the lower bound for the second and
third instruments. The cost incurred is $19,876.89.

4-20

Hedging with Constrained Portfolios

Hedging with Constrained Portfolios

In this section...

“Overview” on page 4-21

“Example: Fully Hedged Portfolio” on page 4-21

“Example: Minimize Portfolio Sensitivities” on page 4-24

“Example: Under-Determined System” on page 4-25

“Example: Portfolio Constraints with hedgeslf” on page 4-27

Overview
Both hedging functions cast the optimization as a constrained linear
least-squares problem. (See the function lsqlin in the Optimization Toolbox
documentation for details.) In particular, lsqlin attempts to minimize the
constrained linear least squares problem

x
Cx d A x b

Aeq x beq
lb x ub

min
1
2 2

2− ⋅ ≤

⋅ =
≤ ≤

such that

where C, A, and Aeq are matrices, and d, b, beq, lb, and ub are vectors.
For Financial Derivatives Toolbox software, x is a vector of asset holdings
(contracts).

Depending on the constraint and the number of assets in the portfolio, a
solution to a particular problem may or may not exist. Furthermore, if a
solution is found, it may not be unique. For a unique solution to exist, the
least squares problem must be sufficiently and appropriately constrained.

Example: Fully Hedged Portfolio
Recall that hedgeopt allows you to allocate an optimal hedge by one of two
goals:

• Minimize the cost of hedging a portfolio given a set of target sensitivities.

4-21

4 Hedging Portfolios

• Minimize portfolio sensitivities for a given set of maximum target costs.

As an example, reproduce the results for the fully hedged portfolio example.

TargetSens = [0 0 0];
FixedInd = [1 4 5 7 8];
[Sens,Cost,Quantity] = hedgeopt(Sensitivities, Price,...
Holdings, FixedInd, [], [], TargetSens);

Sens =

-0.00 -0.00 -0.00

Cost =

23055.90

Quantity' =

98.72
-182.36
-19.55
80.00
8.00

-32.97
40.00
10.00

This example finds a unique solution at a cost of just over $23,000. The
matrix C (formed internally by hedgeopt and passed to lsqlin) is the asset
Price vector expressed as a row vector.

C = Price' = [98.72 97.53 0.05 98.72 100.55 6.28 0.05 3.69]

The vector d is the current portfolio value Value0 = 23674.62. The example
maintains, as closely as possible, a constant portfolio value subject to the
specified constraints.

4-22

Hedging with Constrained Portfolios

Additional Constraints
In the absence of any additional constraints, the least squares objective
involves a single equation with eight unknowns. This is an under-determined
system of equations. Because such systems generally have an infinite number
of solutions, you need to specify additional constraints to achieve a solution
with practical significance.

The additional constraints can come from two sources:

• User-specified equality constraints

• Target sensitivity equality constraints imposed by hedgeopt

The example in “Fully Hedged Portfolio” on page 4-8 specifies five equality
constraints associated with holding assets 1, 4, 5, 7, and 8 fixed. This
reduces the number of unknowns from eight to three, which is still an
under-determined system. However, when combined with the first goal of
hedgeopt, the equality constraints associated with the target sensitivities
in TargetSens produce an additional system of three equations with three
unknowns. This additional system guarantees that the weighted average of
the delta, gamma, and vega of assets 2, 3, and 6, together with the remaining
assets held fixed, satisfy the overall portfolio target sensitivity needs in
TargetSens.

Combining the least-squares objective equation with the three portfolio
sensitivity equations provides an overall system of four equations with three
unknown asset holdings. This is no longer an under-determined system,
and the solution is as shown.

If the assets held fixed are reduced, for example, FixedInd = [1 4 5 7],
hedgeopt returns a no cost, fully hedged portfolio (Sens = [0 0 0] and Cost
= 0).

If you further reduce FixedInd (for example, [1 4 5], [1 4], or even []),
hedgeopt always returns a no cost, fully hedged portfolio. In these cases,
insufficient constraints result in an under-determined system. Although
hedgeopt identifies no cost, fully hedged portfolios, there is nothing unique
about them. These portfolios have little practical significance.

4-23

4 Hedging Portfolios

Constraints must be sufficient and appropriately defined. Additional
constraints having no effect on the optimization are called dependent
constraints. As a simple example, assume that parameter Z is constrained
such that Z ≤ 1 . Furthermore, assume you somehow add another constraint
that effectively restricts Z ≤ 0 . The constraint Z ≤ 1 now has no effect on
the optimization.

Example: Minimize Portfolio Sensitivities
To illustrate using hedgeopt to minimize portfolio sensitivities for a given
maximum target cost, specify a target cost of $20,000 and determine the new
portfolio sensitivities, holdings, and cost of the rebalanced portfolio.

MaxCost = 20000;
[Sens, Cost, Quantity] = hedgeopt(Sensitivities, Price,...
Holdings, [1 4 5 7 8], [], MaxCost);

Sens =

-4345.36 295.81 -6586.64

Cost =

20000.00

Quantity' =

100.00
-151.86
-253.47

80.00
8.00

-18.18
40.00
10.00

This example corresponds to the $20,000 point along the cost axis in
the figures Rebalancing Cost Profile on page 4-11, Funds Available for
Rebalancing on page 4-12, and Rebalancing Cost on page 4-15.

4-24

Hedging with Constrained Portfolios

When minimizing sensitivities, the maximum target cost is treated as an
inequality constraint; in this case, MaxCost is the most you are willing to
spend to hedge a portfolio. The least-squares objective matrix C is the matrix
transpose of the input asset sensitivities

C = Sensitivities'

a 3-by-8 matrix in this example, and d is a 3-by-1 column vector of zeros,
[0 0 0]'.

Without any additional constraints, the least-squares objective results in
an under-determined system of three equations with eight unknowns. By
holding assets 1, 4, 5, 7, and 8 fixed, you reduce the number of unknowns from
eight to three. Now, with a system of three equations with three unknowns,
hedgeopt finds the solution shown.

Example: Under-Determined System
Reducing the number of assets held fixed creates an under-determined system
with meaningless solutions. For example, see what happens with only four
assets constrained.

FixedInd = [1 4 5 7];
[Sens, Cost, Quantity] = hedgeopt(Sensitivities, Price,...
Holdings, FixedInd, [], MaxCost);

Sens =

-0.00 -0.00 -0.00

Cost =

20000.00

Quantity' =

100.00
-149.31
-14.91
80.00

4-25

4 Hedging Portfolios

8.00
-34.64
40.00

-32.60

You have spent $20,000 (all the funds available for rebalancing) to achieve a
fully hedged portfolio.

With an increase in available funds to $50,000, you still spend all available
funds to get another fully hedged portfolio.

MaxCost = 50000;
[Sens, Cost, Quantity] = hedgeopt(Sensitivities, Price,...
Holdings, FixedInd, [],MaxCost);

Sens =

-0.00 0.00 0.00
Cost =

50000.00

Quantity' =

100.00
-473.78
-60.51
80.00
8.00

-18.20
40.00

385.60

All solutions to an under-determined system are meaningless. You buy and
sell various assets to obtain zero sensitivities, spending all available funds
every time. If you reduce the number of fixed assets any further, this problem
is insufficiently constrained, and you find no solution (the outputs are all NaN).

4-26

Hedging with Constrained Portfolios

Note also that no solution exists whenever constraints are inconsistent.
Inconsistent constraints create an infeasible solution space; the outputs are
all NaN.

Example: Portfolio Constraints with hedgeslf
The other hedging function, hedgeslf, attempts to minimize portfolio
sensitivities such that the rebalanced portfolio maintains a constant value
(the rebalanced portfolio is hedged against market moves and is closest to
being self-financing). If a self-financing hedge is not found, hedgeslf tries
to rebalance a portfolio to minimize sensitivities.

From a least-squares systems approach, hedgeslf first attempts to minimize
cost in the same way that hedgeopt does. If it cannot solve this problem (a
no cost, self-financing hedge is not possible), hedgeslf proceeds to minimize
sensitivities like hedgeopt. Thus, the discussion of constraints for hedgeopt
is directly applicable to hedgeslf as well.

To illustrate this hedging facility using equity exotic options, consider the
portfolio CRRInstSet obtained from the example MAT-file deriv.mat. The
portfolio consists of eight option instruments: two stock options, one barrier,
one compound, two lookback, and two Asian.

The hedging functions require inputs that include the current portfolio
holdings (allocations) and a matrix of instrument sensitivities. To create
these inputs, start by loading the example portfolio into memory

load deriv.mat;

Next, compute the prices and sensitivities of the instruments in this portfolio.

[Delta, Gamma, Vega, Price] = crrsens(CRRTree, CRRInstSet);

Extract the current portfolio holdings (the quantity held or the number of
contracts).

Holdings = instget(CRRInstSet, 'FieldName', 'Quantity');

For convenience place the delta, gamma, and vega sensitivity measures into a
matrix of sensitivities.

4-27

4 Hedging Portfolios

Sensitivities = [Delta Gamma Vega];

Each row of the Sensitivities matrix is associated with a different
instrument in the portfolio and each column with a different sensitivity
measure.

disp([Price Holdings Sensitivities])

8.29 10.00 0.59 0.04 53.45

2.50 5.00 -0.31 0.03 67.00

12.13 1.00 0.69 0.03 67.00

3.32 3.00 -0.12 -0.01 -98.08

7.60 7.00 -0.40 -45926.32 88.18

11.78 9.00 -0.42 -112143.15 119.19

4.18 4.00 0.60 45926.32 49.21

3.42 6.00 0.82 112143.15 41.71

The first column contains the dollar unit price of each instrument, the second
contains the holdings of each instrument, and the third, fourth, and fifth
columns contain the delta, gamma, and vega dollar sensitivities, respectively.

Suppose that you want to obtain a delta, gamma and vega neutral portfolio
using hedgeslf.

[Sens, Value1, Quantity]= hedgeslf(Sensitivities, Price, ...
Holdings)

Sens =

0.00
-0.00
0.00

Value1 =

313.93

Quantity =

10.00

4-28

Hedging with Constrained Portfolios

7.64
-1.56
26.13
9.94
3.73

-0.75
8.11

hedgeslf returns the portfolio dollar sensitivities (Sens), the value of the
rebalanced portfolio (Value1) and the new allocation for each instrument
(Quantity).

If Value0 and Value1 represent the portfolio value before and after
rebalancing, respectively, you can verify the cost by comparing the portfolio
values.

Value0= Holdings' * Price

Value0 =

313.93

In this example, the portfolio is fully hedged (simultaneous delta, gamma,
and vega neutrality) and self-financing (the values of the portfolio before and
after balancing (Value0 and Value1) are the same.

Suppose now that you want to place some upper and lower bounds on the
individual instruments in your portfolio. By using Financial Toolbox function
portcons, you can specify these constraints, along with a variety of general
linear inequality constraints.

As an example, assume that, in addition to holding instrument 1 fixed
as before, you want to bound the position of all instruments to within +/-
20 contracts (for each instrument, you cannot short or long more than 20
contracts). Applying these constraints disallows the current position in the
fourth instrument (long 26.13). All other instruments are currently within
the upper/lower bounds.

You can generate these constraints by first specifying the lower and upper
bounds vectors and then calling portcons.

4-29

4 Hedging Portfolios

LowerBounds = [-20 -20 -20 -20 -20 -20 -20 -20];
UpperBounds = [20 20 20 20 20 20 20 20];
ConSet = portcons('AssetLims', LowerBounds, UpperBounds);

To impose these constraints, call hedgeslf with ConSet as the last input.

[Sens, Cost, Quantity1] = hedgeslf(Sensitivities, Price, ...
Holdings, 1, ConSet)

Sens =

-0.00
0.00
0.00

Cost =

313.93

Quantity1 =

10.00
5.28

10.98
20.00
20.00
-6.99

-20.00
9.39

Observe that hedgeslf enforces the upper bound on the fourth instrument,
and the portfolio continues to be fully hedged and self-financing.

4-30

5

Function Reference

Interest-Rate Instruments (p. 5-2) Work with interest-rate instruments

Interest-Rate Term Structure (p. 5-3) Work with interest-rate term
structure

Interest-Rate Tree Models (p. 5-4) Work with interest-rate models

Interest-Rate Closed-Form Solutions
(p. 5-11)

Work with interest-rate closed-form
solutions

Equity Instruments (p. 5-12) Work with interest-rate instruments

Equity Tree Models (p. 5-13) Work with equity tree models

Equity Derivative Closed-Form
Solutions (p. 5-17)

Work with equity derivatives
closed-form solutions

Monte Carlo Simulation for Equity
Derivatives (p. 5-21)

Work with Monte Carlo simulation
for equity derivatives

Controlling Defaults and Options
(p. 5-22)

Work with derivatives pricing
options

Portfolio Handling for Interest and
Equity Instruments (p. 5-23)

Work with portfolio handling for
interest and equity instruments

Financial Object Structures (p. 5-24) Work with financial structures

Hedging Portfolios (p. 5-25) Work with hedge portfolios

5 Function Reference

Interest-Rate Instruments
instbond Construct bond instrument

instcap Construct cap instrument

instcf Construct cash flow instrument

instfixed Construct fixed-rate instrument

instfloat Construct floating-rate instrument

instfloor Construct floor instrument

instoptbnd Construct bond option

instoptembnd Construct bond with embedded
option

instrangefloat Construct range note instrument

instswap Construct swap instrument

instswaption Construct swaption instrument

5-2

Interest-Rate Term Structure

Interest-Rate Term Structure
bondbyzero Price bond from set of zero curves

cfbyzero Price cash flows from set of zero
curves

date2time Time and frequency from dates

datedisp Display date entries

disc2rate Interest rates from cash flow
discounting factors

fixedbyzero Price fixed-rate note from set of zero
curves

floatbyzero Price floating-rate note from set of
zero curves

intenvget Properties of interest-rate structure

intenvprice Price instruments from set of zero
curves

intenvsens Instrument price and sensitivities
from set of zero curves

intenvset Set properties of interest-rate
structure

rate2disc Discount factors from interest rates

ratetimes Change time intervals defining
interest-rate environment

swapbyzero Price swap instrument from set of
zero curves

time2date Dates from time and frequency

5-3

5 Function Reference

Interest-Rate Tree Models

Heath-Jarrow-Morton Trees (p. 5-4)

Heath-Jarrow-Morton Tree Utililites
(p. 5-5)

Black-Derman-Toy Trees (p. 5-6)

Black-Derman-Toy Tree Utilities
(p. 5-6)

Hull-White Trees (p. 5-7)

Hull-White Tree Utilities (p. 5-8)

Black-Karasinski Trees (p. 5-9)

Black-Karasinski Tree Utilities
(p. 5-9)

Tree Manipulation (p. 5-10)

Heath-Jarrow-Morton Trees

hjmtimespec Specify time structure for
Heath-Jarrow-Morton interest-rate
tree

hjmtree Construct Heath-Jarrow-Morton
interest-rate tree

hjmvolspec Specify Heath-Jarrow-Morton
interest-rate volatility process

5-4

Interest-Rate Tree Models

Heath-Jarrow-Morton Tree Utililites

bondbyhjm Price bond from
Heath-Jarrow-Morton interest-rate
tree

capbyhjm Price cap instrument from
Heath-Jarrow-Morton interest-rate
tree

cfbyhjm Price cash flows from
Heath-Jarrow-Morton interest-rate
tree

fixedbyhjm Price fixed-rate note from
Heath-Jarrow-Morton interest-rate
tree

floatbyhjm Price floating-rate note from
Heath-Jarrow-Morton interest-rate
tree

floorbyhjm Price floor instrument from
Heath-Jarrow-Morton interest-rate
tree

hjmprice Instrument prices from
Heath-Jarrow-Morton interest-rate
tree

hjmsens Instrument prices and sensitivities
from Heath-Jarrow-Morton
interest-rate tree

mmktbyhjm Create money-market tree from
Heath-Jarrow-Morton interest-rate
tree

oasbyhjm Determine option adjusted spread
using Heath-Jarrow-Morton model

optbndbyhjm Price bond option from
Heath-Jarrow-Morton interest-rate
tree

5-5

5 Function Reference

optembndbyhjm Price bonds with embedded
options by Heath-Jarrow-Morton
interest-rate tree

rangefloatbyhjm Price range floating note using
Heath-Jarrow-Morton tree

swapbyhjm Price swap instrument from
Heath-Jarrow-Morton interest-rate
tree

swaptionbyhjm Price swaption from
Heath-Jarrow-Morton interest-rate
tree

Black-Derman-Toy Trees

bdttimespec Specify time structure for
Black-Derman-Toy interest-rate tree

bdttree Construct Black-Derman-Toy
interest-rate tree

bdtvolspec Specify Black-Derman-Toy
interest-rate volatility process

Black-Derman-Toy Tree Utilities

bdtprice Instrument prices from
Black-Derman-Toy interest-rate tree

bdtsens Instrument prices and sensitivities
from Black-Derman-Toy
interest-rate tree

bondbybdt Price bond from Black-Derman-Toy
interest-rate tree

capbybdt Price cap instrument from
Black-Derman-Toy interest-rate tree

5-6

Interest-Rate Tree Models

cfbybdt Price cash flows from
Black-Derman-Toy interest-rate tree

fixedbybdt Price fixed-rate note from
Black-Derman-Toy interest-rate tree

floatbybdt Price floating-rate note from
Black-Derman-Toy interest-rate tree

floorbybdt Price floor instrument from
Black-Derman-Toy interest-rate tree

mmktbybdt Create money-market tree from
Black-Derman-Toy interest-rate tree

oasbybdt Determine option adjusted spread
using Black-Derman-Toy model

optbndbybdt Price bond option from
Black-Derman-Toy interest-rate tree

optembndbybdt Price bonds with embedded options
by Black-Derman-Toy interest-rate
tree

rangefloatbybdt Price range floating note using
Black-Derman-Toy tree

swapbybdt Price swap instrument from
Black-Derman-Toy interest-rate tree

swaptionbybdt Price swaption from
Black-Derman-Toy interest-rate tree

Hull-White Trees

hwtimespec Specify time structure for Hull-White
interest-rate tree

hwtree Construct Hull-White interest-rate
tree

hwvolspec Specify Hull-White interest-rate
volatility process

5-7

5 Function Reference

Hull-White Tree Utilities

bondbyhw Price bond from Hull-White
interest-rate tree

capbyhw Price cap instrument from
Hull-White interest-rate tree

cfbyhw Price cash flows from Hull-White
interest-rate tree

fixedbyhw Price fixed-rate note fromHull-White
interest-rate tree

floatbyhw Price floating-rate note from
Hull-White interest-rate tree

floorbyhw Price floor instrument from
Hull-White interest-rate tree

hwcalbycap Calibrate Hull-White tree using caps

hwcalbyfloor Calibrate Hull-White tree using
floors

hwprice Instrument prices from Hull-White
interest-rate tree

hwsens Instrument prices and sensitivities
from Hull-White interest-rate tree

oasbyhw Determine option adjusted spread
using Hull-White model

optbndbyhw Price bond option from Hull-White
interest-rate tree

optembndbyhw Price bonds with embedded options
by Hull-White interest-rate tree

rangefloatbyhw Price range floating note using
Hull-White tree

swapbyhw Price swap instrument from
Hull-White interest-rate tree

swaptionbyhw Price swaption from Hull-White
interest-rate tree

5-8

Interest-Rate Tree Models

Black-Karasinski Trees

bktimespec Specify time structure for
Black-Karasinski tree

bktree Construct Black-Karasinski
interest-rate tree

bkvolspec Specify Black-Karasinski
interest-rate volatility process

Black-Karasinski Tree Utilities

bkprice Instrument prices from
Black-Karasinski interest-rate
tree

bksens Instrument prices and sensitivities
from Black-Karasinski interest-rate
tree

bondbybk Price bond from Black-Karasinski
interest-rate tree

capbybk Price cap instrument from
Black-Karasinski interest-rate
tree

cfbybk Price cash flows from
Black-Karasinski interest-rate
tree

fixedbybk Price fixed-rate note from
Black-Karasinski interest-rate
tree

floatbybk Price floating-rate note from
Black-Karasinski interest-rate tree

floorbybk Price floor instrument from
Black-Karasinski interest-rate tree

oasbybk Determine option adjusted spread
using Black-Karasinski model

5-9

5 Function Reference

optbndbybk Price bond option from
Black-Karasinski interest-rate
tree

optembndbybk Price bonds with embedded options
by Black-Karasinski interest-rate
tree

rangefloatbybk Price range floating note using
Black-Karasinski tree

swapbybk Price swap instrument from
Black-Karasinski interest-rate tree

swaptionbybk Price swaption from
Black-Karasinski interest-rate
tree

Tree Manipulation

bushpath Extract entries from node of bushy
tree

bushshape Retrieve shape of bushy tree

cvtree Convert inverse-discount tree to
interest-rate tree

mkbush Create bushy tree

mktree Create recombining binomial tree

mktrintree Create recombining trinomial tree

treepath Entries from node of recombining
binomial tree

treeshape Shape of recombining binomial tree

treeviewer Tree information

trintreepath Entries from node of recombining
trinomial tree

trintreeshape Shape of recombining trinomial tree

5-10

Interest-Rate Closed-Form Solutions

Interest-Rate Closed-Form Solutions
capbyblk Price caps using Black option pricing

model

floorbyblk Price floors using Black option
pricing model

swaptionbyblk Price European swaption instrument
using Black model

5-11

5 Function Reference

Equity Instruments
instasian Construct Asian option

instbarrier Construct barrier option

instcompound Construct compound option

instlookback Construct lookback option

instoptstock Construct stock option

5-12

Equity Tree Models

Equity Tree Models

Cox-Ross-Rubinstein Trees (p. 5-13)

Cox-Ross-Rubinstein Tree Utilities
(p. 5-13)

Equal Probabilities Binomial Trees
(p. 5-14)

Equal Probabilities Binomial Tree
Utilities (p. 5-14)

Leisen-Reimer Trees (p. 5-15)

Leisen-Reimer Tree Utilities
(p. 5-15)

Implied Trinomial Trees (p. 5-15)

Implied Trinomial Tree Utilities
(p. 5-15)

Tree Manipulation (p. 5-16)

Cox-Ross-Rubinstein Trees

crrtimespec Specify time structure for
Cox-Ross-Rubinstein tree

crrtree Construct Cox-Ross-Rubinstein
stock tree

Cox-Ross-Rubinstein Tree Utilities

asianbycrr Price Asian option from
Cox-Ross-Rubinstein binomial
tree

barrierbycrr Price barrier option from
Cox-Ross-Rubinstein binomial
tree

5-13

5 Function Reference

compoundbycrr Price compound option from
Cox-Ross-Rubinstein binomial tree

crrprice Instrument prices from
Cox-Ross-Rubinstein tree

crrsens Instrument prices and sensitivities
from Cox-Ross-Rubinstein tree

lookbackbycrr Price lookback option from
Cox-Ross-Rubinstein tree

optstockbycrr Price stock option from
Cox-Ross-Rubinstein tree

Equal Probabilities Binomial Trees

eqptimespec Specify time structure for Equal
Probabilities binomial tree

eqptree Construct Equal Probabilities stock
tree

Equal Probabilities Binomial Tree Utilities

asianbyeqp Price Asian option from Equal
Probabilities binomial tree

barrierbyeqp Price barrier option from Equal
Probabilities binomial tree

compoundbyeqp Price compound option from Equal
Probabilities binomial tree

eqpprice Instrument prices from Equal
Probabilities binomial tree

eqpsens Instrument prices and sensitivities
from Equal Probabilities binomial
tree

5-14

Equity Tree Models

lookbackbyeqp Price lookback option from Equal
Probabilities binomial tree

optstockbyeqp Price stock option from Equal
Probabilities binomial tree

Leisen-Reimer Trees

lrtimespec Specify time structure for
Leisen-Reimer binomial tree

lrtree Build Leisen-Reimer stock tree

Leisen-Reimer Tree Utilities

optstockbylr Price options on stocks using
Leisen-Reimer binomial tree model

optstocksensbylr Determine option prices and
sensitivities using Leisen-Reimer
binomial tree model

Implied Trinomial Trees

itttimespec Specify time structure using implied
trinomial tree (ITT)

itttree Build implied trinomial stock tree

Implied Trinomial Tree Utilities

asianbyitt Price Asian options using implied
trinomial tree (ITT)

barrierbyitt Price barrier options using implied
trinomial tree (ITT)

5-15

5 Function Reference

compoundbyitt Price compound options using
implied trinomial tree (ITT)

ittprice Price instruments using implied
trinomial tree (ITT)

ittsens Instrument sensitivities and prices
using implied trinomial tree (ITT)

lookbackbyitt Price lookback option using implied
trinomial tree (ITT)

optstockbyitt Price options on stocks using implied
trinomial tree (ITT)

stockoptspec Specify European stock option
structure

Tree Manipulation

bushpath Extract entries from node of bushy
tree

bushshape Retrieve shape of bushy tree

cvtree Convert inverse-discount tree to
interest-rate tree

mkbush Create bushy tree

mktree Create recombining binomial tree

mktrintree Create recombining trinomial tree

treepath Entries from node of recombining
binomial tree

treeshape Shape of recombining binomial tree

treeviewer Tree information

trintreepath Entries from node of recombining
trinomial tree

trintreeshape Shape of recombining trinomial tree

5-16

Equity Derivative Closed-Form Solutions

Equity Derivative Closed-Form Solutions

Black-Scholes Option Pricing Model
(p. 5-17)

Black Option Pricing Model (p. 5-18)

Role-Geske-Whaley Option Pricing
Model (p. 5-19)

Bjerksund-Stensland Option Pricing
Model (p. 5-19)

Nengjiu Ju Approximation Pricing
Model (p. 5-19)

Stulz Option Pricing (p. 5-20)

Black-Scholes Option Pricing Model

assetbybls Determine price of asset-or-nothing
digital options using Black-Scholes
model

assetsensbybls Determine price and sensitivities
of asset-or-nothing digital options
using Black-Scholes model

cashbybls Determine price of cash-or-nothing
digital options using Black-Scholes
model

cashsensbybls Determine price and sensitivities of
cash-or-nothing digital options using
Black-Scholes model

chooserbybls Price European simple chooser
options using Black-Scholes model

gapbybls Determine price of gap digital
options using Black-Scholes model

5-17

5 Function Reference

gapsensbybls Determine price and sensitivities
of gap digital options using
Black-Scholes model

impvbybls Determine implied volatility using
Black-Scholes option pricing model

optstockbybls Price options using Black-Scholes
option pricing model

optstocksensbybls Determine option prices and
sensitivities using Black-Scholes
option pricing model

supersharebybls Calculate price of supershare digital
options using Black-Scholes model

supersharesensbybls Calculate price and sensitivities of
supershare digital options using
Black-Scholes model

Black Option Pricing Model

impvbyblk Determine implied volatility using
Black option pricing model

optstockbyblk Price options on futures using Black
option pricing model

optstocksensbyblk Determine option prices and
sensitivities on futures using Black
pricing model

5-18

Equity Derivative Closed-Form Solutions

Role-Geske-Whaley Option Pricing Model

impvbyrgw Determine implied volatility using
Roll-Geske-Whaley option pricing
model for American call option

optstockbyrgw Determine American call option
prices using Roll-Geske-Whaley
option pricing model

optstocksensbyrgw Determine American call option
prices and sensitivities using
Roll-Geske-Whaley option pricing
model

Bjerksund-Stensland Option Pricing Model

impvbybjs Determine implied volatility using
Bjerksund-Stensland 2002 option
pricing model

optstockbybjs Price American options using
Bjerksund-Stensland 2002 option
pricing model

optstocksensbybjs Determine American option
prices and sensitivities using
Bjerksund-Stensland 2002 option
pricing model

Nengjiu Ju Approximation Pricing Model

basketbyju Price European basket options using
Nengjiu Ju approximation model

basketsensbyju Determine European basket options
price and sensitivities using Nengjiu
Ju approximation model

5-19

5 Function Reference

Stulz Option Pricing

maxassetbystulz Determine European rainbow option
price on maximum of two risky
assets using Stulz option pricing
model

maxassetsensbystulz Determine European rainbow option
prices and sensitivities on maximum
of two risky assets using Stulz
pricing model

minassetbystulz Determine European rainbow option
prices on minimum of two risky
assets using Stulz option pricing
model

minassetsensbystulz Determine European rainbow option
prices and sensitivities on minimum
of two risky assets using Stulz
pricing model

5-20

Monte Carlo Simulation for Equity Derivatives

Monte Carlo Simulation for Equity Derivatives

Longstaff-Schwartz Option Pricing
Model (p. 5-21)

Longstaff-Schwartz Option Pricing Model

basketbyls Price basket options using
Longstaff-Schwartz model

basketsensbyls Determine price and sensitivities
for basket options using
Longstaff-Schwartz model

basketstockspec Specify basket stock structure using
Longstaff-Schwartz model

5-21

5 Function Reference

Controlling Defaults and Options
derivget Get derivatives pricing options

derivset Set or modify derivatives pricing
options

5-22

Portfolio Handling for Interest and Equity Instruments

Portfolio Handling for Interest and Equity Instruments
instadd Add types to instrument collection

instaddfield Add new instruments to instrument
collection

instdelete Complement of instrument set by
matching conditions

instdisp Display instruments

instfields List field names

instfind Search instruments for matching
conditions

instget Data from instrument variable

instgetcell Data and context from instrument
variable

instlength Count instruments

instselect Create instrument subset by
matching conditions

instsetfield Add or reset data for existing
instruments

insttypes List types

5-23

5 Function Reference

Financial Object Structures
classfin Create financial structure or return

financial structure class name

isafin True if input argument is financial
structure type or financial object
class

stockspec Create stock structure

5-24

Hedging Portfolios

Hedging Portfolios
hedgeopt Allocate optimal hedge for target

costs or sensitivities

hedgeslf Self-financing hedge

5-25

5 Function Reference

5-26

6

Functions — Alphabetical
List

asianbycrr

Purpose Price Asian option from Cox-Ross-Rubinstein binomial tree

Syntax Price = asianbycrr(CRRTree, OptSpec, Strike, Settle,
ExerciseDates, AmericanOpt, AvgType, AvgPrice, AvgDate)

Arguments

CRRTree Stock tree structure created by crrtree.

OptSpec NINST-by-1 list of string values 'Call' or 'Put'.

Strike NINST-by-1 vector of strike price values. Each
row is the schedule for one option.

Settle NINST-by-1 vector of Settle dates. The settle
date for every Asian option is set to the
valuation date of the stock tree. The Asian
argument Settle is ignored.

ExerciseDates For a European option (AmericanOpt = 0):

NINST-by-1 vector of exercise dates. Each row
is the schedule for one option. For a European
option, there is only one exercise date, the
option expiry date.

For an American option (AmericanOpt = 1):

NINST-by-2 vector of exercise date boundaries.
For each instrument, the option can be exercised
on any tree date between or including the pair
of dates on that row. If only one non-NaN date is
listed, or if ExerciseDates is NINST-by-1, the
option can be exercised between the valuation
date of the stock tree and the single listed
exercise date.

6-2

asianbycrr

AmericanOpt (Optional) If AmericanOpt = 0, NaN, or is
unspecified, the option is a European option. If
AmericanOpt = 1, the option is an American
option.

AvgType (Optional) String = 'arithmetic' for arithmetic
average (default) or 'geometric' for geometric
average.

AvgPrice (Optional) Scalar representing the average
price of the underlying asset at Settle. This
argument is used when AvgDate < Settle.
Default is the current stock price.

AvgDate (Optional) Scalar representing the date on
which the averaging period begins. Default =
Settle.

Description Price = asianbycrr(CRRTree, OptSpec, Strike, Settle,
ExerciseDates, AmericanOpt, AvgType, AvgPrice, AvgDate)
calculates the value of fixed- and floating-strike Asian options. To
compute the value of a floating-strike Asian option, specify Strike as
NaN. Fixed-strike Asian options are also known as average price options.
Floating-strike Asian options are also known as average strike options.

Price is a NINST-by-1 vector of expected prices at time 0.

Asian options are priced using Hull-White (1993). Consequently, for
these options only the root node contains a unique price.

Examples Price a floating-strike Asian option using a CRR binomial tree.

Load the file deriv.mat, which provides CRRTree. The CRRTree
structure contains the stock specification and time information needed
to price the option.

load deriv.mat;

6-3

asianbycrr

Set the required values. Other arguments will use defaults.

OptSpec = 'put';
Strike = NaN;
Settle = '01-Jan-2003';
ExerciseDates = '01-Jan-2004';

Use asianbycrr to compute the price of the option.

Price = asianbycrr(CRRTree, OptSpec, Strike, Settle, ...
ExerciseDates)

Price =

1.2177

References Hull, J., and A. White, “Efficient Procedures for Valuing European and
American Path-Dependent Options,” Journal of Derivatives, Volume
1, pp. 21-31.

See Also crrtree | instasian

6-4

asianbyeqp

Purpose Price Asian option from Equal Probabilities binomial tree

Syntax Price = asianbyeqp(EQPTree, OptSpec, Strike, Settle,
ExerciseDates, AmericanOpt, AvgType, AvgPrice, AvgDate)

Arguments

EQPTree Stock tree structure created by eqptree.

OptSpec NINST-by-1 list of string values 'Call' or 'Put'.

Strike NINST-by-1 vector of strike price values. Each
row is the schedule for one option.

Settle NINST-by-1 vector of Settle dates. The settle
date for every Asian option is set to the valuation
date of the stock tree. The Asian argument
Settle is ignored.

ExerciseDates For a European option (AmericanOpt = 0):

NINST-by-1 vector of exercise dates. Each row
is the schedule for one option. For a European
option, there is only one exercise date, the option
expiry date.

For an American option (AmericanOpt = 1):

NINST-by-2 vector of exercise date boundaries.
For each instrument, the option can be exercised
on any tree date between or including the pair
of dates on that row. If only one non-NaN date is
listed, or if ExerciseDates is NINST-by-1, the
option can be exercised between the valuation
date of the stock tree and the single listed
exercise date.

6-5

asianbyeqp

AmericanOpt (Optional) If AmericanOpt = 0, NaN, or is
unspecified, the option is a European option. If
AmericanOpt = 1, the option is an American
option.

AvgType (Optional) String = 'arithmetic' for arithmetic
average (default) or 'geometric' for geometric
average.

AvgPrice (Optional) Scalar representing the average
price of the underlying asset at Settle. This
argument is used when AvgDate < Settle.
Default is the current stock price.

AvgDate (Optional) Scalar representing the date on which
the averaging period begins.

Description Price = asianbyeqp(EQPTree, OptSpec, Strike, Settle,
ExerciseDates, AmericanOpt, AvgType, AvgPrice, AvgDate)
calculates the value of fixed- and floating-strike Asian options. To
compute the value of a floating-strike Asian option, specify Strike as
NaN. Fixed-strike Asian options are also known as average price options.
Floating-strike Asian options are also known as average strike options.

Price is a NINST-by-1 vector of expected prices at time 0.

Examples Price a floating-strike Asian option using an EQP equity tree.

Load the file deriv.mat, which provides EQPTree. The EQPTree
structure contains the stock specification and time information needed
to price the option.

load deriv.mat;

Set the required values. Other arguments will use defaults.

OptSpec = 'put';
Strike = NaN;

6-6

asianbyeqp

Settle = '01-Jan-2003';
ExerciseDates = '01-Jan-2004';

Use asianbyeqp to compute the price of the option.

Price = asianbyeqp(EQPTree, OptSpec, Strike, Settle, ...
ExerciseDates)

Price =

1.2724

References Hull, J., and A. White, “Efficient Procedures for Valuing European and
American Path-Dependent Options,” Journal of Derivatives, Volume
1, pp. 21-31.

See Also eqptree | instasian

6-7

asianbyitt

Purpose Price Asian options using implied trinomial tree (ITT)

Syntax Price = asianbyitt(ITTTree, OptSpec, Strike, Settle,
ExerciseDates, AmericanOpt, AvgType, AvgPrice, AvgDate)

Arguments

ITTTree Stock tree structure created by itttree.

OptSpec NINST-by-1 list of string values 'call' or 'put'.

Strike NINST-by-1 vector of strike price values. Each
row represents the schedule for one option.

Settle NINST-by-1 vector of Settle dates. The settle
date for every Asian option is set to the valuation
date of the stock tree. The Asian argument
Settle is ignored.

ExerciseDates For a European option (AmericanOpt = 0):

NINST-by-1 vector of exercise dates. Each row
is the schedule for one option. For a European
option, there is only one exercise date which is
the option expiry date.

For an American option (AmericanOpt = 1):

NINST-by-2 vector of exercise date boundaries.
For each instrument, the option can be exercised
on any tree date between or including the pair
of dates on that row. If only one non-NaN date is
listed, or if ExerciseDates is NINST-by-1, the
option can be exercised between the valuation
date of the stock tree and the single listed
exercise date.

6-8

asianbyitt

AmericanOpt (Optional) If AmericanOpt = 0, NaN, or is
unspecified, the option is a European option. If
AmericanOpt = 1, the option is an American
option.

AvgType (Optional) String = 'arithmetic' for arithmetic
average (default) or 'geometric' for geometric
average.

AvgPrice (Optional) Scalar representing the average
price of the underlying asset at Settle. This
argument is used when AvgDate < Settle.
Default is the current stock price.

AvgDate (Optional) Scalar representing the date on which
the averaging period begins.

Description Price = asianbyitt(ITTTree, OptSpec, Strike, Settle,
ExerciseDates, AmericanOpt, AvgType, AvgPrice, AvgDate)
calculates the value of fixed- and floating-strike Asian options. To
compute the value of a floating-strike Asian option, specify Strike as
NaN. Fixed-strike Asian options are also known as average price options.
Floating-strike Asian options are also known as average strike options.

Price is a NINST-by-1 vector of expected prices at time 0.

Note The Settle date for every Asian option is set to the
ValuationDate of the stock tree. The Asian argument, Settle, is
ignored.

Examples Price a floating-strike Asian option using an ITT equity tree.

Load the file deriv.mat which provides the ITTTree. The ITTTree
structure contains the stock specification and time information needed
to price the option.

6-9

asianbyitt

load deriv.mat;

Set the required values. Other arguments will use defaults.

OptSpec = 'put';
Strike = NaN;
Settle = '01-Jan-2006';
ExerciseDates = '01-Jan-2007';

Use asianbyitt to compute the price of the option.

Price = asianbyitt(ITTTree, OptSpec, Strike, Settle, ExerciseDates)

Price =

1.0778

References Hull, J., and A. White, “Efficient Procedures for Valuing European and
American Path-Dependent Options,” Journal of Derivatives, Volume
1, 1993, pp. 21-31.

See Also instasian | itttree

6-10

assetbybls

Purpose Determine price of asset-or-nothing digital options using Black-Scholes
model

Syntax Price = assetbybls(RateSpec, StockSpec, Settle, Maturity,
OptSpec, Strike)

Arguments

RateSpec The annualized continuously compounded rate
term structure. For information on the interest
rate specification, see intenvset.

StockSpec Stock specification. See stockspec.

Settle NINST-by-1 vector of settlement or trade dates.

Maturity NINST-by-1 vector of maturity dates.

OptSpec NINST-by-1 cell array of strings 'call' or 'put'.

Strike NINST-by-1 vector of payoff strike price values.

Description Price = assetbybls(RateSpec, StockSpec, Settle, Maturity,
OptSpec, Strike) computes asset-or-nothing option prices using the
Black-Scholes option pricing model.

Price is a NINST-by-1 vector of expected option prices.

Examples Consider two asset-or-nothing put options on a nondividend paying
stock with a strike of 95 and 93 and expiring on January 30, 2009.
On November 3, 2008 the stock is trading at 97.50. Using this data,
calculate the price of the asset-or-nothing put options if the risk-free
rate is 4.5% and the volatility is 22%.

Create the RateSpec:

Settle = 'Nov-3-2008';

Maturity = 'Jan-30-2009';

Rates = 0.045;

6-11

assetbybls

Compounding = -1;

RateSpec = intenvset('ValuationDate', Settle, 'StartDates', Settle,...

'EndDates', Maturity, 'Rates', Rates, 'Compounding', Compounding);

Define the StockSpec:

AssetPrice = 97.50;
Sigma = .22;
StockSpec = stockspec(Sigma, AssetPrice);

Define the put options:

OptSpec = {'put'};
Strike = [95;93];

Calculate the price:

Paon = assetbybls(RateSpec, StockSpec, Settle, Maturity, OptSpec, Strike)

Paon =

33.7666

26.9662

See Also assetsensbybls | cashbybls | gapbybls | supersharebybls

6-12

assetsensbybls

Purpose Determine price and sensitivities of asset-or-nothing digital options
using Black-Scholes model

Syntax PriceSens = assetsensbybls(RateSpec, StockSpec, Settle,
Maturity, OptSpec, Strike)
PriceSens = assetsensbybls(RateSpec, StockSpec, Settle,
Maturity, OptSpec, Strike, OutSpec)

Arguments

RateSpec The annualized, continuously compounded rate
term structure. For information on the interest
rate specification, see intenvset.

StockSpec Stock specification. See stockspec.

Settle NINST-by-1 vector of settlement or trade dates.

Maturity NINST-by-1 vector of maturity dates.

OptSpec NINST-by-1 cell array of strings 'call' or 'put'.

Strike NINST-by-1 vector of strike price values.

OutSpec (Optional) All optional inputs are specified as
matching parameter name/value pairs. The
parameter name is specified as a character string,
followed by the corresponding parameter value.
You can specify parameter name/value pairs
in any order. Names are case-insensitive and
partial string matches are allowed provided no
ambiguities exist. Valid parameter names are:

• NOUT-by-1 or 1-by-NOUT cell array of strings
indicating the nature and order of the outputs
for the function. Possible values are 'Price',
'Delta', 'Gamma', 'Vega', 'Lambda', 'Rho',
'Theta', or 'All'.

6-13

assetsensbybls

For example, OutSpec = {'Price'; 'Lamba';
'Rho'} specifies that the output should be
Price, Lambda, and Rho, in that order.

To invoke from a function: [Price, Lambda,
Rho] = assetsensbybls(..., 'OutSpec',
{'Price', 'Lamba', 'Rho'})

OutSpec = {'All'} specifies that the output
should be Delta, Gamma, Vega, Lambda, Rho,
Theta, and Price, in that order. This is the
same as specifying OutSpec as OutSpec =
{'Delta', 'Gamma', 'Vega', 'Lambda',
'Rho', 'Theta', 'Price'};.

• Default is OutSpec = {'Price'}.

Description PriceSens = assetsensbybls(RateSpec, StockSpec, Settle,
Maturity, OptSpec, Strike) computes asset-or-nothing option prices
using the Black-Scholes option pricing model.

PriceSens = assetsensbybls(RateSpec, StockSpec, Settle,
Maturity, OptSpec, Strike, OutSpec) includes the parameter/value
pairs defined for OutSpec, and computes asset-or-nothing option prices
and sensitivities using the Black-Scholes option pricing model.

PriceSens is a NINST-by-1 vector of expected option prices and
sensitivities.

Examples Consider two asset-or-nothing put options on a nondividend paying
stock with a strike of 95 and 93 and expiring on January 30, 2009.
On November 3, 2008 the stock is trading at 97.50. Using this data,
calculate the price and sensitivity of the asset-or-nothing put options if
the risk-free rate is 4.5% and the volatility is 22%.

Create the RateSpec:

Settle = 'Nov-3-2008';

6-14

assetsensbybls

Maturity = 'Jan-30-2009';

Rates = 0.045;

Compounding = -1;

RateSpec = intenvset('ValuationDate', Settle, 'StartDates', Settle,...

'EndDates', Maturity, 'Rates', Rates, 'Compounding', Compounding);

Define the StockSpec:

AssetPrice = 97.50;
Sigma = .22;
StockSpec = stockspec(Sigma, AssetPrice);

Define the put options:

OptSpec = {'put'};
Strike = [95;93];

Calculate the delta, price, and gamma:

OutSpec = { 'delta';'price';'gamma'};

[Delta, Price, Gamma] = assetsensbybls(RateSpec, StockSpec, Settle,...

Maturity, OptSpec, Strike, 'OutSpec', OutSpec)

Delta =

-3.0833

-2.8337

Price =

33.7666

26.9662

Gamma =

0.0941

6-15

assetsensbybls

0.1439

See Also assetbybls

6-16

barrierbycrr

Purpose Price barrier option from Cox-Ross-Rubinstein binomial tree

Syntax [Price, PriceTree] = barrierbycrr(CRRTree, OptSpec, Strike,
Settle, ExerciseDates, AmericanOpt, BarrierSpec, Barrier,
Rebate, Options)

Arguments

CRRTree Stock tree structure created by crrtree.

OptSpec NINST-by-1 list of string values 'Call' or 'Put'.

Strike NINST-by-1 vector of strike price values. Each
row is the schedule for one option.

Settle NINST-by-1 vector of Settle dates. The settle
date for every barrier option is set to the
valuation date of the stock tree. The barrier
argument Settle is ignored.

ExerciseDates For a European option (AmericanOpt = 0):

NINST-by-1 vector of exercise dates. Each row
is the schedule for one option. For a European
option, there is only one exercise date, the
option expiry date.

For an American option (AmericanOpt = 1):

NINST-by-2 vector of exercise date boundaries.
For each instrument, the option can be exercised
on any tree date between or including the pair
of dates on that row. If only one non-NaN date is
listed, or if ExerciseDates is NINST-by-1, the
option can be exercised between the valuation
date of the stock tree and the single listed
exercise date.

6-17

barrierbycrr

AmericanOpt If AmericanOpt = 0, NaN, or is unspecified, the
option is a European option. If AmericanOpt =
1, the option is an American option.

BarrierSpec List of string values:

'UI': Up Knock In

'UO': Up Knock Out

'DI': Down Knock In

'DO': Down Knock Out

Barrier Vector of barrier values.

Rebate (Optional) NINST-by-1 matrix of rebate values.
Default = 0. For Knock-in options, the rebate
is paid at expiry. For Knock-out options, the
rebate is paid when the barrier is reached.

Options (Optional) Derivatives pricing options structure
created with derivset.

See instbarrier for a description of barrier contract arguments.

Description [Price, PriceTree] = barrierbycrr(CRRTree, OptSpec, Strike,
Settle, ExerciseDates, AmericanOpt, BarrierSpec, Barrier,
Rebate, Options) computes the price of barrier options using a CRR
binomial tree.

Price is a NINST-by-1 vector of expected prices at time 0.

PriceTree is a tree structure with a vector of instrument prices at
each node.

Examples Price a barrier option using a CRR binomial tree.

Load the file deriv.mat, which provides CRRTree. The CRRTree
structure contains the stock specification and time information needed
to price the option.

6-18

barrierbycrr

load deriv.mat;

Set the required values. Other arguments will use defaults.

OptSpec = 'Call';
Strike = 105;
Settle = '01-Jan-2003';
ExerciseDates = '01-Jan-2006';
AmericanOpt = 1;
BarrierSpec = 'UI';
Barrier = 102;

Price = barrierbycrr(CRRTree, OptSpec, Strike, Settle, ...
ExerciseDates, AmericanOpt, BarrierSpec, Barrier)

Price =

12.1272

References Derman, E., I. Kani, D. Ergener and I. Bardhan, “Enhanced Numerical
Methods for Options with Barriers,” Financial Analysts Journal,
(Nov. - Dec. 1995), pp. 65-74.

See Also crrtree | instbarrier

6-19

barrierbyeqp

Purpose Price barrier option from Equal Probabilities binomial tree

Syntax [Price, PriceTree] = barrierbyeqp(EQPTree, OptSpec, Strike,
ExerciseDates, AmericanOpt, BarrierSpec, Barrier, Rebate,
Options)

Arguments

EQPTree Stock tree structure created by eqptree.

OptSpec NINST-by-1 list of string values 'Call' or 'Put'.

Strike NINST-by-1 vector of strike price values. Each
row is the schedule for one option.

Settle NINST-by-1 vector of Settle dates. The settle
date for every barrier option is set to the
valuation date of the stock tree. The barrier
argument Settle is ignored.

ExerciseDates For a European option (AmericanOpt = 0):

NINST-by-1 vector of exercise dates. Each row
is the schedule for one option. For a European
option, there is only one exercise date, the option
expiry date.

For an American option (AmericanOpt = 1):

NINST-by-2 vector of exercise date boundaries.
For each instrument, the option can be exercised
on any tree date between or including the pair
of dates on that row. If only one non-NaN date is
listed, or if ExerciseDates is NINST-by-1, the
option can be exercised between the valuation
date of the stock tree and the single listed
exercise date.

6-20

barrierbyeqp

AmericanOpt If AmericanOpt = 0, NaN, or is unspecified, the
option is a European option. If AmericanOpt =
1, the option is an American option.

BarrierSpec List of string values:

'UI': Up Knock In

'UO': Up Knock Out

'DI': Down Knock In

'DO': Down Knock Out

Barrier Vector of barrier values.

Rebate (Optional) NINST-by-1 matrix of rebate values.
Default = 0. For Knock-in options, the rebate
is paid at expiry. For Knock-out options, the
rebate is paid when the barrier is reached.

Options (Optional) Derivatives pricing options structure
created with derivset.

See instbarrier for a description of barrier contract arguments.

Description [Price, PriceTree] = barrierbyeqp(EQPTree, OptSpec, Strike,
ExerciseDates, AmericanOpt, BarrierSpec, Barrier, Rebate,
Options) computes the price of barrier options using an equal
probabilities binomial tree.

Price is a NINST-by-1 vector of expected prices at time 0.

PriceTree is a tree structure with a vector of instrument prices at
each node.

Examples Price a barrier option using an EQP equity tree.

Load the file deriv.mat, which provides EQPTree. The EQPTree
structure contains the stock specification and time information needed
to price the option.

6-21

barrierbyeqp

load deriv.mat;

Set the required values. Other arguments will use defaults.

OptSpec = 'Call';
Strike = 105;
Settle = '01-Jan-2003';
ExerciseDates = '01-Jan-2006';
AmericanOpt = 1;
BarrierSpec = 'UI';
Barrier = 102;

Price = barrierbyeqp(EQPTree, OptSpec, Strike, Settle, ...
ExerciseDates, AmericanOpt, BarrierSpec, Barrier)

Price =

12.2632

References Derman, E., I. Kani, D. Ergener and I. Bardhan, “Enhanced Numerical
Methods for Options with Barriers,” Financial Analysts Journal,
(Nov. - Dec. 1995), pp. 65-74.

See Also eqptree | instbarrier

6-22

barrierbyitt

Purpose Price barrier options using implied trinomial tree (ITT)

Syntax [Price, PriceTree] = barrierbyitt(ITTTree, OptSpec, Strike,
ExerciseDates, AmericanOpt, BarrierSpec, Barrier, Rebate,
Options)

Arguments

ITTTree Stock tree structure created by itttree.

OptSpec NINST-by-1 list of string values 'Call' or 'Put'.

Strike European and American option, NINST-by-1
vector of strike price values. Each row is the
schedule for one option.

Settle NINST-by-1 vector of Settle dates. The settle
date for every barrier option is set to the
valuation date of the stock tree. The barrier
argument Settle is ignored.

ExerciseDates For a European option (AmericanOpt = 0):

NINST-by-1 vector of exercise dates. Each row
is the schedule for one option. For a European
option, there is only one exercise date, the option
expiry date.

For an American option (AmericanOpt = 1):

NINST-by-2 vector of exercise date boundaries.
For each instrument, the option can be exercised
on any tree date between or including the pair
of dates on that row. If only one non-NaN date is
listed, or if ExerciseDates is NINST-by-1, the
option can be exercised between the valuation
date of the stock tree and the single listed
exercise date.

6-23

barrierbyitt

AmericanOpt If AmericanOpt = 0, NaN, or is unspecified, the
option is a European option. If AmericanOpt =
1, the option is an American option.

BarrierSpec List of string values:

'UI': Up Knock In

'UO': Up Knock Out

'DI': Down Knock In

'DO': Down Knock Out

Barrier Vector of barrier values.

Rebate (Optional) NINST-by-1 matrix of rebate values.
Default = 0. For Knock In options, the rebate
is paid at expiry. For Knock Out options, the
rebate is paid when the barrier is reached.

Options (Optional) Derivatives pricing options structure
created with derivset.

See instbarrier for a description of barrier contract arguments.

Description [Price, PriceTree] = barrierbyitt(ITTTree, OptSpec, Strike,
ExerciseDates, AmericanOpt, BarrierSpec, Barrier, Rebate,
Options) computes the price of barrier options using an implied
trinomial tree.

Price is a NINST-by-1 vector of expected prices at time 0.

PriceTree is a tree structure with a vector of instrument prices at
each node.

Note The Settle date for every barrier option is set to the
ValuationDate of the stock tree. The barrier argument, Settle, is
ignored.

6-24

barrierbyitt

Examples Price a barrier option using an ITT tree.

Load the file deriv.mat which provides the ITTTree. The ITTTree
structure contains the stock specification and time information needed
to price the option.

load deriv.mat;

Set the required values. Other arguments will use defaults.

OptSpec = 'Call';

Strike = 85;

Settle = '01-Jan-2006';

ExerciseDates = '31-Dec-2008';

AmericanOpt = 1;

BarrierSpec = 'UI';

Barrier = 115;

Price = barrierbyitt(ITTTree,OptSpec,Strike,Settle,ExerciseDates,AmericanOpt,...

BarrierSpec,Barrier)

Price =

2.407

References Derman, E., I. Kani, D. Ergener, and I. Bardhan, “Enhanced Numerical
Methods for Options with Barriers,” Financial Analysts Journal,
Nov.-Dec.,1995.

See Also instbarrier | itttree

6-25

basketbyju

Purpose Price European basket options using Nengjiu Ju approximation model

Syntax Price = basketbyju(RateSpec, BasketStockSpec, OptSpec, Strike,
Settle, Maturity)

Description Price = basketbyju(RateSpec, BasketStockSpec, OptSpec,
Strike, Settle, Maturity) prices European basket options using the
Nengjiu Ju approximation model.

Input
Arguments

RateSpec

Annualized, continuously compounded rate term structure. For more
information on the interest rate specification, see intenvset.

BasketStockSpec

BasketStock specification. For information on the basket of stocks
specification, see basketstockspec.

OptSpec

String or 2-by-1 cell array of the strings 'call' or 'put'.

Strike

Scalar for the option strike price.

Settle

Scalar of the settlement or trade date specified as a string or serial
date number.

Maturity

Maturity date specified as a string or serial date number.

Output
Arguments

Price

Price of the basket option.

6-26

basketbyju

Examples Find a European call basket option of two stocks. Assume that the
stocks are currently trading at $10 and $11.50 with annual volatilities
of 20% and 25%, respectively. The basket contains one unit of the
first stock and one unit of the second stock. The correlation between
the assets is 30%. On January 1, 2009, an investor wants to buy a
1-year call option with a strike price of $21.50. The current annualized,
continuously compounded interest rate is 5%. Use this data to compute
the price of the call basket option with the Ju approximation model.

Settle = 'Jan-1-2009';

Maturity = 'Jan-1-2010';

% Define RateSpec

Rate = 0.05;

Compounding = -1;

RateSpec = intenvset('ValuationDate', Settle, 'StartDates', ...

Settle, 'EndDates', Maturity, 'Rates', Rate, 'Compounding', Compounding);

% Define the Correlation matrix. Correlation matrices are symmetric, and

% have ones along the main diagonal.

Corr = [1 0.30; 0.30 1];

% Define BasketStockSpec

AssetPrice = [10;11.50];

Volatility = [0.2;0.25];

Quantity = [1;1];

BasketStockSpec = basketstockspec(Volatility, AssetPrice, Quantity, Corr);

%Compute the price of the call basket option

OptSpec = {'call'};

Strike = 21.5;

PriceCorr30 = basketbyju(RateSpec, BasketStockSpec, OptSpec, Strike, Settle, Maturity)

This returns:

PriceCorr30 =

2.12214

6-27

basketbyju

Compute the price of the basket instrument for these two stocks with a
correlation of 60%. Then compare this cost to the total cost of buying
two individual call options:

Corr = [1 0.60; 0.60 1];

% Define the new BasketStockSpec

BasketStockSpec = basketstockspec(Volatility, AssetPrice, Quantity, Corr);

%Compute the price of the call basket option with Correlation = -0.60

PriceCorr60 = basketbyju(RateSpec, BasketStockSpec, OptSpec, Strike, Settle, Maturity)

This returns:

PriceCorr60 =

2.27566

The following table summarizes the sensitivity of the option to
correlation changes. In general, the premium of the basket option
decreases with lower correlation and increases with higher correlation.

Correlation -0.60 -0.30 0 0.30 0.60

Premium 1.52830 1.76006 1.9527 2.1221 2.2756

Compute the cost of two vanilla 1-year call options using the
Black-Scholes (BLS) model on the individual assets:

StockSpec = stockspec(Volatility, AssetPrice);

StrikeVanilla= [10;11.5];

PriceVanillaOption = optstockbybls(RateSpec, StockSpec, Settle, Maturity,...

OptSpec, StrikeVanilla)

This returns:

6-28

basketbyju

PriceVanillaOption =

1.0451
1.4186

Find the total cost of buying two individual call options:

sum(PriceVanillaOption)

This returns:

ans=2.4637

The total cost of purchasing two individual call options is $2.4637,
compared to the maximum cost of the basket option of $2.27 with a
correlation of 60%.

References Nengjiu Ju, “Pricing Asian and Basket Options Via Taylor Expansion”,
Journal of Computational Finance, Vol. 5, 2002.

See Also basketstockspec | basketsensbyju

How To • “Basket Option” on page 3-25

6-29

basketbyls

Purpose Price basket options using Longstaff-Schwartz model

Syntax Price = basketbyls(RateSpec, BasketStockSpec, OptSpec, Strike,
Settle, ExerciseDates)
Price = basketbyls(RateSpec, BasketStockSpec, OptSpec, Strike,
Settle, ExerciseDates, 'ParameterName', ParameterValue ...)

Description Price = basketbyls(RateSpec, BasketStockSpec, OptSpec,
Strike, Settle, ExerciseDates) prices basket options using the
Longstaff-Schwartz model.

Price = basketbyls(RateSpec, BasketStockSpec, OptSpec,
Strike, Settle, ExerciseDates, 'ParameterName',
ParameterValue ...) accepts optional inputs as one or more
comma-separated parameter/value pairs. 'ParameterName' is the name
of the parameter inside single quotes. 'ParameterValue is the value
corresponding to 'ParameterName'. Specify parameter-value pairs in
any order. Names are case-insensitive and partial string matches are
allowable, if no ambiguities exist.

Input
Arguments

RateSpec

Annualized, continuously compounded rate term structure. For more
information on the interest rate specification, see intenvset.

BasketStockSpec

BasketStock specification. For information on the basket of stocks
specification, see basketstockspec.

OptSpec

String or 2-by-1 cell array of the strings 'call' or 'put'.

Strike

The option strike price:

6-30

basketbyls

• For a European or Bermuda option, Strike is a scalar (European) or
1-by-NSTRIKES (Bermuda) vector of strike price.

• For an American option, Strike is a scalar vector of the strike price.

Settle

Scalar of the settlement or trade date specified as a string or serial
date number.

ExerciseDates

The exercise date for the option:

• For a European or Bermuda option, ExerciseDates is a 1-by-1
(European) or 1-by-NSTRIKES (Bermuda) vector of exercise dates. For
a European option, there is only one ExerciseDate on the option
expiry date.

• For an American option, ExerciseDates is a 1-by-2 vector of exercise
date boundaries. The option exercises on any date between, or
including, the pair of dates on that row. If there is only one non-NaN
date, or if ExerciseDates is 1-by-1, the option exercises between the
Settle date and the single listed ExerciseDate.

Parameter–Value Pairs

AmericanOpt

Parameter values are a scalar flag.

• 0 — European/Bermuda

• 1 — American

Default: 0

NumPeriods

Parameter value is a scalar number of simulation periods per trial.
NumPeriods is considered only when pricing European basket options.

6-31

basketbyls

For American and Bermuda basket options, NumPeriod equals the
number of exercise days during the life of the option.

Default: 100

NumTrials

Parameter value is a scalar number of independent sample paths
(simulation trials).

Default: 1000

Output
Arguments

Price

Price of the basket option.

Examples Find an American call basket option of three stocks. The stocks are
currently trading at $35, $40 and $45 with annual volatilities of 12%,
15% and 18%, respectively. The basket contains 33.33% of each stock.
Assume the correlation between all pair of assets is 50%. On May 1,
2009, an investor wants to buy a three-year call option with a strike
price of $42. The current annualized continuously compounded interest
rate is 5%. Use this data to compute the price of the call basket option
using the Longstaff-Schwartz model.

Settle = 'May-1-2009';

Maturity = 'May-1-2012';

% Define RateSpec

Rate = 0.05;

Compounding = -1;

RateSpec = intenvset('ValuationDate', Settle, 'StartDates',...

Settle, 'EndDates', Maturity, 'Rates', Rate, 'Compounding', Compounding);

% Define the Correlation matrix. Correlation matrices are symmetric,

% and have ones along the main diagonal.

Corr = [1 0.50 0.50; 0.50 1 0.50;0.50 0.50 1];

6-32

basketbyls

% Define BasketStockSpec

AssetPrice = [35;40;45];

Volatility = [0.12;0.15;0.18];

Quantity = [0.333;0.333;0.333];

BasketStockSpec = basketstockspec(Volatility, AssetPrice, Quantity, Corr);

% Compute the price of the call basket option

OptSpec = {'call'};

Strike = 42;

AmericanOpt = 1; % American option

Price = basketbyls(RateSpec, BasketStockSpec, OptSpec, Strike, Settle, Maturity,...

'AmericanOpt',AmericanOpt)

This returns:

Price =

5.60499

Increase the number of simulation trials to 2000 to give the following
results:

NumTrial = 2000;

Price = basketbyls(RateSpec, BasketStockSpec, OptSpec, Strike, Settle, Maturity,...

'AmericanOpt',AmericanOpt,'NumTrials',NumTrial)

Price =

5.6665

References Longstaff, F.A., and E.S. Schwartz, “Valuing American Options
by Simulation: A Simple Least-Squares Approach”, The Review of
Financial Studies, Vol. 14, No. 1, Spring 2001, pp. 113–147.

See Also basketstockspec | basketsensbyls

How To • “Basket Option” on page 3-25

6-33

basketsensbyju

Purpose Determine European basket options price and sensitivities using
Nengjiu Ju approximation model

Syntax PriceSens = basketsensbyju(RateSpec, BasketStockSpec, OptSpec,
Strike,

Settle, Maturity)
PriceSens = basketsensbyju(RateSpec, BasketStockSpec, OptSpec,

Strike,
Settle, Maturity, 'ParameterName', ParameterValue ...)

Description PriceSens = basketsensbyju(RateSpec, BasketStockSpec,
OptSpec, Strike, Settle, Maturity) calculates prices and
sensitivities for basket options using the Nengjiu Ju approximation
model.

PriceSens = basketsensbyju(RateSpec, BasketStockSpec,
OptSpec, Strike, Settle, Maturity, 'ParameterName',
ParameterValue ...) accepts optional inputs as one or more
comma-separated parameter/value pairs. 'ParameterName' is the name
of the parameter inside single quotes. 'ParameterValue is the value
corresponding to 'ParameterName'. Specify parameter-value pairs in
any order. Names are case-insensitive and partial string matches are
allowable, if no ambiguities exist.

Input
Arguments

RateSpec

Annualized, continuously compounded rate term structure. For more
information on the interest rate specification, see intenvset.

BasketStockSpec

BasketStock specification. For information on the basket of stocks
specification, see basketstockspec.

OptSpec

String or 2-by-1 cell array of the strings 'call' or 'put'.

6-34

basketsensbyju

Strike

Scalar of the option strike price.

Settle

Scalar of the settlement or trade date specified as a string or serial
date number.

Maturity

Maturity date, specified as a string or serial date number.

Parameter–Value Pairs

OutSpec

Parameter value is an NOUT-by-1 or 1-by-NOUT cell array of strings
indicating the nature and order of the outputs for the function. Possible
values are 'Price', 'Delta', 'Gamma', 'Vega', 'Lambda', 'Rho',
'Theta', and 'All'. For example, OutSpec = {'Price', 'Lamba',
'Rho'} specifies that the output is Price, Lambda, and Rho, in that
order.

OutSpec = {'All'} specifies that the output should be Delta, Gamma,
Vega, Lambda, Rho, Theta, and Price, in that order. This is the same
as specifying OutSpec as OutSpec = {'Delta', 'Gamma', 'Vega',
'Lambda', 'Rho', 'Theta', 'Price'};.

Default: OutSpec = {'Price'}

UndIdx

Scalar of the indice of the underlying instrument to compute the
sensitivity.

Default: UndIdx = []

Output
Arguments

PriceSens

Expected prices or sensitivities values for the basket option.

6-35

basketsensbyju

Examples Find a European call basket option of five stocks. Assume that the
basket contains:

• 5% of the first stock trading at $110

• 15% of the second stock trading at $75

• 20% of the third stock trading at $40

• 25% of the fourth stock trading at $125

• 35% of the fifth stock trading at $92
These stocks have annual volatilities of 20% and the correlation
between the assets is zero. On May 1, 2009, an investor wants to buy a
1-year call option with a strike price of $90. The current annualized,
continuously compounded interest is 5%. Use this data to compute price
and delta of the call basket option with the Ju approximation model.

Settle = 'May-1-2009';

Maturity = 'May-1-2010';

% Define RateSpec

Rate = 0.05;

Compounding = -1;

RateSpec = intenvset('ValuationDate', Settle, 'StartDates', ...

Settle, 'EndDates', Maturity, 'Rates', Rate, 'Compounding', Compounding);

% Define the Correlation matrix. Correlation matrices are symmetric, and

% have ones along the main diagonal.

NumInst = 5;

InstIdx = ones(NumInst,1);

Corr = diag(ones(5,1), 0);

% Define BasketStockSpec

AssetPrice = [110; 75; 40; 125; 92];

Volatility = 0.2;

Quantity = [0.05; 0.15; 0.2; 0.25; 0.35];

BasketStockSpec = basketstockspec(Volatility, AssetPrice, Quantity, Corr);

6-36

basketsensbyju

% Compute the price of the call basket option. Calculate also the delta

% of the first stock.

OptSpec = {'call'};

Strike = 90;

OutSpec = {'Price','Delta'};

UndIdx = 1; % First element in the basket

[Price, Delta] = basketsensbyju(RateSpec, BasketStockSpec, OptSpec, Strike, Settle, ...

Maturity, 'OutSpec', OutSpec,'UndIdx', UndIdx)

This returns:

Price =

5.16098

Delta =

0.02972

Compute Delta with respect to the second asset:

UndIdx = 2; % Second element in the basket

OutSpec = {'Delta'};

Delta = basketsensbyju(RateSpec, BasketStockSpec, OptSpec, Strike, Settle, Maturity, ...

'OutSpec',OutSpec,'UndIdx',UndIdx)

Delta =

0.09063

References Nengjiu Ju, “Pricing Asian and Basket Options Via Taylor Expansion”,
Journal of Computational Finance, Vol. 5, 2002.

See Also basketstockspec | basketbyju

How To • “Basket Option” on page 3-25

6-37

basketsensbyls

Purpose Determine price and sensitivities for basket options using
Longstaff-Schwartz model

Syntax PriceSens = basketsensbyls(RateSpec, BasketStockSpec, OptSpec,
Strike,

Settle, ExerciseDates)
PriceSens = basketsensbyls(RateSpec, BasketStockSpec, OptSpec,

Strike,
Settle, ExerciseDates, 'ParameterName', ParameterValue ...)

Description PriceSens = basketsensbyls(RateSpec, BasketStockSpec,
OptSpec, Strike, Settle, ExerciseDates) prices basket options
using the Longstaff-Schwartz model.

PriceSens = basketsensbyls(RateSpec, BasketStockSpec,
OptSpec, Strike, Settle, ExerciseDates, 'ParameterName',
ParameterValue ...) accepts optional inputs as one or more
comma-separated parameter/value pairs. 'ParameterName' is the name
of the parameter inside single quotes. 'ParameterValue is the value
corresponding to 'ParameterName'. Specify parameter-value pairs in
any order. Names are case-insensitive and partial string matches are
allowable, if no ambiguities exist.

Input
Arguments

RateSpec

Annualized, continuously compounded rate term structure. For more
information on the interest rate specification, see intenvset.

BasketStockSpec

BasketStock specification. For information on the basket of stocks
specification, see basketstockspec.

OptSpec

String or 2-by-1 cell array of the strings 'call' or 'put'.

Strike

6-38

basketsensbyls

The option strike price:

• For a European or Bermuda option, Strike is a scalar (European) or
1-by-NSTRIKES (Bermuda) vector of strike price.

• For an American option, Strike is a scalar vector of strike price.

Settle

Scalar of settlement or trade date.

ExerciseDates

The exercise date for the option:

• For a European or Bermuda option, ExerciseDates is a 1-by-1
(European) or 1-by-NSTRIKES (Bermuda) vector of exercise dates. For
a European option, there is only one ExerciseDate on the option
expiry date.

• For an American option, ExerciseDates is a 1-by-2 vector of exercise
date boundaries. The option exercises on any date between or
including the pair of dates on that row. If there is only one non-NaN
date, or if ExerciseDates is 1-by-1, the option exercises between the
Settle date and the single listed ExerciseDate.

Parameter–Value Pairs

AmericanOpt

Parameter values are a scalar flag.

• 0 — European/Bermuda

• 1 — American

Default: 0

NumPeriods

6-39

basketsensbyls

Parameter value is a scalar number of simulation periods. NumPeriods
is considered only when pricing European basket options. For American
and Bermuda basket options, NumPeriod equals the number of exercise
days during the life of the option.

Default: 100

NumTrials

Parameter value is a scalar number of independent sample paths
(simulation trials).

Default: 1000

OutSpec

Parameter value is an NOUT-by-1 or 1-by-NOUT cell array of strings
indicating the nature and order of the outputs for the function. Possible
values are 'Price', 'Delta', 'Gamma', 'Vega', 'Lambda', 'Rho',
'Theta', and 'All'. For example, OutSpec = {'Price', 'Lamba',
'Rho'} specifies that the output is Price, Lambda, and Rho, in that
order.

OutSpec = {'All'} specifies that the output should be Delta, Gamma,
Vega, Lambda, Rho, Theta, and Price, in that order. This is the same
as specifying OutSpec as OutSpec = {'Delta', 'Gamma', 'Vega',
'Lambda', 'Rho', 'Theta', 'Price'};.

Default: OutSpec = {'Price'}

UndIdx

Scalar of the indice of the underlying instrument to compute the
sensitivity.

Default: UndIdx = []

6-40

basketsensbyls

Output
Arguments

PriceSens

Expected prices or sensitivities values.

Examples Find a European put basket option of two stocks. The basket contains
50% of each stock. The stocks are currently trading at $90 and $75, with
annual volatilities of 15%. Assume that the correlation between the
assets is zero. On May 1, 2009, an investor wants to buy a one-year put
option with a strike price of $80. The current annualized, continuously
compounded interest is 5%. Use this data to compute price and delta
of the put basket option with the Longstaff-Schwartz approximation
model.

Settle = 'May-1-2009';

Maturity = 'May-1-2010';

% Define RateSpec

Rate = 0.05;

Compounding = -1;

RateSpec = intenvset('ValuationDate', Settle, 'StartDates',...

Settle, 'EndDates', Maturity, 'Rates', Rate, 'Compounding', Compounding);

% Define the Correlation matrix. Correlation matrices are symmetric,

% and have ones along the main diagonal.

NumInst = 2;

InstIdx = ones(NumInst,1);

Corr = diag(ones(NumInst,1), 0);

% Define BasketStockSpec

AssetPrice = [90; 75];

Volatility = 0.15;

Quantity = [0.50; 0.50];

BasketStockSpec = basketstockspec(Volatility, AssetPrice, Quantity, Corr);

% Compute the price of the put basket option. Calculate also the delta

% of the first stock.

OptSpec = {'put'};

6-41

basketsensbyls

Strike = 80;

OutSpec = {'Price','Delta'};

UndIdx = 1; % First element in the basket

[PriceSens, Delta] = basketsensbyls(RateSpec, BasketStockSpec, OptSpec,...

Strike, Settle, Maturity,'OutSpec', OutSpec,'UndIdx', UndIdx)

This returns:

PriceSens =

1.08519

Delta =

-0.10311

Compute the Price and Delta of the basket with a correlation of -20%:

NewCorr = [1 -0.20; -0.20 1];

% Define the new BasketStockSpec.

BasketStockSpec = basketstockspec(Volatility, AssetPrice, Quantity, NewCorr);

% Compute the price and delta of the put basket option.

[PriceSens, Delta] = basketsensbyls(RateSpec, BasketStockSpec, OptSpec,...

Strike, Settle, Maturity,'OutSpec', OutSpec,'UndIdx', UndIdx)

PriceSens =

0.83903

Delta =

-0.08847

6-42

basketsensbyls

References Longstaff, F.A., and E.S. Schwartz, “Valuing American Options
by Simulation: A Simple Least-Squares Approach”, The Review of
Financial Studies,Vol. 14, No. 1, Spring 2001, pp. 113–147.

See Also basketstockspec | basketbyls

How To • “Basket Option” on page 3-25

6-43

basketstockspec

Purpose Specify basket stock structure using Longstaff-Schwartz model

Syntax BasketStockSpec = basketstockspec(Sigma, AssetPrice, Quantity,
Correlation)
BasketStockSpec = basketstockspec(Sigma, AssetPrice, Quantity,
Correlation, 'ParameterName',ParameterValue ...)

Description BasketStockSpec = basketstockspec(Sigma, AssetPrice,
Quantity, Correlation) creates a basket stock structure.

BasketStockSpec = basketstockspec(Sigma, AssetPrice,
Quantity, Correlation, 'ParameterName',ParameterValue
...) accepts optional inputs as one or more comma-separated
parameter/value pairs. 'ParameterName' is the name of the parameter
inside single quotes. 'ParameterValue is the value corresponding to
'ParameterName'. Specify parameter-value pairs in any order. Names
are case-insensitive and partial string matches are allowable, if no
ambiguities exist.

Input
Arguments

Sigma

NINST-by-1 vector of decimal annual price volatility of the underlying
security.

AssetPrice

NINST-by-1 vector of underlying asset price values at time 0.

Quantity

NINST-by-1 vector of quantities of the instruments contained in the
basket.

Correlation

NINST-by-NINST matrix of correlation values.

6-44

basketstockspec

Parameter–Value Pairs

DividendAmounts

NINST-by-1 cell array specifying the dividend amounts for basket
instruments. Each element of the cell array is a 1-by-NDIV row vector
of cash dividends or a scalar representing a continuous annualized
dividend yield for the corresponding instrument.

DividendType

NINST-by-1 cell array of strings specifying each stock’s dividend type.
Dividend type must be either cash for actual dollar dividends or
continuous for continuous dividend yield. .

ExDividendDates

NINST-by-1 cell array specifying the ex-dividend dates for the basket
instruments. Each row is a 1-by-NDIV matrix of ex-dividend dates
for cash type. For rows that correspond to basket instruments
with continuous dividend type, the cell is empty. If none of the
basket instruments pay continuous dividends, do not specify
ExDividendDates.

Output
Arguments

BasketStockSpec

Structure encapsulating the properties of a basket stock structure.

Examples Find a basket option of three stocks. The stocks are currently trading
at $56, $92 and $125 with annual volatilities of 20%, 12% and 15%,
respectively. The basket option contains 25% of the first stock, 40%
of the second stock, and 35% of the third. The first stock provides a
continuous dividend of 1%, while the other two provide no dividends.
The correlation between the first and second asset is 30%, between the
second and third asset 11%, and between the first and third asset 16%.
Use this data to create the BasketStockSpec structure:

AssetPrice = [56;92;125];

Sigma = [0.20;0.12;0.15];

6-45

basketstockspec

% Create the Correlation matrix. Correlation matrices are symmetric and

% have ones along the main diagonal.

NumInst = 3;

Corr = zeros(NumInst,1);

Corr(1,2) = .30;

Corr(2,3) = .11;

Corr(1,3) = .16;

Corr = triu(Corr,1) + tril(Corr',-1) + diag(ones(NumInst,1), 0);

% Define dividends

DivType = cell(NumInst,1);

DivType{1}='continuous';

DivAmounts = cell(NumInst,1);

DivAmounts{1} = 0.01;

Quantity = [0.25; 0.40; 0.35];

BasketStockSpec = basketstockspec(Sigma, AssetPrice, Quantity, Corr, ...

'DividendType', DivType, 'DividendAmounts', DivAmounts)

This returns:

BasketStockSpec =

FinObj: 'BasketStockSpec'
Sigma: [3x1 double]

AssetPrice: [3x1 double]
Quantity: [3x1 double]

Correlation: [3x3 double]
DividendType: {3x1 cell}

DividendAmounts: {3x1 cell}
ExDividendDates: {3x1 cell}

Examine the BasketStockSpec structure:

>>BasketStockSpec.Correlation

6-46

basketstockspec

ans =

1.0000 0.3000 0.1600
0.3000 1.0000 0.1100
0.1600 0.1100 1.0000

Find a basket option of two stocks. The stocks are currently trading at
$60 and $55 with volatilities of 30% per annum. The basket option
contains 50% of each stock. The first stock provides a cash dividend of
$0.25 on May 1, 2009 and September 1, 2009. The second stock provides
a continuous dividend of 3%. The correlation between the assets is 40%.
Use this data to create the structure BasketStockSpec:

AssetPrice = [60;55];

Sigma = [0.30;0.30];

% Create the Correlation matrix. Correlation matrices are symmetric and

% have ones along the main diagonal.

Correlation = [1 0.40;0.40 1];

% Define dividends

NumInst = 2;

DivType = cell(NumInst,1);

DivType{1}='cash';

DivType{2}='continuous';

DivAmounts = cell(NumInst,1);

DivAmounts{1} = [0.25 0.25];

DivAmounts{2} = 0.03;

ExDates = cell(NumInst,1);

ExDates{1} = {'May-1-2009' 'Sept-1-2009'};

Quantity = [0.5; 0.50];

BasketStockSpec = basketstockspec(Sigma, AssetPrice, Quantity, Correlation, ...

6-47

basketstockspec

'DividendType', DivType, 'DividendAmounts', DivAmounts, 'ExDividendDates',ExDates)

This returns:

BasketStockSpec =

FinObj: 'BasketStockSpec'
Sigma: [2x1 double]

AssetPrice: [2x1 double]
Quantity: [2x1 double]

Correlation: [2x2 double]
DividendType: {2x1 cell}

DividendAmounts: {2x1 cell}
ExDividendDates: {2x1 cell}

Examine the BasketStockSpec structure:

>>BasketStockSpec.DividendType

ans =

'cash'
'continuous'

See Also basketbyls | basketbyju | basketsensbyju | basketsensbyls |
stockspec | intenvset

How To • “Basket Option” on page 3-25

6-48

bdtprice

Purpose Instrument prices from Black-Derman-Toy interest-rate tree

Syntax [Price, PriceTree] = bdtprice(BDTTree, InstSet, Options)

Arguments

BDTTree Interest-rate tree structure created by bdttree.

InstSet Variable containing a collection of NINST instruments.
Instruments are categorized by type. Each type can
have different data fields. The stored data field is a
row vector or string for each instrument.

Options (Optional) Derivatives pricing options structure
created with derivset.

Description [Price, PriceTree] = bdtprice(BDTTree, InstSet, Options)
computes arbitrage-free prices for instruments using an interest-rate
tree created with bdttree. All instruments contained in a financial
instrument variable, InstSet, are priced.

Price is a number of instruments (NINST)-by-1 vector of prices for
each instrument. The prices are computed by backward dynamic
programming on the interest-rate tree. If an instrument cannot be
priced, NaN is returned.

PriceTree is a MATLAB structure of trees containing vectors of
instrument prices and accrued interest, and a vector of observation
times for each node.

PriceTree.PTree contains the clean prices.

PriceTree.AITree contains the accrued interest.

PriceTree.tObs contains the observation times.

bdtprice handles instrument types: 'Bond', 'CashFlow', 'OptBond',
'OptEmBond', 'Fixed', 'Float', 'Cap', 'Floor', 'RangeFloat',
'Swap'. See instadd to construct defined types.

6-49

bdtprice

Related single-type pricing functions are:

• bondbybdt: Price a bond from a BDT tree.

• capbybdt: Price a cap from a BDT tree.

• cfbybdt: Price an arbitrary set of cash flows from a BDT tree.

• fixedbybdt: Price a fixed-rate note from a BDT tree.

• floatbybdt: Price a floating-rate note from a BDT tree.

• floorbybdt: Price a floor from a BDT tree.

• optbndbybdt: Price a bond option from a BDT tree.

• optembndbybdt: Price a bond with embedded option by a BDT tree.

• rangefloatbybdt: Price range floating note using a BDT tree.

• swapbybdt: Price a swap from a BDT tree.

• swaptionbybdt: Price a swaption from a BDT tree.

Examples Load the BDT tree and instruments from the data file deriv.mat. Price
the cap and bond instruments contained in the instrument set.

load deriv.mat;

BDTSubSet = instselect(BDTInstSet,'Type', {'Bond', 'Cap'});

instdisp(BDTSubSet)

%Table of instrument portfolio partially displayed:

Index Type CouponRate Settle Maturity Period ... Name ...

1 Bond 0.1 01-Jan-2000 01-Jan-2003 1 ... 10% bond

2 Bond 0.1 01-Jan-2000 01-Jan-2004 2 ... 10% bond

Index Type Strike Settle Maturity CapReset ... Name ...

3 Cap 0.15 01-Jan-2000 01-Jan-2004 1 ... 15% Cap

[Price, PriceTree] = bdtprice(BDTTree, BDTSubSet);

6-50

bdtprice

Warning: Not all cash flows are aligned with the tree. Result will

be approximated.

Price =

95.5030

93.9079

1.4863

You can use treeviewer to see the prices of these three instruments
along the price tree.

6-51

bdtprice

Price the following multi-stepped coupon bonds using the following data:

6-52

bdtprice

% The data for the interest rate term structure is as follows:

Rates = [0.035; 0.042147; 0.047345; 0.052707];

ValuationDate = 'Jan-1-2010';

StartDates = ValuationDate;

EndDates = {'Jan-1-2011'; 'Jan-1-2012'; 'Jan-1-2013'; 'Jan-1-2014'};

Compounding = 1;

% Create RateSpec

RS = intenvset('ValuationDate', ValuationDate, 'StartDates', StartDates,...

'EndDates', EndDates,'Rates', Rates, 'Compounding', Compounding);

% Create a portfolio of stepped coupon bonds with different maturities

Settle = '01-Jan-2010';

Maturity = {'01-Jan-2011';'01-Jan-2012';'01-Jan-2013';'01-Jan-2014'};

CouponRate = {{'01-Jan-2011' .042;'01-Jan-2012' .05; '01-Jan-2013' .06; '01-Jan-2014' .07}};

% Display the instrument portfolio

ISet = instbond(CouponRate, Settle, Maturity, 1);

instdisp(ISet)

%Table of instrument portfolio partially displayed:

Index Type CouponRate Settle Maturity Period Basis EndMonthRule IssueDate FirstCouponDate ... Face

1 Bond [Cell] 01-Jan-2010 01-Jan-2011 1 0 1 NaN NaN ... 100

2 Bond [Cell] 01-Jan-2010 01-Jan-2012 1 0 1 NaN NaN ... 100

3 Bond [Cell] 01-Jan-2010 01-Jan-2013 1 0 1 NaN NaN ... 100

4 Bond [Cell] 01-Jan-2010 01-Jan-2014 1 0 1 NaN NaN ... 100

% Build the tree

% Assume the volatility to be 10%

Sigma = 0.1;

BDTTimeSpec = bdttimespec(ValuationDate, EndDates, Compounding);

BDTVolSpec = bdtvolspec(ValuationDate, EndDates, Sigma*ones(1, length(EndDates))');

BDTT = bdttree(BDTVolSpec, RS, BDTTimeSpec);

% Compute the price of the stepped coupon bonds

6-53

bdtprice

PBDT = bdtprice(BDTT, ISet)

%Table of instrument portfolio partially displayed:

Index Type CouponRate Settle Maturity Period Basis EndMnthRule IssueDate FirstCouponDate ... Face

1 Bond [Cell] 01-Jan-2010 01-Jan-2011 1 0 1 NaN NaN ... 100

2 Bond [Cell] 01-Jan-2010 01-Jan-2012 1 0 1 NaN NaN ... 100

3 Bond [Cell] 01-Jan-2010 01-Jan-2013 1 0 1 NaN NaN ... 100

4 Bond [Cell] 01-Jan-2010 01-Jan-2014 1 0 1 NaN NaN ... 100

PBDT =

100.6763

100.7368

100.9266

101.0115

Price a portfolio of stepped callable bonds and stepped vanilla bonds
using the following data:

% The data for the interest rate term structure is as follows:

Rates = [0.035; 0.042147; 0.047345; 0.052707];

ValuationDate = 'Jan-1-2010';

StartDates = ValuationDate;

EndDates = {'Jan-1-2011'; 'Jan-1-2012'; 'Jan-1-2013'; 'Jan-1-2014'};

Compounding = 1;

%Create RateSpec

RS = intenvset('ValuationDate', ValuationDate, 'StartDates', StartDates,...

'EndDates', EndDates,'Rates', Rates, 'Compounding', Compounding);

% Create an instrument portfolio of 3 stepped callable bonds and three

% stepped vanilla bonds

Settle = '01-Jan-2010';

Maturity = {'01-Jan-2012';'01-Jan-2013';'01-Jan-2014'};

CouponRate = {{'01-Jan-2011' .042;'01-Jan-2012' .05; '01-Jan-2013' .06; '01-Jan-2014' .07}};

6-54

bdtprice

OptSpec='call';

Strike=100;

ExerciseDates='01-Jan-2011'; %Callable in one year

% Bonds with embedded option

ISet = instoptembnd(CouponRate, Settle, Maturity, OptSpec, Strike,...

ExerciseDates, 'Period', 1);

% Vanilla bonds

ISet = instbond(ISet, CouponRate, Settle, Maturity, 1);

% Display the instrument portfolio

instdisp(ISet)

%Table of instrument portfolio partially displayed:

Index Type CouponRate Settle Maturity OptSpec Strike ExerciseDates ... AmericanOpt

1 OptEmBond [Cell] 01-Jan-2010 01-Jan-2012 call 100 01-Jan-2011 ... 0

2 OptEmBond [Cell] 01-Jan-2010 01-Jan-2013 call 100 01-Jan-2011 ... 0

3 OptEmBond [Cell] 01-Jan-2010 01-Jan-2014 call 100 01-Jan-2011 ... 0

Index Type CouponRate Settle Maturity Period Basis EndMonthRule ... Face

4 Bond [Cell] 01-Jan-2010 01-Jan-2012 1 0 1 ... 100

5 Bond [Cell] 01-Jan-2010 01-Jan-2013 1 0 1 ... 100

6 Bond [Cell] 01-Jan-2010 01-Jan-2014 1 0 1 ... 100

% Build the tree

% Assume the volatility to be 10%

Sigma = 0.1;

BDTTimeSpec = bdttimespec(ValuationDate, EndDates, Compounding);

BDTVolSpec = bdtvolspec(ValuationDate, EndDates, Sigma*ones(1, length(EndDates))');

BDTT = bdttree(BDTVolSpec, RS, BDTTimeSpec);

%The first three rows corresponds to the price of the stepped callable bonds and the

%last three rows corresponds to the price of the stepped vanilla bonds.

PBDT = bdtprice(BDTT, ISet)

PBDT =

6-55

bdtprice

100.4799

100.3228

100.0840

100.7368

100.9266

101.0115

Compute the price of a portfolio using the following data:

% The data for the interest rate term structure is as follows:

Rates = [0.035; 0.042147; 0.047345; 0.052707];

ValuationDate = 'Jan-1-2011';

StartDates = ValuationDate;

EndDates = {'Jan-1-2012'; 'Jan-1-2013'; 'Jan-1-2014'; 'Jan-1-2015'};

Compounding = 1;

% Create RateSpec

RS = intenvset('ValuationDate', ValuationDate, 'StartDates', StartDates,...

'EndDates', EndDates,'Rates', Rates, 'Compounding', Compounding);

% Create an instrument portfolio with two range notes and a floating rate

% note with the following data:

Spread = 200;

Settle = 'Jan-1-2011';

Maturity = 'Jan-1-2014';

% First Range Note:

RateSched(1).Dates = {'Jan-1-2012'; 'Jan-1-2013' ; 'Jan-1-2014'};

RateSched(1).Rates = [0.045 0.055; 0.0525 0.0675; 0.06 0.08];

% Second Range Note:

RateSched(2).Dates = {'Jan-1-2012'; 'Jan-1-2013' ; 'Jan-1-2014'};

RateSched(2).Rates = [0.048 0.059; 0.055 0.068 ; 0.07 0.09];

Create InstSet

6-56

bdtprice

InstSet = instadd('RangeFloat', Spread, Settle, Maturity, RateSched);

% Add a floating-rate note

InstSet = instadd(InstSet, 'Float', Spread, Settle, Maturity);

% Display the portfolio instrument

instdisp(InstSet)

Index Type Spread Settle Maturity RateSched FloatReset Basis Principal EndMonthRule

1 RangeFloat 200 01-Jan-2011 01-Jan-2014 [Struct] 1 0 100 1

2 RangeFloat 200 01-Jan-2011 01-Jan-2014 [Struct] 1 0 100 1

Index Type Spread Settle Maturity FloatReset Basis Principal EndMonthRule

3 Float 200 01-Jan-2011 01-Jan-2014 1 0 100 1

% The data to build the tree is as follows:

% Assume the volatility to be 10%.

Sigma = 0.1;

BDTTS = bdttimespec(ValuationDate, EndDates, Compounding);

BDTVS = bdtvolspec(ValuationDate, EndDates, Sigma*ones(1, length(EndDates))');

BDTT = bdttree(BDTVS, RS, BDTTS);

% Price the portfolio

Price = bdtprice(BDTT, InstSet)

Price =

100.2841

98.0757

105.5147

See Also bdtsens | bdttree | instadd | intenvprice | intenvsens

6-57

bdtsens

Purpose Instrument prices and sensitivities from Black-Derman-Toy
interest-rate tree

Syntax [Delta, Gamma, Vega, Price] = bdtsens(BDTTree, InstSet,
Options)

Arguments

BDTTree Interest-rate tree structure created by bdttree.

InstSet Variable containing a collection of NINST instruments.
Instruments are categorized by type. Each type can have
different data fields. The stored data field is a row vector
or string for each instrument.

Options (Optional) Derivatives pricing options structure created
with derivset.

Description [Delta, Gamma, Vega, Price] = bdtsens(BDTTree, InstSet,
Options) computes instrument sensitivities and prices for instruments
using an interest-rate tree created with the bdttree function. NINST
instruments from a financial instrument variable, InstSet, are priced.
bdtsens handles instrument types: 'Bond', 'CashFlow', 'OptBond',
'OptEmBond', 'Fixed', 'Float', 'Cap', 'Floor', 'RangeFloat',
'Swap'. See instadd for information on instrument types.

Delta is an NINST-by-1 vector of deltas, representing the rate of change
of instrument prices with respect to changes in the interest rate. Delta
is computed by finite differences in calls to bdttree. See bdttree for
information on the observed yield curve.

Gamma is an NINST-by-1 vector of gammas, representing the rate of
change of instrument deltas with respect to the changes in the interest
rate. Gamma is computed by finite differences in calls to bdttree.

Vega is an NINST-by-1 vector of vegas, representing the rate of change
of instrument prices with respect to the changes in the volatility

6-58

bdtsens

 t T,() . Vega is computed by finite differences in calls to bdttree. See
bdtvolspec for information on the volatility process.

Note All sensitivities are returned as dollar sensitivities. To find the
per-dollar sensitivities, divide by the respective instrument price.

Price is an NINST-by-1 vector of prices of each instrument. The prices
are computed by backward dynamic programming on the interest-rate
tree. If an instrument cannot be priced, NaN is returned.

Delta and Gamma are calculated based on yield shifts of 100 basis points.
Vega is calculated based on a 1% shift in the volatility process.

Examples Load the tree and instruments from a data file. Compute Delta and
Gamma for the cap and bond instruments contained in the instrument set.

load deriv.mat;

BDTSubSet = instselect(BDTInstSet,'Type', {'Bond', 'Cap'});

instdisp(BDTSubSet)

Index Type CouponRate Settle Maturity Period Name

...

1 Bond 0.1 01-Jan-2000 01-Jan-2003 1 10% Bo

nd

2 Bond 0.1 01-Jan-2000 01-Jan-2004 2 10% Bo

nd

Index Type Strike Settle Maturity CapReset... Name ...

3 Cap 0.15 01-Jan-2000 01-Jan-2004 1 15% Cap

[Delta, Gamma] = bdtsens(BDTTree, BDTSubSet)

Warning: Not all cash flows are aligned with the tree. Result will

be approximated.

6-59

bdtsens

Delta =

-232.6681

-281.0517

78.3776

Gamma =

1.0e+003 *

0.8037

1.1819

0.7490

See Also bdtprice | bdttree | bdtvolspec | instadd

6-60

bdttimespec

Purpose Specify time structure for Black-Derman-Toy interest-rate tree

Syntax TimeSpec = bdttimespec(ValuationDate, Maturity, Compounding)

Arguments

ValuationDate Scalar date marking the pricing date and first
observation in the tree. Specify as serial date
number or date string.

Maturity Number of levels (depth) of the tree. A number
of levels (NLEVELS)-by-1 vector of dates marking
the cash flow dates of the tree. Cash flows with
these maturities fall on tree nodes. Maturity
should be in increasing order.

Compounding (Optional) Scalar value representing the rate at
which the input zero rates were compounded
when annualized. Default = 1. This argument
determines the formula for the discount factors:

Compounding = 1, 2, 3, 4, 6, 12

Disc = (1 + Z/F)^(-T), where F is the
compounding frequency, Z is the zero rate, and
T is the time in periodic units; for example, T =
F is 1 year.

Compounding = 365

Disc = (1 + Z/F)^(-T), where F is the number
of days in the basis year and T is a number of
days elapsed computed by basis.

Compounding = -1

Disc = exp(-T*Z), where T is time in years.

6-61

bdttimespec

Description TimeSpec = bdttimespec(ValuationDate, Maturity,
Compounding) sets the number of levels and node times for a BDT tree
and determines the mapping between dates and time for rate quoting.

TimeSpec is a structure specifying the time layout for bdttree. The
state observation dates are [ValuationDate; Maturity(1:end-1)].
Because a forward rate is stored at the last observation, the tree can
value cash flows out to Maturity.

Examples Specify a five-period tree with annual nodes. Use annual compounding
to report rates.

Compounding = 1;

ValuationDate = '01-01-2000';

Maturity = ['01-01-2001'; '01-01-2002'; '01-01-2003';

'01-01-2004'; '01-01-2005'];

TimeSpec = bdttimespec(ValuationDate, Maturity, Compounding)

TimeSpec =

FinObj: 'BDTTimeSpec'

ValuationDate: 730486

Maturity: [5x1 double]

Compounding: 1

Basis: 0

EndMonthRule: 1

See Also bdttree | bdtvolspec

6-62

bdttree

Purpose Construct Black-Derman-Toy interest-rate tree

Syntax BDTTree = bdttree(VolSpec, RateSpec, TimeSpec)

Arguments

VolSpec Volatility process specification. See bdtvolspec for
information on the volatility process.

RateSpec Interest-rate specification for the initial rate curve.
See intenvset for information on declaring an
interest-rate variable.

TimeSpec Tree time layout specification. Defines the observation
dates of the BDT tree and the Compounding rule for
date to time mapping and price-yield formulas. See
bdttimespec for information on the tree structure.

Description BDTTree = bdttree(VolSpec, RateSpec, TimeSpec) creates
a structure containing time and interest-rate information on a
recombining tree.

Examples Using the data provided, create a BDT volatility specification (VolSpec),
rate specification (RateSpec), and tree time layout specification
(TimeSpec). Then use these specifications to create a BDT tree with
bdttree.

Compounding = 1;

ValuationDate = '01-01-2000';

StartDate = ValuationDate;

EndDates = ['01-01-2001'; '01-01-2002'; '01-01-2003';

'01-01-2004'; '01-01-2005'];

Rates = [.1; .11; .12; .125; .13];

Volatility = [.2; .19; .18; .17; .16];

RateSpec = intenvset('Compounding', Compounding,...

6-63

bdttree

'ValuationDate', ValuationDate,...

'StartDates', StartDate,...

'EndDates', EndDates,...

'Rates', Rates);

BDTTimeSpec = bdttimespec(ValuationDate, EndDates, Compounding);

BDTVolSpec = bdtvolspec(ValuationDate, EndDates, Volatility);

BDTTree = bdttree(BDTVolSpec, RateSpec, BDTTimeSpec);

Use treeviewer to observe the tree you have created.

treeviewer(BDTTree)

See Also bdtprice | bdttimespec | bdtvolspec | intenvset

6-64

bdtvolspec

Purpose Specify Black-Derman-Toy interest-rate volatility process

Syntax Volspec = bdtvolspec(ValuationDate, VolDates, VolCurve,
InterpMethod)

Arguments

ValuationDate Scalar value representing the observation date
of the investment horizon.

VolDates Number of points (NPOINTS)-by-1 vector of yield
volatility end dates.

VolCurve NPOINTS-by-1 vector of yield volatility values in
decimal form.

InterpMethod (Optional) Interpolation method. Default is
'linear'. See interp1 for more information.

Description Volspec = bdtvolspec(ValuationDate, VolDates, VolCurve,
InterpMethod) creates a structure specifying the volatility for
bdttree.

Examples Using the data provided, create a BDT volatility specification (VolSpec).

ValuationDate = '01-01-2000';

EndDates = ['01-01-2001'; '01-01-2002'; '01-01-2003';

'01-01-2004'; '01-01-2005'];

Volatility = [.2; .19; .18; .17; .16];

BDTVolSpec = bdtvolspec(ValuationDate, EndDates, Volatility)

BDTVolSpec =

FinObj: 'BDTVolSpec'

ValuationDate: 730486

VolDates: [5x1 double]

VolCurve: [5x1 double]

6-65

bdtvolspec

VolInterpMethod: 'linear'

See Also bdttree | interp1

6-66

bkprice

Purpose Instrument prices from Black-Karasinski interest-rate tree

Syntax [Price, PriceTree] = bkprice(BKTree, InstSet, Options)

Arguments

BKTree Interest-rate tree structure created by bktree.

InstSet Variable containing a collection of NINST instruments.
Instruments are categorized by type. Each type can
have different data fields. The stored data field is a row
vector or string for each instrument.

Options (Optional) Derivatives pricing options structure created
with derivset.

Description [Price, PriceTree] = bkprice(BKTree, InstSet, Options)
computes arbitrage-free prices for instruments using an interest-rate
tree created with bktree. All instruments contained in a financial
instrument variable, InstSet, are priced.

Price is a number of instruments (NINST)-by-1 vector of prices for
each instrument. The prices are computed by backward dynamic
programming on the interest-rate tree. If an instrument cannot be
priced, NaN is returned.

PriceTree is a MATLAB structure of trees containing vectors of
instrument prices and accrued interest, and a vector of observation
times for each node.

PriceTree.PTree contains the clean prices.

PriceTree.AITree contains the accrued interest.

PriceTree.tObs contains the observation times.

bkprice handles instrument types: 'Bond', 'CashFlow', 'OptBond',
'OptEmBond', 'Fixed', 'Float', 'Cap', 'Floor', 'RangeFloat',
'Swap'. See instadd to construct defined types.

6-67

bkprice

Related single-type pricing functions are:

• bondbybk: Price a bond from a Black-Karasinski tree.

• capbybk: Price a cap from a Black-Karasinski tree.

• cfbybk: Price an arbitrary set of cash flows from a Black-Karasinski
tree.

• fixedbybk: Price a fixed-rate note from a Black-Karasinski tree.

• floatbybk: Price a floating-rate note from a Black-Karasinski tree.

• floorbybk: Price a floor from a Black-Karasinski tree.

• optbndbybk: Price a bond option from a Black-Karasinski tree.

• optembndbybk: Price a bond with embedded option by a
Black-Karasinski tree.

• rangefloatbybk: Price range floating note from a Black-Karasinski
tree.

• swapbybk: Price a swap from a Black-Karasinski tree.

• swaptionbybk: Price a swaption from a Black-Karasinski tree.

Examples Load the BK tree and instruments from the data file deriv.mat. Price
the cap and bond instruments contained in the instrument set.

load deriv.mat;

BKSubSet = instselect(BKInstSet,'Type', {'Bond', 'Cap'});

instdisp(BKSubSet)

%Table of instrument portfolio partially displayed:

Index Type CouponRate Settle Maturity Period ... Name ...

1 Bond 0.03 01-Jan-2004 01-Jan-2007 1 ... 3% bond

2 Bond 0.03 01-Jan-2004 01-Jan-2008 2 ... 3% bond

Index Type Strike Settle Maturity CapReset ... Name ...

3 Cap 0.04 01-Jan-2004 01-Jan-2008 1 ... 4% Cap

6-68

bkprice

[Price, PriceTree] = bkprice(BKTree, BKSubSet);

Price =

98.1096

95.6734

2.2706

You can use treeviewer to see the prices of these three instruments
along the price tree.

treeviewer(PriceTree, BKSubSet)

6-69

bkprice

Price the following multi-stepped coupon bonds using the following data:

6-70

bkprice

% The data for the interest rate term structure is as follows:

Rates = [0.035; 0.042147; 0.047345; 0.052707];

ValuationDate = 'Jan-1-2010';

StartDates = ValuationDate;

EndDates = {'Jan-1-2011'; 'Jan-1-2012'; 'Jan-1-2013'; 'Jan-1-2014'};

Compounding = 1;

% Create RateSpec

RS = intenvset('ValuationDate', ValuationDate, 'StartDates', StartDates,...

'EndDates', EndDates,'Rates', Rates, 'Compounding', Compounding);

% Create a portfolio of stepped coupon bonds with different maturities

Settle = '01-Jan-2010';

Maturity = {'01-Jan-2011';'01-Jan-2012';'01-Jan-2013';'01-Jan-2014'};

CouponRate = {{'01-Jan-2011' .042;'01-Jan-2012' .05; '01-Jan-2013' .06; '01-Jan-2014' .07}};

ISet = instbond(CouponRate, Settle, Maturity, 1);

instdisp(ISet)

%Table of instrument portfolio partially displayed:

Index Type CouponRate Settle Maturity Period Basis EndMonthRule ... Face

1 Bond [Cell] 01-Jan-2010 01-Jan-2011 1 0 1 ... 100

2 Bond [Cell] 01-Jan-2010 01-Jan-2012 1 0 1 ... 100

3 Bond [Cell] 01-Jan-2010 01-Jan-2013 1 0 1 ... 100

4 Bond [Cell] 01-Jan-2010 01-Jan-2014 1 0 1 ... 100

% Build the tree with the following data

VolDates = ['1-Jan-2011'; '1-Jan-2012'; '1-Jan-2013'; '1-Jan-2014'];

VolCurve = 0.01;

AlphaDates = '01-01-2014';

AlphaCurve = 0.1;

BKVolSpec = bkvolspec(RS.ValuationDate, VolDates, VolCurve,...

AlphaDates, AlphaCurve);

BKTimeSpec = bktimespec(RS.ValuationDate, VolDates, Compounding);

6-71

bkprice

BKT = bktree(BKVolSpec, RS, BKTimeSpec);

% Compute the price of the stepped coupon bonds

PBK = bkprice(BKT, ISet)

PBK = bkprice(BKT, ISet)

%Table of instrument portfolio partially displayed:

Index Type CouponRate Settle Maturity Period Basis EndMonthRule ... Face

1 Bond [Cell] 01-Jan-2010 01-Jan-2011 1 0 1 ... 100

2 Bond [Cell] 01-Jan-2010 01-Jan-2012 1 0 1 ... 100

3 Bond [Cell] 01-Jan-2010 01-Jan-2013 1 0 1 ... 100

4 Bond [Cell] 01-Jan-2010 01-Jan-2014 1 0 1 ... 100

PBK =

100.6763

100.7368

100.9266

101.0115

Price a portfolio of stepped callable bonds and stepped vanilla bonds
using the following data:

% The data for the interest rate term structure is as follows:

Rates = [0.035; 0.042147; 0.047345; 0.052707];

ValuationDate = 'Jan-1-2010';

StartDates = ValuationDate;

EndDates = {'Jan-1-2011'; 'Jan-1-2012'; 'Jan-1-2013'; 'Jan-1-2014'};

Compounding = 1;

%Create RateSpec

RS = intenvset('ValuationDate', ValuationDate, 'StartDates', StartDates,...

'EndDates', EndDates,'Rates', Rates, 'Compounding', Compounding);

6-72

bkprice

% Create an instrument portfolio of 3 stepped callable bonds and three

% stepped vanilla bonds

Settle = '01-Jan-2010';

Maturity = {'01-Jan-2012';'01-Jan-2013';'01-Jan-2014'};

CouponRate = {{'01-Jan-2011' .042;'01-Jan-2012' .05; '01-Jan-2013' .06; '01-Jan-2014' .07}};

OptSpec='call';

Strike=100;

ExerciseDates='01-Jan-2011'; %Callable in one year

% Bonds with embedded option

ISet = instoptembnd(CouponRate, Settle, Maturity, OptSpec, Strike,...

ExerciseDates, 'Period', 1);

% Vanilla bonds

ISet = instbond(ISet, CouponRate, Settle, Maturity, 1);

% Display the instrument portfolio

instdisp(ISet)

%Table of instrument portfolio partially displayed:

Index Type CouponRate Settle Maturity OptSpec Strike ExerciseDates ... AmericanOpt

1 OptEmBond [Cell] 01-Jan-2010 01-Jan-2012 call 100 01-Jan-2011 ... 0

2 OptEmBond [Cell] 01-Jan-2010 01-Jan-2013 call 100 01-Jan-2011 ... 0

3 OptEmBond [Cell] 01-Jan-2010 01-Jan-2014 call 100 01-Jan-2011 ... 0

Index Type CouponRate Settle Maturity Period Basis EndMonthRule ... Face

4 Bond [Cell] 01-Jan-2010 01-Jan-2012 1 0 1 ... 100

5 Bond [Cell] 01-Jan-2010 01-Jan-2013 1 0 1 ... 100

6 Bond [Cell] 01-Jan-2010 01-Jan-2014 1 0 1 ... 100

% Build the tree with the following data

VolDates = ['1-Jan-2011'; '1-Jan-2012'; '1-Jan-2013'; '1-Jan-2014'];

VolCurve = 0.01;

AlphaDates = '01-01-2014';

AlphaCurve = 0.1;

6-73

bkprice

BKVolSpec = bkvolspec(RS.ValuationDate, VolDates, VolCurve,...

AlphaDates, AlphaCurve);

BKTimeSpec = bktimespec(RS.ValuationDate, VolDates, Compounding);

BKT = bktree(BKVolSpec, RS, BKTimeSpec);

% The first three rows corresponds to the price of the stepped callable bonds

% and the last three rows corresponds to the price of the stepped vanilla bonds.

PBK = bkprice(BKT, ISet)

PBK =

100.6735

100.6763

100.6763

100.7368

100.9266

101.0115

Compute the price of a portfolio using the following data:

% The data for the interest rate term structure is as follows:

Rates = [0.035; 0.042147; 0.047345; 0.052707];

ValuationDate = 'Jan-1-2011';

StartDates = ValuationDate;

EndDates = {'Jan-1-2012'; 'Jan-1-2013'; 'Jan-1-2014'; 'Jan-1-2015'};

Compounding = 1;

% Create RateSpec

RS = intenvset('ValuationDate', ValuationDate, 'StartDates',...

StartDates, 'EndDates', EndDates,'Rates', Rates, 'Compounding', Compounding);

% Create an instrument portfolio with two range notes and a floating rate

% note with the following data:

6-74

bkprice

Spread = 200;

Settle = 'Jan-1-2011';

Maturity = 'Jan-1-2014';

% First Range Note:

RateSched(1).Dates = {'Jan-1-2012'; 'Jan-1-2013' ; 'Jan-1-2014'};

RateSched(1).Rates = [0.045 0.055; 0.0525 0.0675; 0.06 0.08];

% Second Range Note:

RateSched(2).Dates = {'Jan-1-2012'; 'Jan-1-2013' ; 'Jan-1-2014'};

RateSched(2).Rates = [0.048 0.059; 0.055 0.068 ; 0.07 0.09];

% Create InstSet

InstSet = instadd('RangeFloat', Spread, Settle, Maturity, RateSched);

% Add a floating-rate note

InstSet = instadd(InstSet, 'Float', Spread, Settle, Maturity);

% Display the portfolio instrument

instdisp(InstSet)

Index Type Spread Settle Maturity RateSched FloatReset Basis Principal EndMonthRule

1 RangeFloat 200 01-Jan-2011 01-Jan-2014 [Struct] 1 0 100 1

2 RangeFloat 200 01-Jan-2011 01-Jan-2014 [Struct] 1 0 100 1

Index Type Spread Settle Maturity FloatReset Basis Principal EndMonthRule

3 Float 200 01-Jan-2011 01-Jan-2014 1 0 100 1

% The data to build the tree is as follows:

VolDates = ['1-Jan-2012'; '1-Jan-2013'; '1-Jan-2014';'1-Jan-2015'];

VolCurve = 0.01;

AlphaDates = '01-01-2015';

AlphaCurve = 0.1;

BKVS = bkvolspec(RS.ValuationDate, VolDates, VolCurve,...

AlphaDates, AlphaCurve);

6-75

bkprice

BKTS = bktimespec(RS.ValuationDate, VolDates, Compounding);

BKT = bktree(BKVS, RS, BKTS);

% Price the portfolio

Price = bkprice(BKT, InstSet)

Price =

105.5147

101.4740

105.5147

See Also bksens | bktree | instadd | intenvprice | intenvsens

6-76

bksens

Purpose Instrument prices and sensitivities from Black-Karasinski interest-rate
tree

Syntax [Delta, Gamma, Vega, Price] = bksens(BKTree, InstSet,
Options)

Arguments

BKTree Interest-rate tree structure created by bktree.

InstSet Variable containing a collection of NINST instruments.
Instruments are categorized by type. Each type can have
different data fields. The stored data field is a row vector
or string for each instrument.

Options (Optional) Derivatives pricing options structure created
with derivset.

Description [Delta, Gamma, Vega, Price] = bksens(BKTree, InstSet,
Options) computes instrument sensitivities and prices for instruments
using an interest-rate tree created with the bktree function. NINST
instruments from a financial instrument variable, InstSet, are priced.
bksens handles instrument types: 'Bond', 'CashFlow', 'OptBond',
'OptEmBond', 'Fixed', 'Float', 'Cap', 'Floor', 'RangeFloat',
'Swap'. See instadd for information on instrument types.

Delta is an NINST-by-1 vector of deltas, representing the rate of change
of instrument prices with respect to changes in the interest rate. Delta
is computed by finite differences in calls to bktree. See bktree for
information on the observed yield curve.

Gamma is an NINST-by-1 vector of gammas, representing the rate of
change of instrument deltas with respect to the changes in the interest
rate. Gamma is computed by finite differences in calls to bktree.

Vega is an NINST-by-1 vector of vegas, representing the rate of change of

instrument prices with respect to the changes in the volatility  t T,() .

6-77

bksens

Vega is computed by finite differences in calls to bktree. See bkvolspec
for information on the volatility process.

Note All sensitivities are returned as dollar sensitivities. To find the
per-dollar sensitivities, divide by the respective instrument price.

Price is an NINST-by-1 vector of prices of each instrument. The prices
are computed by backward dynamic programming on the interest-rate
tree. If an instrument cannot be priced, NaN is returned.

Delta and Gamma are calculated based on yield shifts of 100 basis points.
Vega is calculated based on a 1% shift in the volatility process.

Examples Load the tree and instruments from a data file. Compute Delta and
Gamma for the cap and bond instruments contained in the instrument set.

load deriv.mat;

BKSubSet = instselect(BKInstSet,'Type', {'Bond', 'Cap'});

instdisp(BKSubSet)

%Table of instrument portfolio partially displayed:

Index Type CouponRate Settle Maturity Period ... Name...

1 Bond 0.03 01-Jan-2004 01-Jan-2007 1 ... 3% Bond

2 Bond 0.03 01-Jan-2004 01-Jan-2008 1 ... 3% Bond

Index Type Strike Settle Maturity CapReset ... Name ...

3 Cap 0.04 01-Jan-2004 01-Jan-2008 1 ... 4% Cap

[Delta, Gamma] = bksens(BKTree, BKSubSet)

Delta =

-285.7151

-365.7048

6-78

bksens

189.5319

Gamma =

1.0e+003 *

0.8456

1.4345

6.9999

See Also bkprice | bktree | bkvolspec | instadd

6-79

bktimespec

Purpose Specify time structure for Black-Karasinski tree

Syntax TimeSpec = bktimespec(ValuationDate, Maturity, Compounding)

Arguments

ValuationDate Scalar date marking the pricing date and first
observation in the tree. Specify as a serial date
number or date string.

Maturity Number of levels (depth) of the tree. A number
of levels (NLEVELS)-by-1 vector of dates marking
the cash flow dates of the tree. Cash flows with
these maturities fall on tree nodes. Maturity
should be in increasing order.

Compounding (Optional) Scalar value representing the rate at
which the input zero rates were compounded
when annualized. Default = -1 (continuous
compounding). This argument determines the
formula for the discount factors:

Compounding = 1, 2, 3, 4, 6, 12

Disc = (1 + Z/F)^(-T), where F is the
compounding frequency, Z is the zero rate, and
T is the time in periodic units; for example, T =
F is 1 year.

Compounding = 365

Disc = (1 + Z/F)^(-T), where F is the number
of days in the basis year and T is a number of
days elapsed computed by basis.

Compounding = -1

Disc = exp(-T*Z), where T is time in years.

6-80

bktimespec

Description TimeSpec = bktimespec(ValuationDate, Maturity, Compounding)
sets the number of levels and node times for an BK tree and determines
the mapping between dates and time for rate quoting.

TimeSpec is a structure specifying the time layout for bktree. The
state observation dates are [Settle; Maturity(1:end-1)]. Because a
forward rate is stored at the last observation, the tree can value cash
flows out to Maturity.

Examples Specify a four-period tree with annual nodes. Use annual compounding
to report rates.

ValuationDate = 'Jan-1-2004';
Maturity = ['12-31-2004'; '12-31-2005'; '12-31-2006';
'12-31-2007'];
Compounding = 1;
TimeSpec = bktimespec(ValuationDate, Maturity, Compounding)

TimeSpec =

FinObj: 'BKTimeSpec'
ValuationDate: 731947

Maturity: [4x1 double]
Compounding: 1

Basis: 0
EndMonthRule: 1

See Also bktree | bkvolspec | hwtree

6-81

bktree

Purpose Construct Black-Karasinski interest-rate tree

Syntax BKTree = bktree(VolSpec, RateSpec, TimeSpec)
BKTree = bktree(VolSpec, RateSpec, TimeSpec, Name,Value)

Description BKTree = bktree(VolSpec, RateSpec, TimeSpec) creates a structure
containing time and interest-rate information on a recombining tree.

BKTree = bktree(VolSpec, RateSpec, TimeSpec, Name,Value)
creates a structure containing time and interest-rate information on
a recombining tree with additional options specified by one or more
Name,Value pair arguments.

Input
Arguments

VolSpec

Volatility process specification. See bkvolspec for information on the
volatility process.

RateSpec

Interest-rate specification for the initial rate curve. See intenvset for
information on declaring an interest-rate variable.

TimeSpec

Tree time layout specification. Defines the observation dates of the BK
tree and the compounding rule for date to time mapping and price-yield
formulas. See bktimespec for information on the tree structure.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments,
where Name is the argument name and Value is the corresponding
value. Name must appear inside single quotes (' '). You can
specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

Method

6-82

bktree

String specifying the Hull-White method upon which the tree-node
connectivity algorithm is based. Possible values are HW1996 and HW2000.

Note bktree supports two tree-node connectivity algorithms. HW1996
is based on the original paper published in the Journal of Derivatives,
and HW2000 is the general version of the algorithm, as specified in the
paper published in August 2000.

Default: HW1996

Output
Arguments

BKTree

Structure containing time and interest rate information of a trinomial
recombining tree.

Examples Using the data provided, create a BK volatility specification (VolSpec),
rate specification (RateSpec), and tree time layout specification
(TimeSpec). Then use these specifications to create a BK tree using
bktree.

Compounding = -1;

ValuationDate = '01-01-2004';

StartDate = ValuationDate;

VolDates = ['12-31-2004'; '12-31-2005'; '12-31-2006';

'12-31-2007'];

VolCurve = 0.01;

AlphaDates = '01-01-2008';

AlphaCurve = 0.1;

Rates = [0.0275; 0.0312; 0.0363; 0.0415];

BKVolSpec = bkvolspec(ValuationDate, VolDates, VolCurve,...

AlphaDates, AlphaCurve);

RateSpec = intenvset('Compounding', Compounding,...

'ValuationDate', ValuationDate,...

6-83

bktree

'StartDates', ValuationDate,...

'EndDates', VolDates,...

'Rates', Rates);

BKTimeSpec = bktimespec(ValuationDate, VolDates, Compounding);

BKTree = bktree(BKVolSpec, RateSpec, BKTimeSpec)

BKTree =

FinObj: 'BKFwdTree'

VolSpec: [1x1 struct]

TimeSpec: [1x1 struct]

RateSpec: [1x1 struct]

tObs: [0 0.9973 1.9973 2.9973]

dObs: [731947 732312 732677 733042]

CFlowT: {[4x1 double] [3x1 double] [2x1 double] [3.9973]}

Probs: {[3x1 double] [3x3 double] [3x5 double]}

Connect: {[2] [2 3 4] [2 2 3 4 4]}

FwdTree: {1x4 cell}

Use treeviewer to observe the tree you have created.

treeviewer(BKTree)

6-84

bktree

Using the data provided, create a Hull-White volatility specification
(VolSpec), rate specification (RateSpec), and tree time layout
specification (TimeSpec). Then use these specifications to create a
Hull-White tree using hwtree.

Compounding = -1;

ValuationDate = '01-01-2004';

StartDate = ValuationDate;

VolDates = ['12-31-2004'; '12-31-2005'; '12-31-2006';

'12-31-2007'];

VolCurve = 0.01;

AlphaDates = '01-01-2008';

AlphaCurve = 0.1;

Rates = [0.0275; 0.0312; 0.0363; 0.0415];

HWVolSpec = hwvolspec(ValuationDate, VolDates, VolCurve,...

AlphaDates, AlphaCurve);

6-85

bktree

RateSpec = intenvset('Compounding', Compounding,...

'ValuationDate', ValuationDate,...

'StartDates', ValuationDate,...

'EndDates', VolDates,...

'Rates', Rates);

HWTimeSpec = hwtimespec(ValuationDate, VolDates, Compounding);

HWTree = hwtree(HWVolSpec, RateSpec, HWTimeSpec)

HWTree =

FinObj: 'HWFwdTree'

VolSpec: [1x1 struct]

TimeSpec: [1x1 struct]

RateSpec: [1x1 struct]

tObs: [0 0.9973 1.9973 2.9973]

dObs: [731947 732312 732677 733042]

CFlowT: {[4x1 double] [3x1 double] [2x1 double] [3.9973]}

Probs: {[3x1 double] [3x3 double] [3x5 double]}

Connect: {[2] [2 3 4] [2 2 3 4 4]}

FwdTree: {1x4 cell}

Use treeviewer to observe the tree you have created.

treeviewer(HWTree)

6-86

bktree

References Hull, J., and A. White, "Using Hull-White Interest Rate Trees", Journal
of Derivatives, 1996.

Hull, J., and A. White, "The General Hull-White Model and Super
Calibration", August 2000.

See Also | bkprice | bktimespec | bkvolspec | intenvset |

Tutorials • “Calibrating the Hull-White Model Using Market Data” on page 2-76

6-87

bkvolspec

Purpose Specify Black-Karasinski interest-rate volatility process

Syntax Volspec = bkvolspec(ValuationDate, VolDates, VolCurve,
AlphaDates, AlphaCurve, InterpMethod)

Arguments

ValuationDate Scalar value representing the observation date
of the investment horizon.

VolDates Number of points (NPOINTS)-by-1 vector of yield
volatility end dates.

VolCurve NPOINTS-by-1 vector of annualized yield
volatility values in decimal form.

AlphaDates NPOINTS-by-1 vector of mean reversion end
dates.

AlphaCurve NPOINTS-by-1 vector of positive mean reversion
values in decimal form.

InterpMethod (Optional) Interpolation method. Default is
'linear'. See interp1 for more information.

Description Volspec = bkvolspec(ValuationDate, VolDates, VolCurve,
AlphaDates, AlphaCurve, InterpMethod) creates a structure
specifying the volatility for bktree.

Examples Using the data provided, create a Black-Karasinski volatility
specification (VolSpec).

ValuationDate = '01-01-2004';

StartDate = ValuationDate;

VolDates = ['12-31-2004'; '12-31-2005'; '12-31-2006';

'12-31-2007'];

VolCurve = 0.01;

AlphaDates = '01-01-2008';

6-88

bkvolspec

AlphaCurve = 0.1;

BKVolSpec = bkvolspec(ValuationDate, VolDates, VolCurve,...

AlphaDates, AlphaCurve)

BKVolSpec =

FinObj: 'BKVolSpec'

ValuationDate: 731947

VolDates: [4x1 double]

VolCurve: [4x1 double]

AlphaCurve: 0.1000

AlphaDates: 733408

VolInterpMethod: 'linear'

See Also bktree | interp1

6-89

bondbybdt

Purpose Price bond from Black-Derman-Toy interest-rate tree

Syntax [Price, PriceTree] = bondbybdt(BDTTree, CouponRate, Settle,
Maturity)
[Price, PriceTree] = bondbybdt(BDTTree, CouponRate, Settle,
Maturity, Period, Basis, EndMonthRule, IssueDate,
FirstCouponDate, LastCouponDate, StartDate, Face,
Options)
[Price, PriceTree] = bondbybdt(BDTTree, CouponRate, Settle,
Maturity,Name,Value)

Input
Arguments

BDTTree Interest-rate tree structure created by
bdttree.

CouponRate Decimal annual rate. CouponRate is a
NINST-by-1 vector or NINST-by-1 cell array of
decimal annual rates, or decimal annual rate
schedules. For the latter case of a variable
coupon schedule, each element of the cell
array is a NumDates-by-2 cell array, where the
first column is dates and the second column
is its associated rate. The date indicates the
last day that the coupon rate is valid.

Settle Settlement date. A vector of serial date
numbers or date strings. Settle must be
earlier than Maturity.

Maturity Maturity date. A vector of serial date
numbers or date strings.

The Settle date for every bond is set to the ValuationDate of the BDT
tree. The bond argument Settle is ignored.

6-90

bondbybdt

Ordered Input or Name-Value Pair Arguments

Enter the following optional inputs using an ordered syntax or as
name-value pair arguments. You cannot mix ordered syntax with
name-value pair arguments.

Period

Coupons per year of the bond. A vector of integers. Values are 1, 2,
3, 4, 6, and 12.

Default: 2

Basis

Day-count basis of the instrument. A vector of integers.

• 0 = actual/actual

• 1 = 30/360 (SIA)

• 2 = actual/360

• 3 = actual/365

• 4 = 30/360 (PSA)

• 5 = 30/360 (ISDA)

• 6 = 30/360 (European)

• 7 = actual/365 (Japanese)

• 8 = actual/actual (ISMA)

• 9 = actual/360 (ISMA)

• 10 = actual/365 (ISMA)

• 11 = 30/360E (ISMA)

• 12 = actual/365 (ISDA)

• 13 = BUS/252
For more information, see basis.

6-91

bondbybdt

Default: 0 (actual/actual)

EndMonthRule

End-of-month rule. A NINST-by-1 vector. This rule applies only when
Maturity is an end-of-month date for a month having 30 or fewer days.

• 0 = Ignore rule, meaning that a bond coupon payment date is always
the same numerical day of the month.

• 1 = Set rule on, meaning that a bond coupon payment date is always
the last actual day of the month.

Default: 1

IssueDate

Date when a bond was issued.

FirstCouponDateDate

Date when a bond makes its first coupon payment; used when bond
has an irregular first coupon period. When FirstCouponDate and
LastCouponDate are both specified, FirstCouponDate takes precedence
in determining the coupon payment structure. If you do not specify a
FirstCouponDate, the cash flow payment dates are determined from
other inputs.

LastCouponDateDate

Last coupon date of a bond before the maturity date; used when bond
has an irregular last coupon period. In the absence of a specified
FirstCouponDate, a specified LastCouponDate determines the coupon
structure of the bond. The coupon structure of a bond is truncated at the
LastCouponDate, regardless of where it falls, and is followed only by the
bond’s maturity cash flow date. If you do not specify a LastCouponDate,
the cash flow payment dates are determined from other inputs.

StartDate

6-92

bondbybdt

Date when a bond actually starts (the date from which a bond cash flow
is considered). To make an instrument forward-starting, specify this
date as a future date. If you do not specify StartDate, the effective
start date is the Settle date.

Face

Face or par value. Face is a NINST-by-1 vector or NINST-by-1 cell array
of face values, or face value schedules. For the latter case, each element
of the cell array is a NumDates-by-2 cell array, where the first column
is dates and the second column is its associated face value. The date
indicates the last day that the face value is valid.

Default: 100

Options

Derivatives pricing options structure created with derivset.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments,
where Name is the argument name and Value is the corresponding
value. Name must appear inside single quotes (' '). You can
specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

AdjustCashFlowsBasis

Adjust the cash flows based on the actual period day count. NINST-by-1
of logicals.

Default: false

BusinessDayConvention

Require payment dates to be business dates. NINST-by-1 cell array with
possible choices of business day convention:

• actual

6-93

bondbybdt

• follow

• modifiedfollow

• previous

• modifiedprevious

Default: actual

Holidays

Holidays used for business day convention. NHOLIDAYS-by-1 of MATLAB
date numbers.

Default: If no dates are specified, holidays.m is used.

Description [Price, PriceTree] = bondbybdt(BDTTree, CouponRate, Settle,
Maturity) computes the price of a bond from a BDT interest-rate tree.

[Price, PriceTree] = bondbybdt(BDTTree, CouponRate,
Settle,Maturity, Period, Basis, EndMonthRule,
IssueDate,FirstCouponDate, LastCouponDate, StartDate,
Face,Options) computes the price of a bond from a BDT interest-rate
tree using optional input arguments.

[Price, PriceTree] = bondbybdt(BDTTree, CouponRate,
Settle,Maturity,Name,Value) computes the price of a bond from a
BDT interest-rate tree with additional options specified by one or more
Name,Value pair arguments.

Price is a number of instruments (NINST)-by-1 matrix of expected
prices at time 0.

PriceTree is a MATLAB structure of trees containing vectors of
instrument prices and accrued interest, and a vector of observation
times for each node. Within PriceTree:

• PriceTree.PTree contains the clean prices.

• PriceTree.AITree contains the accrued interest.

6-94

bondbybdt

• PriceTree.tObs contains the observation times.

bondbybdt computes prices of vanilla bonds, stepped coupon bonds, and
amortizing bonds with no market purchase option and no call provisions.

Definitions Vanilla Bond

A vanilla coupon bond is a security representing an obligation to repay
a borrowed amount at a designated time and to make periodic interest
payments until that time. The issuer of a bond makes the periodic
interest payments until the bond matures. At maturity, the issuer pays
to the holder of the bond the principal amount owed (face value) and
the last interest payment.

Stepped Coupon Bond

A step-up and step-down bond is a debt security with a predetermined
coupon structure over time. With these instruments, coupons increase
(step up) or decrease (step down) at specific times during the life of
the bond.

Bond with an Amortization Schedule

An amortized bond is treated as an asset, with the discount amount
being amortized to interest expense over the life of the bond.

Examples Price a Bond Using a BDT Tree

Price a 10% bond using a BDT interest-rate tree.

Load deriv.mat, which provides BDTTree. The BDTTree structure
contains the time and interest-rate information needed to price the
bond.

load deriv.mat;

Define the bond using the required arguments. Other arguments use
defaults.

CouponRate = 0.10;
Settle = '01-Jan-2000';

6-95

bondbybdt

Maturity = '01-Jan-2003';
Period = 1;

Use bondbybdt to compute the price of the bond.

Price = bondbybdt(BDTTree, CouponRate, Settle, Maturity, Period)

Price =

95.5030

Price a Stepped Coupon Bond

Price single stepped coupon bonds using market data.

Define the interest-rate term structure.

Rates = [0.035; 0.042147; 0.047345; 0.052707];

ValuationDate = 'Jan-1-2010';

StartDates = ValuationDate;

EndDates = {'Jan-1-2011'; 'Jan-1-2012'; 'Jan-1-2013'; 'Jan-1-2014'};

Compounding = 1;

Create the RateSpec.

RS = intenvset('ValuationDate', ValuationDate, 'StartDates', StartDates, 'EndDates',...

EndDates, 'Rates', Rates, 'Compounding', Compounding)

RS =

FinObj: 'RateSpec'
Compounding: 1

Disc: [4x1 double]
Rates: [4x1 double]

EndTimes: [4x1 double]
StartTimes: [4x1 double]

EndDates: [4x1 double]
StartDates: 734139

6-96

bondbybdt

ValuationDate: 734139
Basis: 0

EndMonthRule: 1

Create the stepped bond instrument.

Settle = '01-Jan-2010';

Maturity = {'01-Jan-2011';'01-Jan-2012';'01-Jan-2013';'01-Jan-2014'};

CouponRate = {{'01-Jan-2012' .0425;'01-Jan-2014' .0750}};

Period = 1;

Build the BDT tree and assume the volatility to be 10% using the
following market data:

Sigma = 0.1;

BDTTimeSpec = bdttimespec(ValuationDate, EndDates);

BDTVolSpec = bdtvolspec(ValuationDate, EndDates, Sigma*ones(1, length(EndDates))');

BDTT = bdttree(BDTVolSpec, RS, BDTTimeSpec)

Compute the price of the stepped coupon bonds.

PBDT= bondbybdt(BDTT, CouponRate, Settle,Maturity , Period)

PBDT =

100.7246
100.0945
101.5900
102.0820

Price Two Bonds with Amortization Schedules

Price two bonds with amortization schedules using the Face input
argument to define the schedule.

Define the interest-rate term structure.

Rates = 0.035;
ValuationDate = '1-Nov-2011';

6-97

bondbybdt

StartDates = ValuationDate;
EndDates = '1-Nov-2017';
Compounding = 1;

Create the RateSpec.

RateSpec = intenvset('ValuationDate', ValuationDate,'StartDates', StartDates,...

'EndDates', EndDates,'Rates', Rates, 'Compounding', Compounding);

RateSpec =

FinObj: 'RateSpec'
Compounding: 1

Disc: 0.8135
Rates: 0.0350

EndTimes: 6
StartTimes: 0

EndDates: 737000
StartDates: 734808

ValuationDate: 734808
Basis: 0

EndMonthRule: 1

Create the bond instrument. The bonds have a coupon rate of 4% and
3.85%, a period of one year, and mature on 1-Nov-2017.

CouponRate = [0.04; 0.0385];
Settle ='1-Nov-2011';
Maturity = '1-Nov-2017';
Period = 1;

Define the amortizing schedule.

Face = {{'1-Nov-2015' 100;'1-Nov-2016' 85;'1-Nov-2017' 70};
{'1-Nov-2015' 100;'1-Nov-2016' 90;'1-Nov-2017' 80}};

Build the BDT tree and assume the volatility to be 10%.

MatDates = {'1-Nov-2012'; '1-Nov-2013';'1-Nov-2014';'1-Nov-2015';'1-Nov-2016';'1-Nov-2017'};

6-98

bondbybdt

BDTTimeSpec = bdttimespec(ValuationDate, MatDates);

Volatility = 0.1;

BDTVolSpec = bdtvolspec(ValuationDate, MatDates, Volatility*ones(1,length(MatDates))');

BDTT = bdttree(BDTVolSpec, RateSpec, BDTTimeSpec);

Compute the price of the amortizing bonds.

Price = bondbybdt(BDTT, CouponRate, Settle, Maturity, 'Period',Period,...

'Face', Face)

Price =

102.4791
101.7786

See Also bdttree | bdtprice | cfamounts | instbond

6-99

bondbybk

Purpose Price bond from Black-Karasinski interest-rate tree

Syntax [Price, PriceTree] = bondbybk(BKTree, CouponRate,
Settle, Maturity)
[Price, PriceTree] = bondbybk(BKTree, CouponRate,
Settle, Maturity, Period, Basis, EndMonthRule, IssueDate,
FirstCouponDate, LastCouponDate, StartDate, Face,
Options)
[Price, PriceTree] = bondbybk(BKTree, CouponRate,
Settle, Maturity, Name,Value)

Input
Arguments

BKTree Forward rate tree structure created by
bktree.

CouponRate Decimal annual rate. CouponRate is a
NINST-by-1 vector or NINST-by-1 cell array of
decimal annual rates, or decimal annual rate
schedules. For the latter case of a variable
coupon schedule, each element of the cell
array is a NumDates-by-2 cell array, where the
first column is dates and the second column is
its associated rate. The date indicates the last
day that the coupon rate is valid.

Settle Settlement date. A vector of serial date
numbers or date strings. Settle must be
earlier than Maturity.

Maturity Maturity date. A vector of serial date numbers
or date strings.

The Settle date for every bond is set to the ValuationDate of the BK
tree. The bond argument Settle is ignored.

6-100

bondbybk

Ordered Input or Name-Value Pair Arguments

Enter the following optional inputs using an ordered syntax or as
name-value pair arguments. You cannot mix ordered syntax with
name-value pair arguments.

Period

Coupons per year of the bond. A vector of integers. Values are 1, 2,
3, 4, 6, and 12.

Default: 2

Basis

Day-count basis of the instrument. A vector of integers.

• 0 = actual/actual

• 1 = 30/360 (SIA)

• 2 = actual/360

• 3 = actual/365

• 4 = 30/360 (PSA)

• 5 = 30/360 (ISDA)

• 6 = 30/360 (European)

• 7 = actual/365 (Japanese)

• 8 = actual/actual (ISMA)

• 9 = actual/360 (ISMA)

• 10 = actual/365 (ISMA)

• 11 = 30/360E (ISMA)

• 12 = actual/365 (ISDA)

• 13 = BUS/252
For more information, see basis.

6-101

bondbybk

Default: 0 (actual/actual)

EndMonthRule

End-of-month rule. A NINST-by-1 vector. This rule applies only when
Maturity is an end-of-month date for a month having 30 or fewer days.

• 0 = Ignore rule, meaning that a bond coupon payment date is always
the same numerical day of the month.

• 1 = Set rule on, meaning that a bond coupon payment date is always
the last actual day of the month.

Default: 1

IssueDate

Date when a bond was issued.

FirstCouponDateDate

Date when a bond makes its first coupon payment; used when bond
has an irregular first coupon period. When FirstCouponDate and
LastCouponDate are both specified, FirstCouponDate takes precedence
in determining the coupon payment structure. If you do not specify a
FirstCouponDate, the cash flow payment dates are determined from
other inputs.

LastCouponDateDate

Last coupon date of a bond before the maturity date; used when bond
has an irregular last coupon period. In the absence of a specified
FirstCouponDate, a specified LastCouponDate determines the coupon
structure of the bond. The coupon structure of a bond is truncated at the
LastCouponDate, regardless of where it falls, and is followed only by the
bond’s maturity cash flow date. If you do not specify a LastCouponDate,
the cash flow payment dates are determined from other inputs.

StartDate

6-102

bondbybk

Date when a bond actually starts (the date from which a bond cash flow
is considered). To make an instrument forward-starting, specify this
date as a future date. If you do not specify StartDate, the effective
start date is the Settle date.

Face

Face or par value. Face is a NINST-by-1 vector or NINST-by-1 cell array
of face values, or face value schedules. For the latter case, each element
of the cell array is a NumDates-by-2 cell array, where the first column
is dates and the second column is its associated face value. The date
indicates the last day that the face value is valid.

Default: 100

Options

Derivatives pricing options structure created with derivset.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments,
where Name is the argument name and Value is the corresponding
value. Name must appear inside single quotes (' '). You can
specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

AdjustCashFlowsBasis

Adjust the cash flows based on the actual period day count. NINST-by-1
of logicals.

Default: false

BusinessDayConvention

Require payment dates to be business dates. NINST-by-1 cell array with
possible choices of business day convention:

• actual

6-103

bondbybk

• follow

• modifiedfollow

• previous

• modifiedprevious

Default: actual

Holidays

Holidays used for business day convention. NHOLIDAYS-by-1 of MATLAB
date numbers.

Default: If no dates are specified, holidays.m is used.

Description [Price, PriceTree] = bondbybk(BKTree, CouponRate, Settle,
Maturity) computes the price of a bond from a Black-Karasinski
interest-rate tree.

[Price, PriceTree] = bondbybk(BKTree, CouponRate,
Settle, Maturity, Period, Basis, EndMonthRule, IssueDate,
FirstCouponDate, LastCouponDate, StartDate, Face,Options)
computes the price of a bond from a Black-Karasinski interest-rate tree
using optional input arguments.

[Price, PriceTree] = bondbybk(BKTree, CouponRate, Settle,
Maturity, Name,Value) computes the price of a bond from a
Black-Karasinski interest-rate tree with additional options specified by
one or more Name,Value pair arguments.

Price is a number of instruments (NINST)-by-1 matrix of expected
prices at time 0.

PriceTree is a structure of trees containing vectors of instrument
prices and accrued interest, and a vector of observation times for each
node. Within PriceTree:

• PriceTree.PTree contains the clean prices.

6-104

bondbybk

• PriceTree.AITree contains the accrued interest.

• PriceTree.tObs contains the observation times.

bondbybk computes prices of vanilla bonds, stepped coupon bonds, and
amortizing bonds with no market purchase option and no call provisions.

Definitions Vanilla Bond

A vanilla coupon bond is a security representing an obligation to repay
a borrowed amount at a designated time and to make periodic interest
payments until that time. The issuer of a bond makes the periodic
interest payments until the bond matures. At maturity, the issuer pays
to the holder of the bond the principal amount owed (face value) and
the last interest payment.

Stepped Coupon Bond

A step-up and step-down bond is a debt security with a predetermined
coupon structure over time. With these instruments, coupons increase
(step up) or decrease (step down) at specific times during the life of
the bond.

Bond with an Amortization Schedule

An amortized bond is treated as an asset, with the discount amount
being amortized to interest expense over the life of the bond.

Examples Price a Bond Using a BK Tree

Price a 4% bond using a Black-Karasinski interest-rate tree.

Load deriv.mat, which provides BKTree. The BKTree structure contains
the time and interest-rate information needed to price the bond.

load deriv.mat;

Define the bond using the required arguments. Other arguments use
defaults.

CouponRate = 0.04;

6-105

bondbybk

Settle = '01-Jan-2004';
Maturity = '31-Dec-2008';

Use bondbybk to compute the price of the bond.

Price = bondbybk(BKTree, CouponRate, Settle, Maturity)
Warning: Not all cash flows are aligned with the tree. Result will
be approximated.

Price =

98.0300

Price a Stepped Coupon Bond

Price single stepped coupon bonds using market data.

Define the interest-rate term structure.

Rates = [0.035; 0.042147; 0.047345; 0.052707];
ValuationDate = 'Jan-1-2010';
StartDates = ValuationDate;
EndDates = {'Jan-1-2011'; 'Jan-1-2012';...
'Jan-1-2013'; 'Jan-1-2014'};
Compounding = 1;

Create the RateSpec.

RS = intenvset('ValuationDate', ValuationDate, 'StartDates', StartDates,...

'EndDates', EndDates,'Rates', Rates, 'Compounding', Compounding)

RS =

FinObj: 'RateSpec'
Compounding: 1

Disc: [4x1 double]
Rates: [4x1 double]

EndTimes: [4x1 double]

6-106

bondbybk

StartTimes: [4x1 double]
EndDates: [4x1 double]

StartDates: 734139
ValuationDate: 734139

Basis: 0
EndMonthRule: 1

Create the stepped bond instrument.

Settle = '01-Jan-2010';

Maturity = {'01-Jan-2011';'01-Jan-2012';'01-Jan-2013';'01-Jan-2014'};

CouponRate = {{'01-Jan-2012' .0425;'01-Jan-2014' .0750}};

Period = 1;

Build the BK tree using the following market data:

VolDates = ['1-Jan-2011'; '1-Jan-2012'; '1-Jan-2013'; '1-Jan-2014'];
VolCurve = 0.01;
AlphaDates = '01-01-2014';
AlphaCurve = 0.1;

BKVolSpec = bkvolspec(RS.ValuationDate, VolDates, VolCurve,...
AlphaDates, AlphaCurve);
BKTimeSpec = bktimespec(RS.ValuationDate, VolDates, Compounding);
BKT = bktree(BKVolSpec, RS, BKTimeSpec);

Compute the price of the stepped coupon bonds.

PBK= bondbybk(BKT, CouponRate, Settle,Maturity , Period)

PBK =

100.7246
100.0945
101.5900
102.0820

6-107

bondbybk

Price a Bond with an Amortization Schedule

Price a bond with an amortization schedule using the Face input
argument to define the schedule.

Define the interest-rate term structure.

Rates = 0.065;
ValuationDate = '1-Jan-2011';
StartDates = ValuationDate;
EndDates= '1-Jan-2017';
Compounding = 1;

Create the RateSpec.

RateSpec = intenvset('ValuationDate', ValuationDate,'StartDates', StartDates,...

'EndDates', EndDates,'Rates', Rates, 'Compounding', Compounding)

RateSpec =

FinObj: 'RateSpec'
Compounding: 1

Disc: 0.6853
Rates: 0.0650

EndTimes: 6
StartTimes: 0

EndDates: 736696
StartDates: 734504

ValuationDate: 734504
Basis: 0

EndMonthRule: 1

Create the bond instrument. The bond has a coupon rate of 7%, a period
of one year, and matures on 1-Jan-2017.

CouponRate = 0.07;
Settle ='1-Jan-2011';
Maturity = '1-Jan-2017';
Period = 1;

6-108

bondbybk

Face = {{'1-Jan-2015' 100;'1-Jan-2016' 90;'1-Jan-2017' 80}};

Build the BK tree with the following market data:

VolDates = ['1-Jan-2012'; '1-Jan-2013';...

'1-Jan-2014';'1-Jan-2015';'1-Jan-2016';'1-Jan-2017'];

VolCurve = 0.01;

AlphaDates = '01-01-2017';

AlphaCurve = 0.1;

BKVolSpec = bkvolspec(RateSpec.ValuationDate, VolDates, VolCurve,...

AlphaDates, AlphaCurve);

BKTimeSpec = bktimespec(RateSpec.ValuationDate, VolDates, Compounding);

BKT = bktree(BKVolSpec, RateSpec, BKTimeSpec);

Compute the price of the amortizing bond.

Price = bondbybk(BKT, CouponRate, Settle, Maturity, 'Period', Period,.
'Face', Face)

Price =

102.3155

Compare the results with price of a vanilla bond.

PriceVanilla = bondbybk(BKT, CouponRate, Settle, Maturity, Period)

PriceVanilla =

102.4205

See Also bkprice | bktree | cfamounts | hwprice | hwtree | instbond

6-109

bondbyhjm

Purpose Price bond from Heath-Jarrow-Morton interest-rate tree

Syntax [Price, PriceTree] = bondbyhjm(HJMTree, CouponRate, Settle,
Maturity)
[Price, PriceTree] = bondbyhjm(HJMTree, CouponRate, Settle,
Maturity, Period, Basis, EndMonthRule, IssueDate,
FirstCouponDate, LastCouponDate, StartDate, Face,
Options)
[Price, PriceTree] = bondbyhjm(HJMTree, CouponRate,
Settle, Maturity, Name,Value)

Input
Arguments

HJMTree Forward rate tree structure created by
hjmtree.

CouponRate Decimal annual rate. CouponRate is a
NINST-by-1 vector or NINST-by-1 cell array of
decimal annual rates, or decimal annual rate
schedules. For the latter case of a variable
coupon schedule, each element of the cell
array is a NumDates-by-2 cell array, where the
first column is dates and the second column
is its associated rate. The date indicates the
last day that the coupon rate is valid.

Settle Settlement date. A vector of serial date
numbers or date strings. Settle must be
earlier than Maturity.

Maturity Maturity date. A vector of serial date
numbers or date strings.

The Settle date for every bond is set to the ValuationDate of the HJM
tree. The bond argument Settle is ignored.

6-110

bondbyhjm

Ordered Input or Name-Value Pair Arguments

Enter the following optional inputs using an ordered syntax or as
name-value pair arguments. You cannot mix ordered syntax with
name-value pair arguments.

Period

Coupons per year of the bond. A vector of integers. Values are 1, 2,
3, 4, 6, and 12.

Default: 2

Basis

Day-count basis of the instrument. A vector of integers.

• 0 = actual/actual

• 1 = 30/360 (SIA)

• 2 = actual/360

• 3 = actual/365

• 4 = 30/360 (PSA)

• 5 = 30/360 (ISDA)

• 6 = 30/360 (European)

• 7 = actual/365 (Japanese)

• 8 = actual/actual (ISMA)

• 9 = actual/360 (ISMA)

• 10 = actual/365 (ISMA)

• 11 = 30/360E (ISMA)

• 12 = actual/365 (ISDA)

• 13 = BUS/252
For more information, see basis.

6-111

bondbyhjm

Default: 0 (actual/actual)

EndMonthRule

End-of-month rule. A NINST-by-1 vector. This rule applies only when
Maturity is an end-of-month date for a month having 30 or fewer days.

• 0 = Ignore rule, meaning that a bond coupon payment date is always
the same numerical day of the month.

• 1 = Set rule on, meaning that a bond coupon payment date is always
the last actual day of the month.

Default: 1

IssueDate

Date when a bond was issued.

FirstCouponDateDate

Date when a bond makes its first coupon payment; used when bond
has an irregular first coupon period. When FirstCouponDate and
LastCouponDate are both specified, FirstCouponDate takes precedence
in determining the coupon payment structure. If you do not specify a
FirstCouponDate, the cash flow payment dates are determined from
other inputs.

LastCouponDateDate

Last coupon date of a bond before the maturity date; used when bond
has an irregular last coupon period. In the absence of a specified
FirstCouponDate, a specified LastCouponDate determines the coupon
structure of the bond. The coupon structure of a bond is truncated at the
LastCouponDate, regardless of where it falls, and is followed only by the
bond’s maturity cash flow date. If you do not specify a LastCouponDate,
the cash flow payment dates are determined from other inputs.

StartDate

6-112

bondbyhjm

Date when a bond actually starts (the date from which a bond cash flow
is considered). To make an instrument forward-starting, specify this
date as a future date. If you do not specify StartDate, the effective
start date is the Settle date.

Face

Face or par value. Face is a NINST-by-1 vector or NINST-by-1 cell array
of face values, or face value schedules. For the latter case, each element
of the cell array is a NumDates-by-2 cell array, where the first column
is dates and the second column is its associated face value. The date
indicates the last day that the face value is valid.

Default: 100

Options

Derivatives pricing options structure created with derivset.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments,
where Name is the argument name and Value is the corresponding
value. Name must appear inside single quotes (' '). You can
specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

AdjustCashFlowsBasis

Adjust the cash flows based on the actual period day count. NINST-by-1
of logicals.

Default: false

BusinessDayConvention

Require payment dates to be business dates. NINST-by-1 cell array with
possible choices of business day convention:

• actual

6-113

bondbyhjm

• follow

• modifiedfollow

• previous

• modifiedprevious

Default: actual

Holidays

Holidays used for business day convention. NHOLIDAYS-by-1 of MATLAB
date numbers.

Default: If no dates are specified, holidays.m is used.

Description [Price, PriceTree] = bondbyhjm(HJMTree, CouponRate, Settle,
Maturity) computes the price of a bond from an HJM forward-rate tree.

[Price, PriceTree] = bondbyhjm(HJMTree, CouponRate,
Settle,Maturity, Period, Basis, EndMonthRule,
IssueDate,FirstCouponDate, LastCouponDate, StartDate,
Face,Options) computes the price of a bond from an HJM forward-rate
tree with optional input arguments.

[Price, PriceTree] = bondbyhjm(HJMTree, CouponRate,Settle,
Maturity, Name,Value) computes the price of a bond from an HJM
forward-rate tree with additional options specified by one or more
Name,Value pair arguments.

Price is a number of instruments (NINST)-by-1 matrix of expected
prices at time 0.

PriceTree is a structure of trees containing vectors of instrument
prices and accrued interest, and a vector of observation times for each
node. Within PriceTree:

• PriceTree.PBush contains the clean prices.

• PriceTree.AIBush contains the accrued interest.

6-114

bondbyhjm

• PriceTree.tObs contains the observation times.

bondbyhjm computes prices of vanilla bonds, stepped coupon bonds, and
amortizing bonds with no market purchase option and no call provisions.

Definitions Vanilla Bond

A vanilla coupon bond is a security representing an obligation to repay
a borrowed amount at a designated time and to make periodic interest
payments until that time. The issuer of a bond makes the periodic
interest payments until the bond matures. At maturity, the issuer pays
to the holder of the bond the principal amount owed (face value) and
the last interest payment.

Stepped Coupon Bond

A step-up and step-down bond is a debt security with a predetermined
coupon structure over time. With these instruments, coupons increase
(step up) or decrease (step down) at specific times during the life of
the bond.

Bond with an Amortization Schedule

An amortized bond is treated as an asset, with the discount amount
being amortized to interest expense over the life of the bond.

Examples Price a Bond Using an HJM Tree

Price a 4% bond using an HJM interest-rate tree.

Load deriv.mat, which provides HJMTree. The HJMTree structure
contains the time and interest-rate information needed to price the
bond.

load deriv.mat;

Define the bond using the required arguments. Other arguments use
defaults.

CouponRate = 0.04;
Settle = '01-Jan-2000';

6-115

bondbyhjm

Maturity = '01-Jan-2004';

Use bondbyhjm to compute the price of the bond.

Price = bondbyhjm(HJMTree, CouponRate, Settle, Maturity)
Warning: Not all cash flows are aligned with the tree. Result will
be approximated.

Price =

97.5280

Price a Stepped Coupon Bond

Price single stepped coupon bonds using market data.

Define the interest-rate term structure.

Rates = [0.035; 0.042147; 0.047345; 0.052707];
ValuationDate = 'Jan-1-2010';
StartDates = ValuationDate;
EndDates = {'Jan-1-2011'; 'Jan-1-2012'; 'Jan-1-2013'; 'Jan-1-2014'};
Compounding = 1;

Create the RateSpec.

RS = intenvset('ValuationDate', ValuationDate, 'StartDates', StartDates,...

'EndDates', EndDates,'Rates', Rates, 'Compounding', Compounding);

RS =

FinObj: 'RateSpec'
Compounding: 1

Disc: [4x1 double]
Rates: [4x1 double]

EndTimes: [4x1 double]
StartTimes: [4x1 double]

EndDates: [4x1 double]
StartDates: 734139

6-116

bondbyhjm

ValuationDate: 734139
Basis: 0

EndMonthRule: 1

Create the stepped bond instrument.

Settle = '01-Jan-2010';
Maturity = {'01-Jan-2011';'01-Jan-2012';'01-Jan-2013';'01-Jan-2014'};
CouponRate = {{'01-Jan-2012' .0425;'01-Jan-2014' .0750}};
Period = 1;

Build the HJM tree using the following market data:

Volatility = [.2; .19; .18; .17];
CurveTerm = [1; 2; 3; 4];
HJMTimeSpec = hjmtimespec(ValuationDate, EndDates);
HJMVolSpec = hjmvolspec('Proportional', Volatility, CurveTerm, 1e6);
HJMT = hjmtree(HJMVolSpec,RS,HJMTimeSpec);

Compute the price of the stepped coupon bonds.

PHJM= bondbyhjm(HJMT, CouponRate, Settle,Maturity , Period)

PHJM =

100.7246
100.0945
101.5900
102.0820

Price a Bond with an Amortization Schedule

Price a bond with an amortization schedule using the Face input
argument to define the schedule.

Define the interest-rate term structure.

Rates = 0.065;
ValuationDate = '1-Jan-2011';
StartDates = ValuationDate;

6-117

bondbyhjm

EndDates= '1-Jan-2017';
Compounding = 1;

Create the RateSpec.

RateSpec = intenvset('ValuationDate', ValuationDate,'StartDates', StartDates,...

'EndDates', EndDates,'Rates', Rates, 'Compounding', Compounding)

RateSpec =

FinObj: 'RateSpec'
Compounding: 1

Disc: 0.6853
Rates: 0.0650

EndTimes: 6
StartTimes: 0

EndDates: 736696
StartDates: 734504

ValuationDate: 734504
Basis: 0

EndMonthRule: 1

Create the bond instrument. The bond has a coupon rate of 7%, a period
of one year, and matures on 1-Jan-2017.

CouponRate = 0.07;
Settle ='1-Jan-2011';
Maturity = '1-Jan-2017';
Period = 1;
Face = {{'1-Jan-2015' 100;'1-Jan-2016' 90;'1-Jan-2017' 80}};

Build the HJM tree using the following market data:

Volatility = [.2; .19; .18; .17];
CurveTerm = [1; 2; 3; 4];
MaTree = {'Jan-1-2012'; 'Jan-1-2013'; 'Jan-1-2014'; 'Jan-1-2015';...
'Jan-1-2016'; 'Jan-1-2017'};
HJMTimeSpec = hjmtimespec(ValuationDate, MaTree);

6-118

bondbyhjm

HJMVolSpec = hjmvolspec('Proportional', Volatility, CurveTerm, 1e6);
HJMT = hjmtree(HJMVolSpec,RateSpec,HJMTimeSpec);

Compute the price of the amortizing bond.

Price = bondbyhjm(HJMT, CouponRate, Settle, Maturity, 'Period',...
Period, 'Face' , Face)

Price =

102.3155

Compare the results with price of a vanilla bond.

PriceVanilla = bondbyhjm(HJMT, CouponRate, Settle, Maturity, Period)

PriceVanilla =

102.4205

See Also hjmtree | cfamounts | hjmprice | instbond

6-119

bondbyhw

Purpose Price bond from Hull-White interest-rate tree

Syntax [Price, PriceTree] = bondbyhw(HWTree, CouponRate,
Settle, Maturity)
[Price, PriceTree] = bondbyhw(HWTree, CouponRate,
Settle, Maturity, Period, Basis, EndMonthRule, IssueDate,
FirstCouponDate, LastCouponDate, StartDate, Face,
Options)
[Price, PriceTree] = bondbyhw(HWTree, CouponRate,
Settle, Maturity, Name,Value)

Input
Arguments

HWTree Forward-rate tree structure created by
hwtree.

CouponRate Decimal annual rate. CouponRate is a
NINST-by-1 vector or NINST-by-1 cell array of
decimal annual rates, or decimal annual rate
schedules. For the latter case of a variable
coupon schedule, each element of the cell
array is a NumDates-by-2 cell array, where the
first column is dates and the second column
is its associated rate. The date indicates the
last day that the coupon rate is valid.

Settle Settlement date. A vector of serial date
numbers or date strings. Settle must be
earlier than Maturity.

Maturity Maturity date. A vector of serial date
numbers or date strings.

The Settle date for every bond is set to the ValuationDate of the HW
tree. The bond argument Settle is ignored.

6-120

bondbyhw

Ordered Input or Name-Value Pair Arguments

Enter the following optional inputs using an ordered syntax or as
name-value pair arguments. You cannot mix ordered syntax with
name-value pair arguments.

Period

Coupons per year of the bond. A vector of integers. Values are 1, 2,
3, 4, 6, and 12.

Default: 2

Basis

Day-count basis of the instrument. A vector of integers.

• 0 = actual/actual

• 1 = 30/360 (SIA)

• 2 = actual/360

• 3 = actual/365

• 4 = 30/360 (PSA)

• 5 = 30/360 (ISDA)

• 6 = 30/360 (European)

• 7 = actual/365 (Japanese)

• 8 = actual/actual (ISMA)

• 9 = actual/360 (ISMA)

• 10 = actual/365 (ISMA)

• 11 = 30/360E (ISMA)

• 12 = actual/365 (ISDA)

• 13 = BUS/252
For more information, see basis.

6-121

bondbyhw

Default: 0 (actual/actual)

EndMonthRule

End-of-month rule. NINST-by-1 vector. This rule applies only when
Maturity is an end-of-month date for a month having 30 or fewer days.

• 0 = Ignore rule, meaning that a bond coupon payment date is always
the same numerical day of the month.

• 1 = Set rule on, meaning that a bond coupon payment date is always
the last actual day of the month.

Default: 1

IssueDate

Date when a bond was issued.

FirstCouponDateDate

Date when a bond makes its first coupon payment; used when bond
has an irregular first coupon period. When FirstCouponDate and
LastCouponDate are both specified, FirstCouponDate takes precedence
in determining the coupon payment structure. If you do not specify a
FirstCouponDate, the cash flow payment dates are determined from
other inputs.

LastCouponDateDate

Last coupon date of a bond before the maturity date; used when bond
has an irregular last coupon period. In the absence of a specified
FirstCouponDate, a specified LastCouponDate determines the coupon
structure of the bond. The coupon structure of a bond is truncated at the
LastCouponDate, regardless of where it falls, and is followed only by the
bond’s maturity cash flow date. If you do not specify a LastCouponDate,
the cash flow payment dates are determined from other inputs.

StartDate

6-122

bondbyhw

Date when a bond actually starts (the date from which a bond cash flow
is considered). To make an instrument forward-starting, specify this
date as a future date. If you do not specify StartDate, the effective
start date is the Settle date.

Face

Face or par value. Face is a NINST-by-1 vector or NINST-by-1 cell array
of face values, or face value schedules. For the latter case, each element
of the cell array is a NumDates-by-2 cell array, where the first column
is dates and the second column is its associated face value. The date
indicates the last day that the face value is valid.

Default: 100

Options

Derivatives pricing options structure created with derivset.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments,
where Name is the argument name and Value is the corresponding
value. Name must appear inside single quotes (' '). You can
specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

AdjustCashFlowsBasis

Adjust the cash flows based on the actual period day count. NINST-by-1
of logicals.

Default: false

BusinessDayConvention

Require payment dates to be business dates. NINST-by-1 cell array with
possible choices of business day convention:

• actual

6-123

bondbyhw

• follow

• modifiedfollow

• previous

• modifiedprevious

Default: actual

Holidays

Holidays used for business day convention. NHOLIDAYS-by-1 of MATLAB
date numbers.

Default: If no dates are specified, holidays.m is used.

Description [Price, PriceTree] = bondbyhw(HWTree, CouponRate, Settle,
Maturity) computes the price of a bond from a Hull-White interest-rate
tree.

[Price, PriceTree] = bondbyhw(HWTree, CouponRate,
Settle, Maturity, Period, Basis, EndMonthRule, IssueDate,
FirstCouponDate, LastCouponDate, StartDate, Face, Options)
computes the price of a bond from a Hull-White interest-rate tree with
optional input arguments.

[Price, PriceTree] = bondbyhw(HWTree, CouponRate, Settle,
Maturity, Name,Value) computes the price of a bond from a
Hull-White interest-rate tree with additional options specified by one or
more Name,Value pair arguments.

Price is a number of instruments (NINST)-by-1 matrix of expected
prices at time 0.

PriceTree is a structure of trees containing vectors of instrument
prices and accrued interest, and a vector of observation times for each
node. Within PriceTree:

• PriceTree.PTree contains the clean prices.

6-124

bondbyhw

• PriceTree.AITree contains the accrued interest.

• PriceTree.tObs contains the observation times.

bondbyhw computes prices of vanilla bonds, stepped coupon bonds, and
amortizing bonds with no market purchase option and no call provisions.

Definitions Vanilla Bond

A vanilla coupon bond is a security representing an obligation to repay
a borrowed amount at a designated time and to make periodic interest
payments until that time. The issuer of a bond makes the periodic
interest payments until the bond matures. At maturity, the issuer pays
to the holder of the bond the principal amount owed (face value) and
the last interest payment.

Stepped Coupon Bond

A step-up and step-down bond is a debt security with a predetermined
coupon structure over time. With these instruments, coupons increase
(step up) or decrease (step down) at specific times during the life of
the bond.

Bond with an Amortization Schedule

An amortized bond is treated as an asset, with the discount amount
being amortized to interest expense over the life of the bond.

Examples Price a Bond Using the HW Tree

Price a 4% bond using a Hull-White interest-rate tree.

Load deriv.mat, which provides HWTree. The HWTree structure contains
the time and interest-rate information needed to price the bond.

load deriv.mat;

Define the bond using the required arguments. Other arguments use
defaults.

CouponRate = 0.04;

6-125

bondbyhw

Settle = '01-Jan-2004';
Maturity = '31-Dec-2008';

Use bondbyhw to compute the price of the bond.

Price = bondbyhw(HWTree, CouponRate, Settle, Maturity)
Warning: Not all cash flows are aligned with the tree. Result will
be approximated.

Price =

98.0483

Price a Stepped Coupon Bond

Price single stepped coupon bonds using market data.

Define the interest-rate term structure.

Rates = [0.035; 0.042147; 0.047345; 0.052707];
ValuationDate = 'Jan-1-2010';
StartDates = ValuationDate;
EndDates = {'Jan-1-2011'; 'Jan-1-2012'; 'Jan-1-2013'; 'Jan-1-2014'};
Compounding = 1;

Create the RateSpec.

RS = intenvset('ValuationDate', ValuationDate, 'StartDates', StartDates,...

'EndDates', EndDates,'Rates', Rates, 'Compounding', Compounding)

RS =

FinObj: 'RateSpec'
Compounding: 1

Disc: [4x1 double]
Rates: [4x1 double]

EndTimes: [4x1 double]
StartTimes: [4x1 double]

EndDates: [4x1 double]

6-126

bondbyhw

StartDates: 734139
ValuationDate: 734139

Basis: 0
EndMonthRule: 1

Create the stepped bond instrument.

Settle = '01-Jan-2010';
Maturity = {'01-Jan-2011';'01-Jan-2012';'01-Jan-2013';'01-Jan-2014'};
CouponRate = {{'01-Jan-2012' .0425;'01-Jan-2014' .0750}};
Period = 1;

Build the HW tree using the following market data:

VolDates = ['1-Jan-2011'; '1-Jan-2012'; '1-Jan-2013'; '1-Jan-2014'];
VolCurve = 0.01;
AlphaDates = '01-01-2014';
AlphaCurve = 0.1;

HWVolSpec = hwvolspec(RS.ValuationDate, VolDates, VolCurve,...
AlphaDates, AlphaCurve);
HWTimeSpec = hwtimespec(RS.ValuationDate, VolDates, Compounding);
HWT = hwtree(HWVolSpec, RS, HWTimeSpec);

Compute the price of the stepped coupon bonds.

PHW= bondbyhw(HWT, CouponRate, Settle,Maturity , Period)

PHW =

100.7246
100.0945
101.5900
102.0820

Price Two Bonds with Amortization Schedules

Price two bonds with amortization schedules using the Face input
argument to define the schedules.

6-127

bondbyhw

Define the interest rate term structure.

Rates = 0.035;
ValuationDate = '1-Nov-2011';
StartDates = ValuationDate;
EndDates = '1-Nov-2017';
Compounding = 1;

Create the RateSpec.

RateSpec = intenvset('ValuationDate', ValuationDate,'StartDates', StartDates,...

'EndDates', EndDates,'Rates', Rates, 'Compounding', Compounding);

RateSpec =

FinObj: 'RateSpec'
Compounding: 1

Disc: 0.8135
Rates: 0.0350

EndTimes: 6
StartTimes: 0

EndDates: 737000
StartDates: 734808

ValuationDate: 734808
Basis: 0

EndMonthRule: 1

Create the bond instrument. The bonds have a coupon rate of 4% and
3.85%, a period of one year, and mature on 1-Nov-2017.

CouponRate = [0.04; 0.0385];
Settle ='1-Nov-2011';
Maturity = '1-Nov-2017';
Period = 1;

Define the amortizing schedule.

Face = {{'1-Nov-2015' 100;'1-Nov-2016' 85;'1-Nov-2017' 70};
{'1-Nov-2015' 100;'1-Nov-2016' 90;'1-Nov-2017' 80}};

6-128

bondbyhw

Build the HW tree and assume the volatility to be 10%.

VolDates = ['1-Nov-2012'; '1-Nov-2013';'1-Nov-2014';'1-Nov-2015';'1-Nov-2016';'1-Nov-2017'];

VolCurve = 0.1;

AlphaDates = '01-01-2017';

AlphaCurve = 0.1;

HWVolSpec = hwvolspec(RateSpec.ValuationDate, VolDates, VolCurve,...

AlphaDates, AlphaCurve);

HWTimeSpec = hwtimespec(RateSpec.ValuationDate, VolDates, Compounding);

HWT = hwtree(HWVolSpec, RateSpec, HWTimeSpec);

Compute the price of the amortizing bonds.

Price = bondbyhw(HWT, CouponRate, Settle, Maturity, 'Period',Period,..
'Face', Face)

Price =

102.4791
101.7786

See Also bkprice | bktree | cfamounts | hwprice | hwtree | instbond

6-129

bondbyzero

Purpose Price bond from set of zero curves

Syntax [Price, PriceNoAI, CFlowAmounts, CFlowDates] =
bondbyzero(RateSpec, CouponRate, Settle, Maturity)
[Price, PriceNoAI, CFlowAmounts, CFlowDates] =
bondbyzero(RateSpec, CouponRate, Settle, Maturity,
Period, Basis, EndMonthRule, IssueDate,
FirstCouponDate, LastCouponDate, StartDate, Face)
[Price, PriceNoAI, CFlowAmounts, CFlowDates] =
bondbyzero(RateSpec, CouponRate, Settle,
Maturity, Name, Value)

Description [Price, PriceNoAI, CFlowAmounts, CFlowDates] =
bondbyzero(RateSpec, CouponRate, Settle, Maturity) returns a
NINST-by-NUMCURVES matrix of clean bond prices. Each column arises
from one of the zero curves.

[Price, PriceNoAI, CFlowAmounts, CFlowDates] =
bondbyzero(RateSpec, CouponRate, Settle, Maturity,
Period, Basis, EndMonthRule, IssueDate,FirstCouponDate,
LastCouponDate, StartDate, Face) returns a NINST-by-NUMCURVES
matrix of clean bond prices. Each column arises from one of the zero
curves.

[Price, PriceNoAI, CFlowAmounts, CFlowDates] =
bondbyzero(RateSpec, CouponRate, Settle, Maturity, Name,
Value) returns a NINST-by-NUMCURVES matrix of clean bond prices (each
column arises from one of the zero curves) with additional options
specified by one or more Name, Value pair arguments.

bondbyzero computes prices of vanilla bonds, stepped coupon bonds,
and amortizing bonds with no market purchase option and no call
provisions.

Input
Arguments

RateSpec

Structure containing the properties of an interest-rate structure. See
intenvset for information on creating RateSpec.

6-130

bondbyzero

CouponRate

Decimal annual rate. CouponRate is a NINST-by-1 vector or NINST-by-1
cell array of decimal annual rates, or decimal annual rate schedules.
For the latter case of a variable coupon schedule, each element of the
cell array is a NumDates-by-2 cell array, where the first column is dates
and the second column is its associated rate. The date indicates the last
day that the coupon rate is valid.

Settle

Settlement date. NINST-by-1 vector of serial date numbers or date
strings representing the settlement date for each swap. Settle must
be earlier than Maturity.

Maturity

Maturity date. NINST-by-1 vector of dates representing the maturity
date for each swap.

Ordered Input or Name-Value Pair Arguments

Enter the following optional inputs using an ordered syntax or as
name-value pair arguments. You cannot mix ordered syntax with
name-value pair arguments.

Period

Coupons per year of the bond. A vector of integers. Values are 1, 2,
3, 4, 6, and 12.

Default: 2

Basis

Day-count basis of the instrument. A vector of integers.

• 0 = actual/actual

• 1 = 30/360 (SIA)

• 2 = actual/360

6-131

bondbyzero

• 3 = actual/365

• 4 = 30/360 (PSA)

• 5 = 30/360 (ISDA)

• 6 = 30/360 (European)

• 7 = actual/365 (Japanese)

• 8 = actual/actual (ISMA)

• 9 = actual/360 (ISMA)

• 10 = actual/365 (ISMA)

• 11 = 30/360E (ISMA)

• 12 = actual/365 (ISDA)

• 13 = BUS/252
For more information, see basis.

Default: 0 (actual/actual)

EndMonthRule

End-of-month rule. A NINST-by-1 vector. This rule applies only when
Maturity is an end-of-month date for a month having 30 or fewer days.

• 0 = Ignore rule, meaning that a bond coupon payment date is always
the same numerical day of the month.

• 1 = Set rule on, meaning that a bond coupon payment date is always
the last actual day of the month.

Default: 1

IssueDate

Date when a bond was issued.

FirstCouponDateDate

6-132

bondbyzero

Date when a bond makes its first coupon payment; used when bond
has an irregular first coupon period. When FirstCouponDate and
LastCouponDate are both specified, FirstCouponDate takes precedence
in determining the coupon payment structure. If you do not specify a
FirstCouponDate, the cash flow payment dates are determined from
other inputs.

LastCouponDateDate

Last coupon date of a bond before the maturity date; used when bond
has an irregular last coupon period. In the absence of a specified
FirstCouponDate, a specified LastCouponDate determines the coupon
structure of the bond. The coupon structure of a bond is truncated at the
LastCouponDate, regardless of where it falls, and is followed only by the
bond’s maturity cash flow date. If you do not specify a LastCouponDate,
the cash flow payment dates are determined from other inputs.

StartDate

Date when a bond actually starts (the date from which a bond cash flow
is considered). To make an instrument forward-starting, specify this
date as a future date. If you do not specify StartDate, the effective
start date is the Settle date.

Face

Face or par value. Face is a NINST-by-1 vector or NINST-by-1 cell array
of face values, or face value schedules. For the latter case, each element
of the cell array is a NumDates-by-2 cell array, where the first column
is dates and the second column is its associated face value. The date
indicates the last day that the face value is valid.

Default: 100

Options

Derivatives pricing options structure created with derivset.

6-133

bondbyzero

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments,
where Name is the argument name and Value is the corresponding
value. Name must appear inside single quotes (' '). You can
specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

AdjustCashFlowsBasis

Adjust the cash flows based on the actual period day count. NINST-by-1
of logicals.

Default: false

BusinessDayConvention

Require payment dates to be business dates. NINST-by-1 cell array with
possible choices of business day convention:

• actual

• follow

• modifiedfollow

• previous

• modifiedprevious

Default: actual

Holidays

Holidays used for business day convention. NHOLIDAYS-by-1 of MATLAB
date numbers.

Default: If no dates are specified, holidays.m is used.

6-134

bondbyzero

Output
Arguments

Price

NINST-by-NUMCURVES matrix of clean bond prices. Each column arises
from one of the zero curves.

PriceNoAI

NINST-by-NUMCURVES matrix of dirty bond price (clean + accrued
interest). Each column arises from one of the zero curves.

CFlowAmounts

NINST-by-NUMCFS matrix of cash flows for each bond

CFlowDates

NUMCFS-by-1 matrix of payment dates for each bond

Definitions Vanilla Bond

A vanilla coupon bond is a security representing an obligation to repay
a borrowed amount at a designated time and to make periodic interest
payments until that time. The issuer of a bond makes the periodic
interest payments until the bond matures. At maturity, the issuer pays
to the holder of the bond the principal amount owed (face value) and
the last interest payment.

Stepped Coupon Bond

A step-up and step-down bond is a debt security with a predetermined
coupon structure over time. With these instruments, coupons increase
(step up) or decrease (step down) at specific times during the life of
the bond.

Bond with an Amortization Schedule

An amortized bond is treated as an asset, with the discount amount
being amortized to interest expense over the life of the bond.

6-135

bondbyzero

Examples Price a Vanilla Bond

Price a 4% bond using a zero curve.

Load deriv.mat, which provides ZeroRateSpec, the interest-rate term
structure, needed to price the bond.

load deriv.mat;
CouponRate = 0.04;
Settle = '01-Jan-2000';
Maturity = '01-Jan-2004';
Price = bondbyzero(ZeroRateSpec, CouponRate, Settle, Maturity)

Price =

97.5334

Price a Stepped Coupon Bond

Price single stepped coupon bonds using market data.

Define data for the interest-rate term structure.

Rates = [0.035; 0.042147; 0.047345; 0.052707];
ValuationDate = 'Jan-1-2010';
StartDates = ValuationDate;
EndDates = {'Jan-1-2011'; 'Jan-1-2012'; 'Jan-1-2013'; 'Jan-1-2014'};
Compounding = 1;

Create the RateSpec.

RS = intenvset('ValuationDate', ValuationDate, 'StartDates', StartDates,...

'EndDates', EndDates,'Rates', Rates, 'Compounding', Compounding)

RS =

FinObj: 'RateSpec'
Compounding: 1

Disc: [4x1 double]

6-136

bondbyzero

Rates: [4x1 double]
EndTimes: [4x1 double]

StartTimes: [4x1 double]
EndDates: [4x1 double]

StartDates: 734139
ValuationDate: 734139

Basis: 0
EndMonthRule: 1

Create the stepped bond instrument.

Settle = '01-Jan-2010';

Maturity = {'01-Jan-2011';'01-Jan-2012';'01-Jan-2013';'01-Jan-2014'};

CouponRate = {{'01-Jan-2012' .0425;'01-Jan-2014' .0750}};

Period = 1;

Compute the price of the stepped coupon bonds.

PZero= bondbyzero(RS, CouponRate, Settle, Maturity ,Period)

PZero =

100.7246
100.0945
101.5900
102.0820

Price a Bond with an Amortizing Schedule

Price a bond with an amortizing schedule using the Face input
argument to define the schedule.

Define data for the interest-rate term structure.

Rates = 0.065;
ValuationDate = '1-Jan-2011';
StartDates = ValuationDate;
EndDates= '1-Jan-2017';
Compounding = 1;

6-137

bondbyzero

Create the RateSpec.

RateSpec = intenvset('ValuationDate', ValuationDate,'StartDates', StartDates,...

'EndDates', EndDates,'Rates', Rates, 'Compounding', Compounding)

RateSpec =

FinObj: 'RateSpec'
Compounding: 1

Disc: 0.6853
Rates: 0.0650

EndTimes: 6
StartTimes: 0

EndDates: 736696
StartDates: 734504

ValuationDate: 734504
Basis: 0

EndMonthRule: 1

Create and price the amortizing bond instrument. The bond has a
coupon rate of 7%, a period of one year, and matures on 1-Jan-2017.

CouponRate = 0.07;

Settle ='1-Jan-2011';

Maturity = '1-Jan-2017';

Period = 1;

Face = {{'1-Jan-2015' 100;'1-Jan-2016' 90;'1-Jan-2017' 80}};

Price = bondbyzero(RateSpec, CouponRate, Settle, Maturity, 'Period',...

Period, 'Face', Face)

Price =

102.3155

Compare the results with price of a vanilla bond.

PriceVanilla = bondbyzero(RateSpec, CouponRate, Settle, Maturity,Period)

6-138

bondbyzero

PriceVanilla =

102.4205

See Also | swapbyzero | cfamounts | cfbyzero | fixedbyzero | floatbyzero

6-139

bushpath

Purpose Extract entries from node of bushy tree

Syntax Values = bushpath(Tree, BranchList)

Arguments

Tree Bushy tree.

BranchList Number of paths (NUMPATHS) by path length
(PATHLENGTH) matrix containing the sequence of
branchings.

Description Values = bushpath(Tree, BranchList) extracts entries of a node
of a bushy tree. The node path is described by the sequence of
branchings taken, starting at the root. The top branch is number 1, the
second-to-top is 2, and so on. Set the branch sequence to zero to obtain
the entries at the root node.

Values is a number of values (NUMVALS)-by-NUMPATHS matrix containing
the retrieved entries of a bushy tree.

Examples Create an HJM tree by loading the example file.

load deriv.mat;

Then

FwdRates = bushpath(HJMTree.FwdTree, [1 2 1])

returns the rates at the tree nodes located by taking the up branch,
then the down branch, and finally the up branch again.

FwdRates =

1.0356
1.0364
1.0526

6-140

bushpath

1.0463

You can visualize this with the treeviewer function.

treeviewer(HJMTree)

See Also bushshape | mkbush

6-141

bushshape

Purpose Retrieve shape of bushy tree

Syntax [NumLevels, NumChild, NumPos, NumStates,
Trim] = bushshape(Tree)

Arguments

Tree Bushy tree.

Description [NumLevels, NumChild, NumPos, NumStates, Trim] =
bushshape(Tree) returns information on a bushy tree’s shape.

NumLevels is the number of time levels of the tree.

NumChild is a 1-by-number of levels (NUMLEVELS) vector with the
number of branches (children) of the nodes in each level.

NumPos is a 1-by-NUMLEVELS vector containing the length of the state
vectors in each level.

NumStates is a 1-by-NUMLEVELS vector containing the number of state
vectors in each level.

Trim is 1 if NumPos decreases by 1 when moving from one time level to
the next. Otherwise, it is 0.

Examples Create an HJM tree by loading the example file.

load deriv.mat;

With treeviewer you can see the general shape of the HJM
interest-rate tree.

6-142

bushshape

With this tree

[NumLevels, NumChild, NumPos, NumStates, Trim] =...
bushshape(HJMTree.FwdTree)

returns

NumLevels =
4

NumChild =
2 2 2 0

NumPos =
4 3 2 1

NumStates =
1 2 4 8

6-143

bushshape

Trim =
1

You can recreate this tree using the mkbush function.

Tree = mkbush(NumLevels, NumChild(1), NumPos(1), Trim);
Tree = mkbush(NumLevels, NumChild, NumPos);

See Also bushpath | mkbush

6-144

capbybdt

Purpose Price cap instrument from Black-Derman-Toy interest-rate tree

Syntax [Price, PriceTree] = capbybdt(BDTTree, Strike, Settle,
Maturity, Reset, Basis, Principal, Options)

Arguments

BDTTree Interest-rate tree structure created by bdttree.

Strike Number of instruments (NINST)-by-1 vector of rates
at which the cap is exercised.

Settle Settlement dates. NINST-by-1 vector of dates
representing the settlement dates of the cap.

Maturity NINST-by-1 vector of dates representing the maturity
dates of the cap.

Reset (Optional) NINST-by-1 vector representing the
frequency of payments per year. Default = 1.

Basis (Optional) Day-count basis of the instrument. A
vector of integers.

• 0 = actual/actual (default)

• 1 = 30/360 (SIA)

• 2 = actual/360

• 3 = actual/365

• 4 = 30/360 (BMA)

• 5 = 30/360 (ISDA)

• 6 = 30/360 (European)

• 7 = actual/365 (Japanese)

• 8 = actual/actual (ICMA)

• 9 = actual/360 (ICMA)

• 10 = actual/365 (ICMA)

6-145

capbybdt

• 11 = 30/360E (ICMA)

• 12 = actual/actual (ISDA)

• 13 = BUS/252
For more information, see basis.

Principal (Optional) The notional principal amount. Default
= 100.

Options (Optional) Derivatives pricing options structure
created with derivset.

Description [Price, PriceTree] = capbybdt(BDTTree, Strike, Settle,
Maturity, Reset, Basis, Principal, Options) computes the price
of a cap instrument from a BDT interest-rate tree.

Price is the expected price of the cap at time 0.

PriceTree is the tree structure with values of the cap at each node.

The Settle date for every cap is set to the ValuationDate of the BDT
tree. The cap argument Settle is ignored.

Examples Example 1. Price a 3% cap instrument using a BDT interest-rate tree.

Load the file deriv.mat, which provides BDTTree. The BDTTree
structure contains the time and interest-rate information needed to
price the cap instrument.

load deriv.mat;

Set the required values. Other arguments will use defaults.

Strike = 0.03;
Settle = '01-Jan-2000';
Maturity = '01-Jan-2004';

Use capbybdt to compute the price of the cap instrument.

6-146

capbybdt

Price = capbybdt(BDTTree, Strike, Settle, Maturity)

Price =

28.5191

Example 2. This example shows the pricing of a 10% cap instrument
using a newly created BDT tree.

First set the required arguments for the three needed specifications.

Compounding = 1;
ValuationDate = '01-01-2000';
StartDate = ValuationDate;
EndDates = ['01-01-2001'; '01-01-2002'; '01-01-2003';
'01-01-2004'; '01-01-2005'];
Rates = [.1; .11; .12; .125; .13];
Volatility = [.2; .19; .18; .17; .16];

Next create the specifications.

RateSpec = intenvset('Compounding', Compounding,...

'ValuationDate', ValuationDate,...

'StartDates', StartDate,...

'EndDates', EndDates,...

'Rates', Rates);

BDTTimeSpec = bdttimespec(ValuationDate, EndDates, Compounding);

BDTVolSpec = bdtvolspec(ValuationDate, EndDates, Volatility);

Now create the BDT tree from the specifications.

BDTTree = bdttree(BDTVolSpec, RateSpec, BDTTimeSpec);

Set the cap arguments. Remaining arguments will use defaults.

CapStrike = 0.10;
Settlement = ValuationDate;
Maturity = '01-01-2002';

6-147

capbybdt

CapReset = 1;

Use capbybdt to find the price of the cap instrument.

Price= capbybdt(BDTTree, CapStrike, Settlement, Maturity,...

CapReset)

Price =

1.6923

See Also bdttree | cfbybdt | floorbybdt | swapbybdt

6-148

capbybk

Purpose Price cap instrument from Black-Karasinski interest-rate tree

Syntax [Price, PriceTree] = capbybk(BKTree, Strike, Settle, Maturity,
Reset, Basis, Principal, Options)

Arguments

BKTree Interest-rate tree structure created by bktree.

Strike Number of instruments (NINST)-by-1 vector of rates
at which the cap is exercised.

Settle Settlement dates. NINST-by-1 vector of dates
representing the settlement dates of the cap.

Maturity NINST-by-1 vector of dates representing the maturity
dates of the cap.

Reset (Optional) NINST-by-1 vector representing the
frequency of payments per year. Default = 1.

Basis (Optional) Day-count basis of the instrument. A
vector of integers.

• 0 = actual/actual (default)

• 1 = 30/360 (SIA)

• 2 = actual/360

• 3 = actual/365

• 4 = 30/360 (BMA)

• 5 = 30/360 (ISDA)

• 6 = 30/360 (European)

• 7 = actual/365 (Japanese)

• 8 = actual/actual (ICMA)

• 9 = actual/360 (ICMA)

• 10 = actual/365 (ICMA)

6-149

capbybk

• 11 = 30/360E (ICMA)

• 12 = actual/actual (ISDA)

• 13 = BUS/252
For more information, see basis.

Principal (Optional) The notional principal amount. Default
= 100.

Options (Optional) Derivatives pricing options structure
created with derivset.

Description [Price, PriceTree] = capbybk(BKTree, Strike, Settle,
Maturity,Reset, Basis, Principal, Options) computes the price
of a cap instrument from a Black-Karasinski interest-rate tree.

Price is the expected price of the cap at time 0.

PriceTree is the tree structure with values of the cap at each node.

The Settle date for every cap is set to the ValuationDate of the BK
tree. The cap argument Settle is ignored.

Examples Price a 3% cap instrument using a Black-Karasinski interest-rate tree.

Load the file deriv.mat, which provides BKTree. The BKTree structure
contains the time and interest-rate information needed to price the
cap instrument.

load deriv.mat;

Set the required values. Other arguments will use defaults.

Strike = 0.03;
Settle = '01-Jan-2005';
Maturity = '01-Jan-2009';

Use capbybk to compute the price of the cap instrument.

6-150

capbybk

Price = capbybk(BKTree, Strike, Settle, Maturity)

Price =

6.8337

See Also cfbybk | floorbybk | bktree | swapbybk

6-151

capbyblk

Purpose Price caps using Black option pricing model

Syntax [CapPrice, Caplets] = capbyblk(RateSpec, Strike, Settle,
Maturity, Volatility)
[CapPrice, Caplets] = capbyblk(RateSpec, Strike, Settle,
Maturity, Volatility, 'Name1', Value1...)

Arguments

RateSpec The annualized, continuously compounded rate term
structure. For more information, see intenvset.

Strike NINST-by-1 vector of rates at which the cap is
exercised, as a decimal number.

Settle Scalar representing the settle date of the cap.

Maturity Scalar representing the maturity date of the cap.

Volatility NINST-by-1 vector of volatilities.

Reset (Optional) NINST-by-1 vector representing the
frequency of payments per year. Default is 1.

Principal (Optional) NINST-by-1 vector representing the
notional principal amount. Default is 100.

Basis NINST-by-1 vector representing the basis used when
annualizing the input forward rate.

• 0 = actual/actual (default)

• 1 = 30/360 (SIA)

• 2 = actual/360

• 3 = actual/365

• 4 = 30/360 (BMA)

• 5 = 30/360 (ISDA)

• 6 = 30/360 (European)

6-152

capbyblk

• 7 = actual/365 (Japanese)

• 8 = actual/actual (ICMA)

• 9 = actual/360 (ICMA)

• 10 = actual/365 (ICMA)

• 11 = 30/360E (ICMA)

• 12 = actual/actual (ISDA)

• 13 = BUS/252
For more information, see basis.

ValuationDate (Optional) Scalar representing the observation date
of the investment horizons. The default is the Settle
date.

Note All optional inputs are specified as matching parameter
name/value pairs. The parameter name is specified as a character
string, followed by the corresponding parameter value. You can specify
parameter name/value pairs in any order. Names are case-insensitive
and partial string matches are allowed provided no ambiguities exist.

Description [CapPrice, Caplets] = capbyblk(RateSpec, Strike, Settle,
Maturity, Volatility)

[CapPrice, Caplets] = capbyblk(RateSpec, Strike, Settle,
Maturity, Volatility, 'Name1', Value1...)

Use capbyblk to price caps using the Black option pricing model.

The outputs are:

• CapPrice — NINST-by-1 expected prices of the cap.

• Caplets— NINST-by-NCF array of caplets, padded with NaNs.

6-153

capbyblk

Examples Consider an investor who gets into a contract that caps the interest rate
on a $100,000 loan at 8% quarterly compounded for 3 months, starting
on January 1, 2009. Assuming that on January 1, 2008 the zero rate
is 6.9394% continuously compounded and the volatility is 20%, use
this data to compute the cap price.

Calculate the RateSpec:

ValuationDate = 'Jan-01-2008';
EndDates ='April-01-2010';
Rates = 0.069394;
Compounding = -1;
Basis = 1;

RateSpec = intenvset('ValuationDate', ValuationDate, ...
'StartDates', ValuationDate,'EndDates', EndDates, ...
'Rates', Rates,'Compounding', Compounding,'Basis', Basis);

Compute the price of the cap:

Settle = 'Jan-01-2009'; % cap starts in a year

Maturity = 'April-01-2009';

Volatility = 0.20;

CapRate = 0.08;

CapReset = 4;

Principal=100000;

CapPrice = capbyblk(RateSpec, CapRate, Settle, Maturity, Volatility,...

'Reset',CapReset,'ValuationDate',ValuationDate,'Principal', Principal,...

'Basis', Basis)

CapPrice =

51.6125

See Also floorbyblk

6-154

capbyhjm

Purpose Price cap instrument from Heath-Jarrow-Morton interest-rate tree

Syntax [Price, PriceTree] = capbyhjm(HJMTree, Strike,
Settle, Maturity, Reset, Basis, Principal, Options)

Arguments

HJMTree Forward-rate tree structure created by hjmtree.

Strike Number of instruments (NINST)-by-1 vector of rates at
which the cap is exercised.

Settle Settlement dates. NINST-by-1 vector of dates
representing the settlement dates of the cap.

Maturity NINST-by-1 vector of dates representing the maturity
dates of the cap.

Reset (Optional) NINST-by-1 vector representing the
frequency of payments per year. Default = 1.

Basis (Optional) Day-count basis of the instrument. A
vector of integers.

• 0 = actual/actual (default)

• 1 = 30/360 (SIA)

• 2 = actual/360

• 3 = actual/365

• 4 = 30/360 (BMA)

• 5 = 30/360 (ISDA)

• 6 = 30/360 (European)

• 7 = actual/365 (Japanese)

• 8 = actual/actual (ICMA)

• 9 = actual/360 (ICMA)

• 10 = actual/365 (ICMA)

6-155

capbyhjm

• 11 = 30/360E (ICMA)

• 12 = actual/actual (ISDA)

• 13 = BUS/252
For more information, see basis.

Principal (Optional) The notional principal amount. Default
= 100.

Options (Optional) Derivatives pricing options structure
created with derivset.

Description [Price, PriceTree] = capbyhjm(HJMTree, Strike, Settle,
Maturity, Reset, Basis, Principal, Options) computes the price
of a cap instrument from an HJM tree.

Price is the expected price of the cap at time 0.

PriceTree is the tree structure with values of the cap at each node.

The Settle date for every cap is set to the ValuationDate of the HJM
tree. The cap argument Settle is ignored.

Examples Price a 3% cap instrument using an HJM forward-rate tree.

Load the file deriv.mat, which provides HJMTree. The HJMTree
structure contains the time and forward-rate information needed to
price the cap instrument.

load deriv.mat;

Set the required values. Other arguments will use defaults.

Strike = 0.03;
Settle = '01-Jan-2000';
Maturity = '01-Jan-2004';

Use capbyhjm to compute the price of the cap instrument.

6-156

capbyhjm

Price = capbyhjm(HJMTree, Strike, Settle, Maturity)

Price =

6.2831

See Also cfbyhjm | floorbyhjm | hjmtree | swapbyhjm

6-157

capbyhw

Purpose Price cap instrument from Hull-White interest-rate tree

Syntax [Price, PriceTree] = capbyhw(HWTree, Strike, Settle, Maturity,
Reset, Basis, Principal, Options)

Arguments

HWTree Interest-rate tree structure created by hwtree.

Strike Number of instruments (NINST)-by-1 vector of rates
at which the cap is exercised.

Settle Settlement dates. NINST-by-1 vector of dates
representing the settlement dates of the cap.

Maturity NINST-by-1 vector of dates representing the maturity
dates of the cap.

Reset (Optional) NINST-by-1 vector representing the
frequency of payments per year. Default = 1.

Basis (Optional) Day-count basis of the instrument. A
vector of integers.

• 0 = actual/actual (default)

• 1 = 30/360 (SIA)

• 2 = actual/360

• 3 = actual/365

• 4 = 30/360 (BMA)

• 5 = 30/360 (ISDA)

• 6 = 30/360 (European)

• 7 = actual/365 (Japanese)

• 8 = actual/actual (ICMA)

• 9 = actual/360 (ICMA)

• 10 = actual/365 (ICMA)

6-158

capbyhw

• 11 = 30/360E (ICMA)

• 12 = actual/actual (ISDA)

• 13 = BUS/252
For more information, see basis.

Principal (Optional) The notional principal amount. Default
= 100.

Options (Optional) Derivatives pricing options structure
created with derivset.

Description [Price, PriceTree] = capbyhw(HWTree, Strike, Settle,
Maturity,Reset, Basis, Principal, Options) computes the price
of a cap instrument from a Hull-White interest-rate tree.

Price is the expected price of the cap at time 0.

PriceTree is the tree structure with values of the cap at each node.

The Settle date for every cap is set to the ValuationDate of the HW
tree. The cap argument Settle is ignored.

Examples Price a 3% cap instrument using a Hull-White interest-rate tree.

Load the file deriv.mat, which provides HWTree. The HWTree structure
contains the time and interest-rate information needed to price the
cap instrument.

load deriv.mat;

Set the required values. Other arguments will use defaults.

Strike = 0.03;
Settle = '01-Jan-2005';
Maturity = '01-Jan-2009';

Use capbyhw to compute the price of the cap instrument.

6-159

capbyhw

Price = capbyhw(HWTree, Strike, Settle, Maturity)

Price =

7.0707

See Also cfbyhw | floorbyhw | hwtree | swapbyhw

6-160

cashbybls

Purpose Determine price of cash-or-nothing digital options using Black-Scholes
model

Syntax Price = cashbybls(RateSpec, StockSpec, Settle, Maturity,
OptSpec, Strike, Payoff)

Arguments

RateSpec The annualized, continuously compounded rate
term structure. For information on the interest
rate specification, see intenvset.

StockSpec Stock specification. See stockspec.

Settle NINST-by-1 vector of settlement or trade dates.

Maturity NINST-by-1 vector of maturity dates.

OptSpec NINST-by-1 cell array of strings 'call' or 'put'.

Strike NINST-by-1 vector of strike price values.

Payoff NINST-by-1 vector of payoff values or the amount
to be paid at expiration.

Description Price = cashbybls(RateSpec, StockSpec, Settle, Maturity,
OptSpec, Strike, Payoff) computes cash-or-nothing option prices
using the Black-Scholes option pricing model.

Price is a NINST-by-1 vector of expected option prices.

Examples Consider a European call and put cash-or-nothing options on a futures
contract with and exercise strike price of $90, a fixed payoff of $10
that expires on October 1, 2008. Assume that on January 1, 2008, the
contract trades at $110, and has a volatility of 25% per annum and the
risk-free rate is 4.5% per annum. Using this data, calculate the price of
the call and put cash-or-nothing options on the futures contract.

Create the RateSpec:

6-161

cashbybls

Settle = 'Jan-1-2008';

Maturity = 'Oct-1-2008';

Rates = 0.045;

Compounding = -1;

Basis = 1;

RateSpec = intenvset('ValuationDate', Settle, 'StartDates', Settle,...

'EndDates', Maturity, 'Rates', Rates, 'Compounding', Compounding, 'Basis', Basis);

Define the StockSpec:

AssetPrice = 110;
Sigma = .25;
DivType = 'Continuous';
DivAmount = Rates;
StockSpec = stockspec(Sigma, AssetPrice, DivType, DivAmount);

Define the call and put options:

OptSpec = {'call'; 'put'};
Strike = 90;
Payoff = 10;

Calculate the price:

Pcon = cashbybls(RateSpec, StockSpec, Settle,...
Maturity, OptSpec, Strike, Payoff)

Pcon =

7.6716
1.9965

See Also assetbybls | cashsensbybls | gapbybls | supersharebybls

6-162

cashsensbybls

Purpose Determine price and sensitivities of cash-or-nothing digital options
using Black-Scholes model

Syntax PriceSens = cashsensbybls(RateSpec, StockSpec, Settle,
Maturity, OptSpec, Strike, Payoff)
PriceSens = cashsensbybls(RateSpec, StockSpec, Settle,
Maturity, OptSpec, Strike, Payoff, OutSpec)

Arguments

RateSpec The annualized, continuously compounded rate
term structure. For information on the interest
rate specification, see intenvset.

StockSpec Stock specification. See stockspec.

Settle NINST-by-1 vector of settlement or trade dates.

Maturity NINST-by-1 vector of maturity dates.

OptSpec NINST-by-1 cell array of strings 'call' or 'put'.

Strike NINST-by-1 vector of strike price values.

Payoff NINST-by-1 vector of payoff values or the amount
to be paid at expiration.

OutSpec (Optional) All optional inputs are specified as
matching parameter name/value pairs. The
parameter name is specified as a character string,
followed by the corresponding parameter value.
You can specify parameter name/value pairs
in any order. Names are case-insensitive and
partial string matches are allowed provided no
ambiguities exist. Valid parameter names are:

• NOUT-by-1 or 1-by-NOUT cell array of strings
indicating the nature and order of the outputs
for the function. Possible values are 'Price',
'Delta', 'Gamma', 'Vega', 'Lambda', 'Rho',
'Theta', or 'All'.

6-163

cashsensbybls

For example, OutSpec = {'Price'; 'Lamba';
'Rho'} specifies that the output should be
Price, Lambda, and Rho, in that order.

To invoke from a function: [Price, Lambda,
Rho] = cashsensbybls(..., 'OutSpec',
{'Price', 'Lamba', 'Rho'})

OutSpec = {'All'} specifies that the output
should be Delta, Gamma, Vega, Lambda, Rho,
Theta, and Price, in that order. This is the
same as specifying OutSpec as OutSpec =
{'Delta', 'Gamma', 'Vega', 'Lambda',
'Rho', 'Theta', 'Price'};.

• Default is OutSpec = {'Price'}.

Description PriceSens = cashsensbybls(RateSpec, StockSpec, Settle,
Maturity, OptSpec, Strike, Payoff) computes cash-or-nothing
option prices using the Black-Scholes option pricing model.

PriceSens = cashsensbybls(RateSpec, StockSpec, Settle,
Maturity, OptSpec, Strike, Payoff, OutSpec) includes an
OutSpec argument defined as parameter/value pairs, and computes
cash-or-nothing option prices and sensitivities using the Black-Scholes
option pricing model.

PriceSens is a NINST-by-1 vector of expected option prices and
sensitivities.

Examples Consider a European call and put cash-or-nothing options on a futures
contract with an exercise price of $90, and a fixed payoff of $10 that
expires on January 1, 2009. Assume that on October 1, 2008 the
contract trades at $110, and has a volatility of 25% per annum and
the risk-free rate is 4.5% per annum. Using this data, calculate the
price and sensitivity of the call and put cash-or-nothing options on the
futures contract.

6-164

cashsensbybls

Create the RateSpec:

Settle = 'Jan-1-2008';

Maturity = 'Oct-1-2008';

Rates = 0.045;

Compounding = -1;

Basis = 1;

RateSpec = intenvset('ValuationDate', Settle, 'StartDates', Settle,...

'EndDates', Maturity, 'Rates', Rates, 'Compounding', Compounding, 'Basis', Basis);

Define the StockSpec:

AssetPrice = 110;
Sigma = .25;
DivType = 'Continuous';
DivAmount = Rates;
StockSpec = stockspec(Sigma, AssetPrice, DivType, DivAmount);

Define the call and put options:

OptSpec = {'call'; 'put'};
Strike = 90;
Payoff = 10;

Compute the gamma, theta, and price:

OutSpec = { 'gamma';'theta';'price'};
[Gamma, Theta, Price] = cashsensbybls(RateSpec, StockSpec,...
Settle, Maturity, OptSpec, Strike, Payoff, 'OutSpec', OutSpec)

Gamma =

-0.0050
0.0050

Theta =

6-165

cashsensbybls

-2.2489
1.8139

Price =

7.6716
1.9965

See Also cashbybls

6-166

cfbybdt

Purpose Price cash flows from Black-Derman-Toy interest-rate tree

Syntax [Price, PriceTree] = cfbybdt(BDTTree,
CFlowAmounts, CFlowDates, Settle, Basis, Options)

Arguments

BDTTree Forward-rate tree structure created by bdttree.

CFlowAmounts Number of instruments (NINST) by maximum
number of cash flows (MOSTCFS) matrix of cash
flow amounts. Each row is a list of cash flow
values for one instrument. If an instrument has
fewer than MOSTCFS cash flows, the end of the row
is padded with NaNs.

CFlowDates NINST-by-MOSTCFS matrix of cash flow dates.
Each entry contains the serial date number of the
corresponding cash flow in CFlowAmounts.

Settle Settlement date. A vector of serial date numbers
or date strings. The Settle date for every cash
flow is set to the ValuationDate of the BDT tree.
The cash flow argument, Settle, is ignored.

Basis (Optional) Day-count basis of the instrument. A
vector of integers.

• 0 = actual/actual (default)

• 1 = 30/360 (SIA)

• 2 = actual/360

• 3 = actual/365

• 4 = 30/360 (BMA)

• 5 = 30/360 (ISDA)

• 6 = 30/360 (European)

• 7 = actual/365 (Japanese)

6-167

cfbybdt

• 8 = actual/actual (ICMA)

• 9 = actual/360 (ICMA)

• 10 = actual/365 (ICMA)

• 11 = 30/360E (ICMA)

• 12 = actual/actual (ISDA)

• 13 = BUS/252
For more information, see basis.

Options (Optional) Derivatives pricing options structure
created with derivset.

Description [Price, PriceTree] = cfbybdt(BDTTree, CFlowAmounts,
CFlowDates, Settle, Basis, Options) prices cash flows from a
BDT interest-rate tree.

Price is an NINST-by-1 vector of expected prices at time 0.

PriceTree is a tree structure with a vector of instrument prices at
each node.

Examples Price a portfolio containing two cash flow instruments paying interest
annually over the four-year period from January 1, 2000 to January
1, 2004.

Load the file deriv.mat, which provides BDTTree. The BDTTree
structure contains the time and interest-rate information needed to
price the instruments.

load deriv.mat;

The valuation date (settle date) specified in BDTTree is January 1, 2000
(date number 730486).

BDTTree.RateSpec.ValuationDate

6-168

cfbybdt

ans =

730486

Provide values for the other required arguments.

CFlowAmounts =[5 NaN 5.5 105; 5 0 6 105];
CFlowDates = [730852, NaN, 731582, 731947;

730852, 731217, 731582, 731947];

Use this information to compute the prices of the two cash flow
instruments.

[Price, PriceTree] = cfbybdt(BDTTree, CFlowAmounts, ...
CFlowDates, BDTTree.RateSpec.ValuationDate)

Price =

74.0112
74.3671

PriceTree =

FinObj: 'BDTPriceTree'
tObs: [0 1.00 2.00 3.00 4.00]

PTree: {1x5 cell}

You can visualize the prices of the two cash flow instruments with the
treeviewer function.

treeviewer(PriceTree)

6-169

cfbybdt

See Also bdttree | bdtprice | cfamounts | instcf

6-170

cfbybk

Purpose Price cash flows from Black-Karasinski interest-rate tree

Syntax [Price, PriceTree] = cfbybk(BKTree, CFlowAmounts, CFlowDates,
Settle, Basis, Options)

Arguments

BKTree Forward-rate tree structure created by bktree.

CFlowAmounts Number of instruments (NINST) by maximum
number of cash flows (MOSTCFS) matrix of cash
flow amounts. Each row is a list of cash flow
values for one instrument. If an instrument has
fewer than MOSTCFS cash flows, the end of the row
is padded with NaNs.

CFlowDates NINST-by-MOSTCFS matrix of cash flow dates.
Each entry contains the serial date number of the
corresponding cash flow in CFlowAmounts.

Settle Settlement date. A vector of serial date numbers
or date strings. The Settle date for every cash
flow is set to the ValuationDate of the BK tree.
The cash flow argument, Settle, is ignored.

Basis (Optional) Day-count basis of the instrument. A
vector of integers.

• 0 = actual/actual (default)

• 1 = 30/360 (SIA)

• 2 = actual/360

• 3 = actual/365

• 4 = 30/360 (BMA)

• 5 = 30/360 (ISDA)

• 6 = 30/360 (European)

• 7 = actual/365 (Japanese)

6-171

cfbybk

• 8 = actual/actual (ICMA)

• 9 = actual/360 (ICMA)

• 10 = actual/365 (ICMA)

• 11 = 30/360E (ICMA)

• 12 = actual/actual (ISDA)

• 13 = BUS/252
For more information, see basis.

Options (Optional) Derivatives pricing options structure
created with derivset.

Description [Price, PriceTree] = cfbybk(BKTree, CFlowAmounts,
CFlowDates, Settle, Basis, Options) prices cash flows from a
Black-Karasinski interest-rate tree.

Price is an NINST-by-1 vector of expected prices at time 0.

PriceTree is a tree structure with a vector of instrument prices at
each node.

Examples Price a portfolio containing two cash flow instruments paying interest
annually over the four-year period from January 1, 2005 to January
1, 2009.

Load the file deriv.mat, which provides BKTree. The BKTree structure
contains the time and interest-rate information needed to price the
instruments.

load deriv.mat;

The valuation date (settle date) specified in BKTree is January 1, 2004
(date number 731947).

BKTree.RateSpec.ValuationDate

6-172

cfbybk

ans =

731947

Provide values for the other required arguments.

CFlowAmounts =[5 NaN 5.5 105; 5 0 6 105];
CFlowDates = [732678, NaN, 733408,733774;

732678, 733034, 733408, 734774];

Use this information to compute the prices of the two cash flow
instruments.

[Price, PriceTree] = cfbybk(BKTree, CFlowAmounts, CFlowDates,...

BKTree.RateSpec.ValuationDate)

Price =

93.3600

81.6218

PriceTree =

FinObj: 'BKPriceTree'

tObs: [0 1 2 3 4]

PTree: {[2x1 double] [2x3 double] [2x5 double] [2x5

double] [2x5 double]}

Connect: {[2] [2 3 4] [2 2 3 4 4]}

Probs: {[3x1 double] [3x3 double] [3x5 double]}

You can visualize the prices of the two cash flow instruments with the
treeviewer function.

treeviewer(PriceTree)

6-173

cfbybk

See Also bktree | bkprice | cfamounts | instcf

6-174

cfbyhjm

Purpose Price cash flows from Heath-Jarrow-Morton interest-rate tree

Syntax [Price, PriceTree] = cfbyhjm(HJMTree, CFlowAmounts,
CFlowDates, Settle, Basis, Options)

Arguments

HJMTree Forward-rate tree structure created by hjmtree.

CFlowAmounts Number of instruments (NINST) by maximum
number of cash flows (MOSTCFS) matrix of cash
flow amounts. Each row is a list of cash flow
values for one instrument. If an instrument has
fewer than MOSTCFS cash flows, the end of the row
is padded with NaNs.

CFlowDates NINST-by-MOSTCFS matrix of cash flow dates.
Each entry contains the serial date number of the
corresponding cash flow in CFlowAmounts.

Settle Settlement date. A vector of serial date numbers
or date strings. The Settle date for every cash
flow is set to the ValuationDate of the HJM tree.
The cash flow argument, Settle, is ignored.

Basis (Optional) Day-count basis of the instrument. A
vector of integers.

• 0 = actual/actual (default)

• 1 = 30/360 (SIA)

• 2 = actual/360

• 3 = actual/365

• 4 = 30/360 (BMA)

• 5 = 30/360 (ISDA)

• 6 = 30/360 (European)

• 7 = actual/365 (Japanese)

6-175

cfbyhjm

• 8 = actual/actual (ICMA)

• 9 = actual/360 (ICMA)

• 10 = actual/365 (ICMA)

• 11 = 30/360E (ICMA)

• 12 = actual/actual (ISDA)

• 13 = BUS/252
For more information, see basis.

Options (Optional) Derivatives pricing options structure
created with derivset.

Description [Price, PriceTree] = cfbyhjm(HJMTree, CFlowAmounts,
CFlowDates, Settle, Basis, Options) prices cash flows from an
HJM interest-rate tree.

Price is an NINST-by-1 vector of expected prices at time 0.

PriceTree is a tree structure with a vector of instrument prices at
each node.

Examples Price a portfolio containing two cash flow instruments paying interest
annually over the four-year period from January 1, 2000 to January
1, 2004.

Load the file deriv.mat, which provides HJMTree. The HJMTree
structure contains the time and forward-rate information needed to
price the instruments.

load deriv.mat;

The valuation date (settle date) specified in HJMTree is January 1, 2000
(date number 730486).

HWTree.RateSpec.ValuationDate

6-176

cfbyhjm

ans =

730486

Provide values for the other required arguments.

CFlowAmounts =[5 NaN 5.5 105; 5 0 6 105];
CFlowDates = [730852, NaN, 731582, 731947;

730852, 731217, 731582, 731947];

Use this information to compute the prices of the two cash flow
instruments.

[Price, PriceTree] = cfbyhjm(HJMTree, CFlowAmounts,...
CFlowDates, HJMTree.RateSpec.ValuationDate)

Price =

96.7805
97.2188

PriceTree =

FinObj: 'HJMPriceTree'
tObs: [0 1.00 2.00 3.00 4.00]

PBush: {1x5 cell}

You can visualize the prices of the two cash flow instruments with the
treeviewer function.

treeviewer(PriceTree)

6-177

cfbyhjm

See Also cfamounts | hjmprice | hjmtree | instcf

6-178

cfbyhw

Purpose Price cash flows from Hull-White interest-rate tree

Syntax [Price, PriceTree] = cfbyhw(HWTree, CFlowAmounts, CFlowDates,
Settle, Basis, Options)

Arguments

HWTree Forward-rate tree structure created by hwtree.

CFlowAmounts Number of instruments (NINST) by maximum
number of cash flows (MOSTCFS) matrix of cash
flow amounts. Each row is a list of cash flow
values for one instrument. If an instrument has
fewer than MOSTCFS cash flows, the end of the row
is padded with NaNs.

CFlowDates NINST-by-MOSTCFS matrix of cash flow dates.
Each entry contains the serial date number of the
corresponding cash flow in CFlowAmounts.

Settle Settlement date. A vector of serial date numbers
or date strings. The Settle date for every cash
flow is set to the ValuationDate of the HW tree.
The cash flow argument, Settle, is ignored.

Basis (Optional) Day-count basis of the instrument. A
vector of integers.

• 0 = actual/actual (default)

• 1 = 30/360 (SIA)

• 2 = actual/360

• 3 = actual/365

• 4 = 30/360 (BMA)

• 5 = 30/360 (ISDA)

• 6 = 30/360 (European)

• 7 = actual/365 (Japanese)

6-179

cfbyhw

• 8 = actual/actual (ICMA)

• 9 = actual/360 (ICMA)

• 10 = actual/365 (ICMA)

• 11 = 30/360E (ICMA)

• 12 = actual/actual (ISDA)

• 13 = BUS/252
For more information, see basis.

Options (Optional) Derivatives pricing options structure
created with derivset.

Description [Price, PriceTree] = cfbyhw(HWTree, CFlowAmounts,
CFlowDates, Settle, Basis, Options) prices cash flows from a
Hull-White interest-rate tree.

Price is an NINST-by-1 vector of expected prices at time 0.

PriceTree is a tree structure with a vector of instrument prices at
each node.

Examples Price a portfolio containing two cash flow instruments paying interest
annually over the four-year period from January 1, 2005 to January
1, 2009.

Load the file deriv.mat, which provides HWTree. The HWTree structure
contains the time and interest-rate information needed to price the
instruments.

load deriv.mat;

The valuation date (settle date) specified in HWTree is January 1, 2004
(date number 731947).

HWTree.RateSpec.ValuationDate

6-180

cfbyhw

ans =

731947

Provide values for the other required arguments.

CFlowAmounts =[5 NaN 5.5 105; 5 0 6 105];
CFlowDates = [732678, NaN, 733408, 733774;

732678, 733034, 733408, 734774];

Use this information to compute the prices of the two cash flow
instruments.

[Price, PriceTree] = cfbyhw(HWTree, CFlowAmounts, CFlowDates,...

HWTree.RateSpec.ValuationDate)

Price =

93.3789

81.7651

PriceTree =

FinObj: 'HWPriceTree'

tObs: [0 1 2 3 4]

PTree: {[2x1 double] [2x3 double] [2x5 double] [2x5

double] [2x5 double]}

Connect: {[2] [2 3 4] [2 2 3 4 4]}

Probs: {[3x1 double] [3x3 double] [3x5 double]}

You can visualize the prices of the two cash flow instruments with the
treeviewer function.

treeviewer(PriceTree)

6-181

cfbyhw

See Also cfamounts | hwtree | hwprice | instcf

6-182

cfbyzero

Purpose Price cash flows from set of zero curves

Syntax Price = cfbyzero(RateSpec, CFlowAmounts, CFlowDates, Settle,
Basis)

Arguments

RateSpec Structure containing the properties of an
interest-rate structure. See intenvset for
information on creating RateSpec.

CFlowAmounts Number of instruments (NINST) by maximum
number of cash flows (MOSTCFS) matrix with
entries listing cash flow amounts corresponding
to each date in CFlowDates. Each row is a list
of cash flow values for one instrument. If an
instrument has fewer than MOSTCFS cash flows,
the end of the row is padded with NaNs.

CFlowDates NINST-by-MOSTCFSmatrix of cash flow dates. Each
entry contains the serial date of the corresponding
cash flow in CFlowAmounts.

Settle Settlement date on which the cash flows are
priced.

Basis (Optional) Day-count basis of the instrument. A
vector of integers.

• 0 = actual/actual (default)

• 1 = 30/360 (SIA)

• 2 = actual/360

• 3 = actual/365

• 4 = 30/360 (BMA)

• 5 = 30/360 (ISDA)

• 6 = 30/360 (European)

6-183

cfbyzero

• 7 = actual/365 (Japanese)

• 8 = actual/actual (ICMA)

• 9 = actual/360 (ICMA)

• 10 = actual/365 (ICMA)

• 11 = 30/360E (ICMA)

• 12 = actual/actual (ISDA)

• 13 = BUS/252
For more information, see basis.

Description Price = cfbyzero(RateSpec, CFlowAmounts, CFlowDates,
Settle, Basis) computes Price, an NINST-by-NUMCURVES matrix of
cash flows prices. Each column arises from one of the zero curves.

Examples Price a portfolio containing two cash flow instruments paying interest
annually over the four-year period from January 1, 2000 to January
1, 2004.

Load the file deriv.mat, which provides ZeroRateSpec. The
ZeroRateSpec structure contains the interest-rate information needed
to price the instruments.

load deriv.mat

CFlowAmounts =[5 NaN 5.5 105;5 0 6 105];

CFlowDates = [730852, NaN, 731582,731947;

730852, 731217, 731582, 731947];

Settle = 730486;

Price = cfbyzero(ZeroRateSpec, CFlowAmounts, CFlowDates, Settle)

Price =

96.7804

97.2187

6-184

cfbyzero

See Also bondbyzero | fixedbyzero | floatbyzero | swapbyzero

6-185

chooserbybls

Purpose Price European simple chooser options using Black-Scholes model

Syntax Price = chooserbybls(RateSpec, StockSpec, Settle,
Maturity, Strike)

Arguments

RateSpec The annualized continuously compounded rate
term structure. For information on the interest
rate specification, see intenvset.

StockSpec Stock specification. See stockspec.

Settle NINST-by-1 vector of settlement or trade dates.

Maturity NINST-by-1 vector of maturity dates.

Strike NINST-by-1 vector of strike price values.

ChooseDate NINST-by-1 vector of chooser dates.

Description Price = chooserbybls(RateSpec, StockSpec, Settle, Maturity,
Strike) computes the price for European simple chooser options using
the Black-Scholes model.

Price is a NINST-by-1 vector of expected prices.

Note Only dividends of type continuous can be considered for
choosers.

Examples Consider a European chooser option with an exercise price of $60 on
June 1, 2007. The option expires on December 2, 2007. Assume the
underlying stock provides a continuous dividend yield of 5% per annum,
is trading at $50, and has a volatility of 20% per annum. The annualized
continuously compounded risk-free rate is 10% per annum. Assume
that the choice must be made on August 31, 2007. Using this data:

6-186

chooserbybls

AssetPrice = 50;
Strike = 60;
Settlement = 'Jun-1-2007';
Maturity = 'Dec-2-2007';
ChooseDate = 'Aug-31-2007';
RiskFreeRate = 0.1;
Sigma = 0.20;
Yield = 0.05

Define the RateSpec and StockSpec:

RateSpec = intenvset('Compounding', -1, 'Rates', RiskFreeRate, 'StartDates',...

Settlement, 'EndDates', Maturity);

StockSpec = stockspec(Sigma, AssetPrice,'continuous',Yield);

Price the chooser option:

Price = chooserbybls(RateSpec, StockSpec, Settlement, Maturity,...

Strike, ChooseDate)

Price =

8.9308

References Rubinstein, Mark, “Options for the Undecided,” Risk 4, 1991.

See Also blsprice | intenvset

6-187

classfin

Purpose Create financial structure or return financial structure class name

Syntax Obj = classfin(ClassName)
Obj = classfin(Struct, ClassName)
ClassName = classfin(Obj)

Arguments

ClassName String containing the name of a financial structure
class.

Struct MATLAB structure to be converted into a financial
structure.

Obj Name of a financial structure.

Description Obj = classfin(ClassName) and Obj = classfin(Struct,
ClassName) create a financial structure of class ClassName.

ClassName = classfin(Obj) returns a string containing a financial
structure’s class name.

Examples Example 1. Create an HJMTimeSpec financial structure and complete
its fields. (Typically, the function hjmtimespec is used to create
HJMTimeSpec structures).

TimeSpec = classfin('HJMTimeSpec');
TimeSpec.ValuationDate = datenum('Dec-10-1999');
TimeSpec.Maturity = datenum('Dec-10-2002');
TimeSpec.Compounding = 2;
TimeSpec.Basis = 0;
TimeSpec.EndMonthRule = 1;
TimeSpec =

FinObj: 'HJMTimeSpec'
ValuationDate: 730464

Maturity: 731560

6-188

classfin

Compounding: 2
Basis: 0

EndMonthRule: 1

Example 2. Convert an existing MATLAB structure into a financial
structure.

TSpec.ValuationDate = datenum('Dec-10-1999');
TSpec.Maturity = datenum('Dec-10-2002');
TSpec.Compounding = 2;
TSpec.Basis = 0;
TSpec.EndMonthRule = 0;
TimeSpec = classfin(TSpec, 'HJMTimeSpec')

TimeSpec =

ValuationDate: 730464
Maturity: 731560

Compounding: 2
Basis: 0

EndMonthRule: 0
FinObj: 'HJMTimeSpec'

Example 3. Obtain a financial structure’s class name.

load deriv.mat
ClassName = classfin(HJMTree)
ClassName =

HJMFwdTree

See Also isafin

6-189

compoundbycrr

Purpose Price compound option from Cox-Ross-Rubinstein binomial tree

Syntax [Price, PriceTree] = compoundbycrr(CRRTree, UOptSpec, UStrike,
USettle, UExerciseDates, UAmericanOpt, COptSpec,
CStrike, CSettle, CExerciseDates, CAmericanOpt)

Arguments

CRRTree Stock tree structure created by crrtree.

UOptSpec String = 'Call' or 'Put'.

UStrike 1-by-1 vector of strike price values.

USettle 1-by-1 vector of Settle dates.

UExerciseDates For a European option (UAmericanOpt = 0):

1-by-1 vector of exercise dates. For a European
option, there is only one exercise date, the
option expiry date.

For an American option (UAmericanOpt = 1):

1-by-2 vector of exercise date boundaries. The
option can be exercised on any tree date. If only
one non-NaN date is listed, or if ExerciseDates
is 1-by-1, the option can be exercised between
the valuation date of the stock tree and the
single listed exercise date.

UAmericanOpt If UAmericanOpt = 0, NaN, or is unspecified, the
option is a European option. If UAmericanOpt
= 1, the option is an American option.

COptSpec NINST-by-1 list of string values 'Call' or 'Put'
of the compound option.

CStrike NINST-by-1 vector of strike price values. Each
row is the schedule for one option.

6-190

compoundbycrr

CSettle 1-by-1 vector containing the settlement or trade
date.

CExerciseDates For a European option (CAmericanOpt = 0):

NINST-by-1 vector of exercise dates. Each row
is the schedule for one option. For a European
option, there is only one exercise date, the
option expiry date.

For an American option (CAmericanOpt = 1):

NINST-by-2 vector of exercise date boundaries.
For each instrument, the option can be
exercised on any tree date between or including
the pair of dates on that row. If only one
non-NaN date is listed, or if ExerciseDates is
NINST-by-1, the option can be exercised between
the valuation date of the stock tree and the
single listed exercise date.

CAmericanOpt (Optional) If CAmericanOpt = 0, NaN, or is
unspecified, the option is a European option. If
CAmericanOpt = 1, the option is an American
option.

Description [Price, PriceTree] = compoundbycrr(CRRTree, UOptSpec,
UStrike, USettle, UExerciseDates, UAmericanOpt, COptSpec,
CStrike, CSettle, CExerciseDates, CAmericanOpt) calculates
the value of a compound option.

Price is a NINST-by-1 vector of expected prices at time 0.

PriceTree is a tree structure with a vector of instrument prices at
each node.

6-191

compoundbycrr

Examples Price a compound option using a CRR binomial tree.

Load the file deriv.mat, which provides CRRTree. The CRRTree
structure contains the stock specification and time information needed
to price the option.

load deriv.mat

Set the required values. Other arguments will use defaults.

UOptSpec = 'Call';

UStrike = 130;

USettle = '01-Jan-2003';

UExerciseDates = '01-Jan-2006';

UAmericanOpt = 1;

COptSpec = 'Put';

CStrike = 5;

CSettle = '01-Jan-2003';

CExerciseDates = '01-Jan-2005';

Price = compoundbycrr(CRRTree, UOptSpec, UStrike, USettle, ...

UExerciseDates, UAmericanOpt, COptSpec, CStrike, CSettle, ...

CExerciseDates)

Price =

2.8482

References Rubinstein, Mark, “Double Trouble,” Risk 5, 1991, p. 73.

See Also crrtree | instcompound

6-192

compoundbyeqp

Purpose Price compound option from Equal Probabilities binomial tree

Syntax [Price, PriceTree] = compoundbyeqp(EQPTree, UOptSpec, UStrike,
USettle, UExerciseDates, UAmericanOpt, COptSpec,
CStrike, CSettle, CExerciseDates, CAmericanOpt)

Arguments

EQPTree Stock tree structure created by eqptree.

UOptSpec String = 'Call' or 'Put'.

UStrike 1-by-1 vector of strike price values.

USettle 1-by-1 vector of Settle dates.

UExerciseDates For a European option (UAmericanOpt = 0):

1-by-1 vector of exercise dates. For a European
option, there is only one exercise date, the
option expiry date.

For an American option (UAmericanOpt = 1):

1-by-2 vector of exercise date boundaries. The
option can be exercised on any tree date. If only
one non-NaN date is listed, or if ExerciseDates
is 1-by-1, the option can be exercised between
the valuation date of the stock tree and the
single listed exercise date.

UAmericanOpt If UAmericanOpt = 0, NaN, or is unspecified, the
option is a European option. If UAmericanOpt
= 1, the option is an American option.

COptSpec NINST-by-1 list of string values 'Call' or 'Put'
of the compound option.

CStrike NINST-by-1 vector of strike price values. Each
row is the schedule for one option.

6-193

compoundbyeqp

CSettle 1-by-1 vector containing the settlement or trade
date.

CExerciseDates For a European option (CAmericanOpt = 0):

NINST-by-1 vector of exercise dates. Each row
is the schedule for one option. For a European
option, there is only one exercise date, the
option expiry date.

For an American option (CAmericanOpt = 1):

NINST-by-2 vector of exercise date boundaries.
For each instrument, the option can be
exercised on any tree date between or including
the pair of dates on that row. If only one
non-NaN date is listed, or if ExerciseDates
is NINST-by-1, the option can be exercised
between the valuation date of the stock tree
and the single listed exercise date.

CAmericanOpt If CAmericanOpt = 0, NaN, or is unspecified, the
option is a European option. If CAmericanOpt
= 1, the option is an American option.

Description [Price, PriceTree] = compoundbyeqp(EQPTree, UOptSpec,
UStrike, USettle, UExerciseDates, UAmericanOpt, COptSpec,
CStrike, CSettle, CExerciseDates, CAmericanOpt) calculates
the value of a compound option.

Price is a NINST-by-1 vector of expected prices at time 0.

PriceTree is a tree structure with a vector of instrument prices at
each node.

6-194

compoundbyeqp

Examples Price a compound option using an EQP equity tree.

Load the file deriv.mat, which provides EQPTree. The EQPTree
structure contains the stock specification and time information needed
to price the option.

load deriv.mat

Set the required values. Other arguments will use defaults.

UOptSpec = 'Call';

UStrike = 130;

USettle = '01-Jan-2003';

UExerciseDates = '01-Jan-2006';

UAmericanOpt = 1;

COptSpec = 'Put';

CStrike = 5;

CSettle = '01-Jan-2003';

CExerciseDates = '01-Jan-2005';

Price = compoundbyeqp(EQPTree, UOptSpec, UStrike, USettle, ...

UExerciseDates, UAmericanOpt, COptSpec, CStrike, CSettle, ...

CExerciseDates)

Price =

3.3931

References Rubinstein, Mark, “Double Trouble,” Risk 5, 1991, p. 73

See Also eqptree | instcompound

6-195

compoundbyitt

Purpose Price compound options using implied trinomial tree (ITT)

Syntax [Price, PriceTree] = compoundbyitt(ITTTree, UOptSpec, UStrike,
USettle, UExerciseDates, UAmericanOpt, COptSpec,
CStrike, CSettle, CExerciseDates, CAmericanOpt)

Arguments

ITTTree Stock tree structure created by itttree.

UOptSpec String = 'call' or 'put'.

UStrike 1-by-1 vector of strike price values.

USettle 1-by-1 vector of Settle dates.

UExerciseDates For a European option (UAmericanOpt = 0):

1-by-1 vector of exercise dates. For a European
option, there is only one exercise date, the option
expiry date.

For an American option (UAmericanOpt = 1):

1-by-2 vector of exercise date boundaries. The
option can be exercised on any tree date. If only
one non-NaN date is listed, or if ExerciseDates is
1-by-1, the option can be exercised between the
valuation date of the stock tree and the single
listed exercise date.

UAmericanOpt If UAmericanOpt = 0, NaN, or is unspecified, the
option is a European option. If UAmericanOpt =
1, the option is an American option.

COptSpec NINST-by-1 list of string values 'Call' or 'Put'
of the compound option.

CStrike NINST-by-1 vector of strike price values. Each
row is the schedule for one option.

6-196

compoundbyitt

CSettle 1-by-1 vector containing the settlement or trade
date.

CExerciseDates For a European option (CAmericanOpt = 0):

NINST-by-1 vector of exercise dates. Each row
is the schedule for one option. For a European
option, there is only one exercise date, the option
expiry date.

For an American option (CAmericanOpt = 1):

NINST-by-2 vector of exercise date boundaries.
For each instrument, the option can be exercised
on any tree date between or including the pair
of dates on that row. If only one non-NaN date
is listed, or if ExerciseDates is NINST-by-1, the
option can be exercised between the valuation
date of the stock tree and the single listed
exercise date.

CAmericanOpt (Optional) If CAmericanOpt = 0, NaN, or is
unspecified, the option is a European option. If
CAmericanOpt = 1, the option is an American
option.

Description [Price, PriceTree] = compoundbyitt(ITTTree, UOptSpec,
UStrike, USettle, UExerciseDates, UAmericanOpt, COptSpec,
CStrike, CSettle, CExerciseDates, CAmericanOpt) calculates the
value of a compound option by an ITT trinomial tree.

Price is a NINST-by-1 vector of expected prices at time 0.

PriceTree is a tree structure with a vector of instrument prices at
each node.

Note The Settle date is set to the ValuationDate of the stock tree.

6-197

compoundbyitt

Examples Price a compound option using an ITT tree.

Load the file deriv.mat which provides the ITTTree. The ITTTree
structure contains the stock specification and time information needed
to price the option.

load deriv.mat

Set the required values. Other arguments will use defaults.

UOptSpec = 'Call';

UStrike = 99;

USettle = '01-Jan-2006';

UExerciseDates = '01-Jan-2010';

UAmericanOpt = 1;

COptSpec = 'Put';

CStrike = 5;

CSettle = '01-Jan-2006';

CExerciseDates = '01-Jan-2010';

Price = compoundbyitt(ITTTree, UOptSpec, UStrike, USettle, ...

UExerciseDates, UAmericanOpt, COptSpec, CStrike, CSettle, ...

CExerciseDates)

Price =

2.727

References Rubinstein, Mark, “Double Trouble,” Risk 5, 1991.

See Also instcompound | itttree

6-198

crrprice

Purpose Instrument prices from Cox-Ross-Rubinstein tree

Syntax [Price, PriceTree] = crrprice(CRRTree, InstSet, Options)

Arguments

CRRTree Stock price tree structure created by crrtree.

InstSet Variable containing a collection of NINST instruments.
Instruments are categorized by type; each type can
have different data fields. The stored data field
is a row vector or string for each instrument. For
more information about how to create the InstSet
structure, see instadd.

Options (Optional) Derivatives pricing options structure
created with derivset.

Description [Price, PriceTree] = crrprice(CRRTree, InstSet, Options)
computes stock option prices using a CRR binomial tree created with
crrtree.

Price is a number of instruments (NINST)-by-1 vector of prices for
each instrument. The prices are computed by backward dynamic
programming on the stock tree. If an instrument cannot be priced, NaN
is returned.

PriceTree is a MATLAB structure of trees containing vectors of
instrument prices and a vector of observation times for each node.

PriceTree.PTree contains the prices.

PriceTree.tObs contains the observation times.

PriceTree.dObs contains the observation dates.

crrprice handles instrument types: 'Asian', 'Barrier', 'Compound',
'Lookback', 'OptStock'. See instadd to construct defined types.

Related single-type pricing functions are:

6-199

crrprice

• asianbycrr: Price an Asian option from a CRR tree.

• barrierbycrr: Price a barrier option from a CRR tree.

• compoundbycrr: Price a compound option from a CRR tree.

• lookbackbycrr: Price a lookback option from a CRR tree.

• optstockbycrr: Price an American, Bermuda, or European option
from a CRR tree.

Examples Load the CRR tree and instruments from the data file deriv.mat. Price
the barrier and lookback options contained in the instrument set.

load deriv.mat;

CRRSubSet = instselect(CRRInstSet,'Type', ...

{'Barrier', 'Lookback'});

instdisp(CRRSubSet)

%Table of instrument portfolio partially displayed:

Index Type OptSpec Strike Settle ExerciseDates AmericanOpt BarrierSpec ...

1 Barrier call 105 01-Jan-2003 01-Jan-2006 1 ui ...

Index Type OptSpec Strike Settle ExerciseDates AmericanOpt Name Quantity

2 Lookback call 115 01-Jan-2003 01-Jan-2006 0 Lookback1 7

3 Lookback call 115 01-Jan-2003 01-Jan-2007 0 Lookback2 9

[Price, PriceTree] = crrprice(CRRTree, CRRSubSet)

Price =

12.1272

7.6015

11.7772

PriceTree =

6-200

crrprice

FinObj: 'BinPriceTree'

PTree: {1x5 cell}

tObs: [0 1 2 3 4]

dObs: [731582 731947 732313 732678 733043]

You can use treeviewer to see the prices of these three instruments
along the price tree.

treeviewer(PriceTree, CRRSubSet)

6-201

crrprice

See Also crrsens | crrtree | instadd

6-202

crrsens

Purpose Instrument prices and sensitivities from Cox-Ross-Rubinstein tree

Syntax [Delta, Gamma, Vega, Price] = crrsens(CRRTree, InstSet,
Options)

Arguments

CRRTree Interest-rate tree structure created by crrtree.

InstSet Variable containing a collection of NINST instruments.
Instruments are categorized by type; each type can
have different data fields. The stored data field is a
row vector or string for each instrument.

Options (Optional) Derivatives pricing options structure
created with derivset.

Description [Delta, Gamma, Vega, Price] = crrsens(CRRTree, InstSet,
Options) computes dollar sensitivities and prices for instruments
using a binomial tree created with crrtree. NINST instruments from a
financial instrument variable, InstSet, are priced. crrsens handles
instrument types: 'Asian', 'Barrier', 'Compound', 'Lookback',
'OptStock'. See instadd for information on instrument types.

Delta is an NINST-by-1 vector of deltas, representing the rate of change
of instrument prices with respect to changes in the stock price. Delta
is computed by finite differences in calls to crrtree. See crrtree for
information on the stock tree.

Gamma is an NINST-by-1 vector of gammas, representing the rate of
change of instrument deltas with respect to the changes in the stock
price. Gamma is computed by finite differences in calls to crrtree.

Vega is an NINST-by-1 vector of vegas, representing the rate of change
of instrument prices with respect to the changes in the volatility of the
stock. Vega is computed by finite differences in calls to crrtree.

6-203

crrsens

Note All sensitivities are returned as dollar sensitivities. To find the
per-dollar sensitivities, divide by the respective instrument price.

Examples Load the CRR tree and instruments from the data file deriv.mat.
Compute the Delta and Gamma sensitivities of the barrier and lookback
options contained in the instrument set.

load deriv.mat;

CRRSubSet = instselect(CRRInstSet,'Type', ...

{'Barrier', 'Lookback'});

instdisp(CRRSubSet)

%Table of instrument portfolio partially displayed:

Index Type OptSpec Strike Settle ExerciseDates AmericanOpt BarrierSpec ...

1 Barrier call 105 01-Jan-2003 01-Jan-2006 1 ui ...

Index Type OptSpec Strike Settle ExerciseDates AmericanOpt Name Quantity

2 Lookback call 115 01-Jan-2003 01-Jan-2006 0 Lookback1 7

3 Lookback call 115 01-Jan-2003 01-Jan-2007 0 Lookback2 9

[Delta, Gamma] = crrsens(CRRTree, CRRSubSet)

Delta =

0.6885

0.6049

0.8187

Gamma =

0.0310

-0.0000

0.0000

6-204

crrsens

See Also crrprice | crrtree

6-205

crrtimespec

Purpose Specify time structure for Cox-Ross-Rubinstein tree

Syntax TimeSpec = crrtimespec(ValuationDate, Maturity, NumPeriods)

Arguments

ValuationDate Scalar date indicating the pricing date and first
observation in the tree. A serial date number or
date string.

Maturity Scalar date indicating depth of the tree.

NumPeriods Scalar determining number of time steps in the
tree.

Description TimeSpec = crrtimespec(ValuationDate, Maturity, NumPeriods)
sets the number of levels and node times for a CRR binomial tree.

TimeSpec is a structure specifying the time layout for a CRR binomial
tree.

Examples Specify a four-period CRR tree with time steps of 1 year.

ValuationDate = '1-July-2002';
Maturity = '1-July-2006';
TimeSpec = crrtimespec(ValuationDate, Maturity, 4)

TimeSpec =

FinObj: 'BinTimeSpec'
ValuationDate: 731398

Maturity: 732859
NumPeriods: 4

Basis: 0
EndMonthRule: 1

tObs: [0 1 2 3 4]
dObs: [1x5 double]

6-206

crrtimespec

See Also crrtree | stockspec

6-207

crrtree

Purpose Construct Cox-Ross-Rubinstein stock tree

Syntax CRRTree = crrtree(StockSpec, RateSpec, TimeSpec)

Arguments

StockSpec Stock specification. See stockspec for information on
creating a stock specification.

RateSpec Interest-rate specification for the initial risk free rate
curve. See intenvset for information on declaring
an interest-rate variable.

TimeSpec Tree time layout specification. Defines the
observation dates of the CRR binomial tree. See
crrtimespec for information on the tree structure.

Note The standard CRR tree assumes a constant interest rate, but
RateSpec allows you to specify an interest-rate curve with varying
rates. If you specify variable interest rates, the resulting tree will not
be a standard CRR tree.

Description CRRTree = crrtree(StockSpec, RateSpec, TimeSpec) creates a
structure specifying the time layout for a CRR binomial tree.

Examples Using the data provided, create a stock specification (StockSpec), rate
specification (RateSpec), and tree time layout specification (TimeSpec).
Then use these specifications to create a CRR tree with crrtree.

Sigma = 0.20;

AssetPrice = 50;

DividendType = 'cash';

DividendAmounts = [0.50; 0.50; 0.50; 0.50];

ExDividendDates = {'03-Jan-2003'; '01-Apr-2003'; '05-July-2003';

6-208

crrtree

'01-Oct-2003'}

StockSpec = stockspec(Sigma, AssetPrice, DividendType, ...

DividendAmounts, ExDividendDates)

StockSpec =

FinObj: 'StockSpec'

Sigma: 0.2000

AssetPrice: 50

DividendType: 'cash'

DividendAmounts: [4x1 double]

ExDividendDates: [4x1 double]

RateSpec = intenvset('Rates', 0.05, 'StartDates',...

'01-Jan-2003', 'EndDates', '31-Dec-2003')

RateSpec =

FinObj: 'RateSpec'

Compounding: 2

Disc: 0.9519

Rates: 0.0500

EndTimes: 1.9945

StartTimes: 0

EndDates: 731946

StartDates: 731582

ValuationDate: 731582

Basis: 0

EndMonthRule: 1

ValuationDate = '1-Jan-2003';

Maturity = '31-Dec-2003';

TimeSpec = crrtimespec(ValuationDate, Maturity, 4)

TimeSpec =

6-209

crrtree

FinObj: 'BinTimeSpec'

ValuationDate: 731582

Maturity: 731946

NumPeriods: 4

Basis: 0

EndMonthRule: 1

tObs: [0 0.2493 0.4986 0.7479 0.9972]

dObs: [731582 731673 731764 731855 731946]

CRRTree = crrtree(StockSpec, RateSpec, TimeSpec)

CRRTree =

FinObj: 'BinStockTree'

Method: 'CRR'

StockSpec: [1x1 struct]

TimeSpec: [1x1 struct]

RateSpec: [1x1 struct]

tObs: [0 0.2493 0.4986 0.7479 0.9972]

dObs: [731582 731672 731763 731856 731946]

STree: {1x5 cell}

UpProbs: [0.5370 0.5370 0.5370 0.5370]

Use treeviewer to observe the tree you have created.

6-210

crrtree

See Also crrtimespec | intenvset | stockspec

6-211

cvtree

Purpose Convert inverse-discount tree to interest-rate tree

Syntax RateTree = cvtree(Tree)

Arguments

Tree Heath-Jarrow-Morton, Black-Derman-Toy, Hull-White,
or Black-Karasinski tree structure using inverse-discount
notation for forward rates.

Description RateTree = cvtree(Tree) converts a tree structure using
inverse-discount notation to a tree structure using rate notation for
forward rates.

Examples Convert a Hull-White tree using inverse-discount notation to a
Hull-White tree displaying interest-rate notation.

load deriv.mat;

HWTree

HWTree =

FinObj: 'HWFwdTree'

VolSpec: [1x1 struct]

TimeSpec: [1x1 struct]

RateSpec: [1x1 struct]

tObs: [0 1 2 3]

dObs: [731947 732313 732678 733043]

CFlowT: {[4x1 double] [3x1 double] [2x1 double] [4]}

Probs: {[3x1 double] [3x3 double] [3x5 double]}

Connect: {[2] [2 3 4] [2 2 3 4 4]}

FwdTree: {1x4 cell}

HWTree.FwdTree{1}

6-212

cvtree

ans =

1.0279

HWTree.FwdTree{2}

ans =

1.0528 1.0356 1.0186

Use treeviewer to display the path of interest rates expressed in
inverse-discount notation.

treeviewer(HWTree)

Use cvtree to convert the inverse-discount notation to interest-rate
notation.

RTree = cvtree(HWTree)

6-213

cvtree

RTree =

FinObj: 'HWRateTree'

VolSpec: [1x1 struct]

TimeSpec: [1x1 struct]

RateSpec: [1x1 struct]

tObs: [0 1 2 3]

dObs: [731947 732313 732678 733043]

CFlowT: {[4x1 double] [3x1 double] [2x1 double] [4]}

Probs: {[3x1 double] [3x3 double] [3x5 double]}

Connect: {[2] [2 3 4] [2 2 3 4 4]}

RateTree: {1x4 cell}

RTree.RateTree{1}

ans =

0.0275

RTree.RateTree{2}

ans =

0.0514 0.0349 0.0185

Now use treeviewer to display the converted tree, showing the path
of interest rates expressed as forward rates.

6-214

cvtree

See Also disc2rate | rate2disc

6-215

date2time

Purpose Time and frequency from dates

Syntax [Times, F] = date2time(Settle, Dates, Compounding, Basis,
EndMonthRule)

Arguments

Settle Settlement date. A vector of serial date numbers
or date strings.

Dates Vector of dates corresponding to the compounding
value.

Compounding (Optional) Scalar value representing the rate at
which the input zero rates were compounded
when annualized. This argument determines the
formula for the discount factors:

Compounding = 1, 2, 3, 4, 6, 12 (Default = 2.)

Disc = (1 + Z/F)^(-T), where F is the
compounding frequency, Z is the zero rate, and
T is the time in periodic units; for example, T =
F is 1 year.

Compounding = 365

Disc = (1 + Z/F)^(-T), where F is the number
of days in the basis year and T is a number of
days elapsed computed by basis.

Compounding = -1

Disc = exp(-T*Z), where T is time in years.

6-216

date2time

Basis (Optional) Day-count basis of the instrument. A
vector of integers.

• 0 = actual/actual (default)

• 1 = 30/360 (SIA)

• 2 = actual/360

• 3 = actual/365

• 4 = 30/360 (BMA)

• 5 = 30/360 (ISDA)

• 6 = 30/360 (European)

• 7 = actual/365 (Japanese)

• 8 = actual/actual (ICMA)

• 9 = actual/360 (ICMA)

• 10 = actual/365 (ICMA)

• 11 = 30/360E (ICMA)

• 12 = actual/actual (ISDA)

• 13 = BUS/252
For more information, see basis.

EndMonthRule (Optional) End-of-month rule. A vector. This rule
applies only when Maturity is an end-of-month
date for a month having 30 or fewer days. 0
= ignore rule, meaning that a bond’s coupon
payment date is always the same numerical day
of the month. 1 = set rule on (default), meaning
that a bond’s coupon payment date is always the
last actual day of the month.

6-217

date2time

Description [Times, F] = date2time(Settle, Dates, Compounding, Basis,
EndMonthRule) computes time factors appropriate to compounded rate
quotes beyond the settlement date.

Times is a vector of time factors.

F is a scalar of related compounding frequencies.

Note To obtain accurate results from this function, the Basis and
Dates arguments must be consistent. If the Dates argument contains
months that have 31 days, Basis must be one of the values that allow
months to contain more than 30 days; for example, Basis = 0, 3, or 7.

date2time is the inverse of time2date.

See Also cftimes | disc2rate | rate2disc | time2date

6-218

datedisp

Purpose Display date entries

Syntax datedisp(NumMat, DateForm)
CharMat = datedisp(NumMat, DateForm)

Arguments

NumMat Numeric matrix to display.

DateForm (Optional) Date format. See datestr for available
and default format flags.

Description datedisp(NumMat, DateForm) displays the matrix with the
serial dates formatted as date strings, using a matrix with mixed
numeric entries and serial date number entries. Integers between
datenum('01-Jan-1900') and datenum('01-Jan-2200') are assumed
to be serial date numbers, while all other values are treated as numeric
entries.

CharMat is a character array representing NumMat. If no output variable
is assigned, the function prints the array to the display (CharMat =
datedisp(NumMat, DateForm)).

Examples NumMat = [730730, 0.03, 1200, 730100;
730731, 0.05, 1000, NaN]

NumMat =

1.0e+05 *

7.3073 0.0000 0.0120 7.3010
7.3073 0.0000 0.0100 NaN

datedisp(NumMat)
01-Sep-2000 0.03 1200 11-Dec-1998
02-Sep-2000 0.05 1000 NaN

6-219

datedisp

Tips This function is identical to the datedisp function in Financial Toolbox
software.

See Also datenum | datestr

6-220

derivget

Purpose Get derivatives pricing options

Syntax Value = derivget(Options, 'Parameter')

Arguments

Options Existing options specification structure, probably
created from previous call to derivset.

Parameter Must be 'Diagnostics', 'Warnings', 'ConstRate',
or 'BarrierMethod'. It is sufficient to type only
the leading characters that uniquely identify the
parameter. Case is ignored for parameter names.

Description Value = derivget(Options, 'Parameter') extracts the value of
the named parameter from the derivative options structure Options.
Parameter values can be 'off' or 'on', except for 'BarrierMethod',
which can be 'unenhanced' or 'interp'. Specifying 'unenhanced'
uses no correction calculation. Specifying 'interp' uses an enhanced
valuation interpolating between nodes on barrier boundaries.

Examples Example 1. Create an Options structure with the value of Diagnostics
set to 'on'.

Options = derivset('Diagnostics','on')

Use derivget to extract the value of Diagnostics from the Options
structure.

Value = derivget(Options, 'Diagnostics')

Value =

on

Example 2. Use derivget to extract the value of ConstRate.

6-221

derivget

Value = derivget(Options, 'ConstRate')

Value =

on

Because the value of 'ConstRate' was not previously set with
derivset, the answer represents the default setting for 'ConstRate'.

Example 3. Find the value of 'BarrierMethod' in this structure.

derivget(Options ,'BarrierMethod')

ans =

unenhanced

See Also barrierbycrr | barrierbyeqp | derivset

6-222

derivset

Purpose Set or modify derivatives pricing options

Syntax Options = derivset(Options, 'Parameter1', Value1,
... 'Parameter4', Value4)
Options = derivset(OldOptions, NewOptions)
Options = derivset
derivset

Arguments

Options (Optional) Existing options specification structure,
probably created from a previous call to derivset.

Parametern The parameter must be 'Diagnostics', 'Warnings',
'ConstRate', or 'BarrierMethod'. Parameters can
be entered in any order.

Valuen (BDT, BK, HJM, or HW pricing only) The parameter
values for the following three options can be 'on' or
'off':

• 'Diagnostics' 'on' generates diagnostic
information. The default is 'Diagnostics' 'off'.

• 'Warnings' 'on' (default) displays a warning
message when executing a pricing function.

• 'ConstRate' 'on' (default) assumes a constant
rate between tree nodes.

For pricing barrier options, the 'BarrierMethod'
pricing option can be 'unenhanced' (default)
or 'interp'. Specifying 'unenhanced' uses no
correction calculation. Specifying 'interp' uses an
enhanced valuation interpolating between nodes on
barrier boundaries.

6-223

derivset

OldOptions Existing options specification structure.

NewOptions New options specification structure.

Description Options = derivset(Options, 'Parameter1', Value1, ...
'Parameter4', Value4) creates a derivatives pricing options structure
Options in which the named parameters have the specified values. Any
unspecified value is set to the default value for that parameter when
Options is passed to the pricing function. It is sufficient to type only the
leading characters that uniquely identify the parameter name. Case is
also ignored for parameter names.

If the optional input argument Options is specified, derivset modifies
an existing pricing options structure by changing the named parameters
to the specified values.

Note For parameter values, correct case and the complete string are
required; if an invalid string is provided, the default is used.

Options = derivset(OldOptions, NewOptions) combines an
existing options structure OldOptions with a new options structure
NewOptions. Any parameters in NewOptions with nonempty values
overwrite the corresponding old parameters in OldOptions.

Options = derivset creates an options structure Options whose fields
are set to the default values.

derivset with no input or output arguments displays all parameter
names and information about their possible values.

Examples Options = derivset('Diagnostics','on')

enables the display of additional diagnostic information that appears
when executing pricing functions.

6-224

derivset

Options = derivset(Options, 'ConstRate', 'off')

changes the ConstRate parameter in the existing Options structure so
that the assumption of constant rates between tree nodes no longer
applies.

With no input or output arguments derivset displays all parameter
names and information about their possible values.

derivset
Diagnostics: [on | {off}]

Warnings: [{on} | off]
ConstRate: [{on} | off]

BarrierMethod: [{unenhanced} | interp]

See Also barrierbycrr | barrierbyeqp | derivget

6-225

disc2rate

Purpose Interest rates from cash flow discounting factors

Syntax Usage 1: Interval points are input as times in periodic units.

Rates = disc2rate(Compounding, Disc, EndTimes)

Rates = disc2rate(Compounding, Disc, EndTimes, StartTimes)

Usage 2: ValuationDate is passed and interval points are input as
dates.
[Rates, EndTimes, StartTimes] = disc2rate(Compounding, Disc,
EndDates, StartDates, ValuationDate)
[Rates, EndTimes, StartTimes] = disc2rate(Compounding, Disc,
EndDates, StartDates, ValuationDate, Basis, EndMonthRule)

Arguments

Compounding Scalar value representing the rate at which
the input zero rates were compounded when
annualized. This argument determines the
formula for the discount factors:

Compounding = 1, 2, 3, 4, 6, 12

Disc = (1 + Z/F)^(-T), where F is the
compounding frequency, Z is the zero rate, and
T is the time in periodic units; for example, T =
F is 1 year.

Compounding = 365

Disc = (1 + Z/F)^(-T), where F is the number
of days in the basis year and T is a number of
days elapsed computed by basis.

Compounding = -1

Disc = exp(-T*Z), where T is time in years.

Disc Number of points (NPOINTS) by number of
curves (NCURVES) matrix of discounts. Disc are

6-226

disc2rate

unit bond prices over investment intervals from
StartTimes, when the cash flow is valued, to
EndTimes, when the cash flow is received.

EndTimes NPOINTS-by-1 vector or scalar of times in periodic
units ending the interval to discount over.

Note When ValuationDate is not passed,
the EndTimes and StartTimes arguments are
interpreted as times.

StartTimes (Optional) NPOINTS-by-1 vector or scalar of times
in periodic units starting the interval to discount
over. Default = 0.

EndDates NPOINTS-by-1 vector or scalar of serial maturity
dates ending the interval to discount over.

Note When ValuationDate is passed, EndDates
and StartDates arguments are interpreted as
dates. The date ValuationDate is used as the
zero point for computing the times.

StartDates (Optional) NPOINTS-by-1 vector or scalar of serial
dates starting the interval to discount over.
Default = ValuationDate. StartDates must be
earlier than EndDates.

ValuationDate Scalar value in serial date number form
representing the observation date of the
investment horizons entered in StartDates and
EndDates. Required in Usage 2. Omitted or
passed as an empty matrix to invoke Usage 1.

6-227

disc2rate

Basis (Optional) Day-count basis of the instrument
when using Usage 2. A vector of integers.

• 0 = actual/actual (default)

• 1 = 30/360 (SIA)

• 2 = actual/360

• 3 = actual/365

• 4 = 30/360 (BMA)

• 5 = 30/360 (ISDA)

• 6 = 30/360 (European)

• 7 = actual/365 (Japanese)

• 8 = actual/actual (ICMA)

• 9 = actual/360 (ICMA)

• 10 = actual/365 (ICMA)

• 11 = 30/360E (ICMA)

• 12 = actual/actual (ISDA)

• 13 = BUS/252
For more information, see basis.

EndMonthRule (Optional) End-of-month rule when using Usage
2. A vector. This rule applies only when Maturity
is an end-of-month date for a month having 30
or fewer days. 0 = ignore rule, meaning that a
bond’s coupon payment date is always the same
numerical day of the month. 1 = set rule on
(default), meaning that a bond’s coupon payment
date is always the last actual day of the month.Description Usage 1: Rates = disc2rate(Compounding, Disc, EndTimes) or

Rates = disc2rate(Compounding, Disc, EndTimes, StartTimes)
where interval points are input as times in periodic units.

Usage 2: [Rates, EndTimes, StartTimes] =
disc2rate(Compounding, Disc, EndDates, StartDates,
ValuationDate) or [Rates, EndTimes, StartTimes] =
disc2rate(Compounding, Disc, EndDates, StartDates,
ValuationDate, Basis, EndMonthRule) where ValuationDate is
passed and interval points are input as dates.

disc2rate computes the yields over a series of NPOINTS time intervals
given the cash flow discounts over those intervals. NCURVES different
rate curves can be translated at once if they have the same time
structure. The time intervals can represent a zero or a forward curve.

Rates is an NPOINTS-by-NCURVES column vector of yields in decimal form
over the NPOINTS time intervals.

Specify the investment intervals with either input times (Usage 1)
or input dates (Usage 2). Entering ValuationDate invokes the date
interpretation; omitting ValuationDate invokes the default time
interpretations.

For Usage 1:

• StartTimes is an NPOINTS-by-1 column vector of times starting the
interval to discount over, measured in periodic units.

6-228

disc2rate

• EndTimes is an NPOINTS-by-1 column vector of times ending the
interval to discount over, measured in periodic units.

For Usage 2:

• StartDates is an NPOINTS-by-1 column vector of serial dates starting
the interval to discount over, measured in days.

• EndDates is an NPOINTS-by-1 column vector of serial date ending the
interval to discount over, measured in days.

If Compounding = 365 (daily), StartTimes and EndTimes are measured
in days for Usage 2. Otherwise, for Usage 1, the arguments contain
values, T, computed from SIA semiannual time factors, Tsemi, by the
formula T = Tsemi/2 * F, where F is the compounding frequency.

See Also rate2disc | ratetimes

6-229

eqpprice

Purpose Instrument prices from Equal Probabilities binomial tree

Syntax [Price, PriceTree] = eqpprice(EQPTree, InstSet, Options)

Arguments

EQPTree Stock price tree structure created by eqptree.

InstSet Variable containing a collection of NINST instruments.
Instruments are categorized by type; each type can
have different data fields. The stored data field is a
row vector or string for each instrument.

Options (Optional) Derivatives pricing options structure
created with derivset.

Description [Price, PriceTree] = eqpprice(EQPTree, InstSet, Options)
computes stock option prices using an EQP binomial tree created with
eqptree.

Price is a number of instruments (NINST)-by-1 vector of prices for
each instrument. The prices are computed by backward dynamic
programming on the stock tree. If an instrument cannot be priced, NaN
is returned.

PriceTree is a MATLAB structure of trees containing vectors of
instrument prices and a vector of observation times for each node.

PriceTree.PTree contains the prices.

PriceTree.tObs contains the observation times.

PriceTree.dObs contains the observation dates.

eqpprice handles instrument types: 'Asian', 'Barrier', 'Compound',
'Lookback', 'OptStock'. See instadd to construct defined types.

Related single-type pricing functions are:

• asianbyeqp: Price an Asian option from an EQP tree.

6-230

eqpprice

• barrierbyeqp: Price a barrier option from an EQP tree.

• compoundbyeqp: Price a compound option from an EQP tree.

• lookbackbyeqp: Price a lookback option from an EQP tree.

• optstockbyeqp: Price an American, Bermuda, or European option
from an EQP tree.

Examples Load the EQP tree and instruments from the data file deriv.mat. Price
the put options contained in the instrument set.

load deriv.mat;

EQPSubSet = instselect(EQPInstSet, 'FieldName', 'OptSpec', ...

'Data', 'put')

instdisp(EQPSubSet)

%Table of instrument portfolio partially displayed:

Index Type OptSpec Strike Settle ExerciseDates AmericanOpt Name...

1 OptStock put 105 01-Jan-2003 01-Jan-2006 0 Put 105...

Index Type OptSpec Strike Settle ExerciseDates AmericanOpt AvgType...

2 Asian put 110 01-Jan-2003 01-Jan-2006 0 arithmetic...

3 Asian put 110 01-Jan-2003 01-Jan-2007 0 arithmetic...

[Price, PriceTree] = eqpprice(EQPTree, EQPSubSet)

Price =

2.6375

4.7444

3.9178

PriceTree =

FinObj: 'BinPriceTree'

6-231

eqpprice

PTree: {1x5 cell}

tObs: [0 1 2 3 4]

dObs: [731582 731947 732313 732678 733043]

You can use treeviewer to see the prices of these three instruments
along the price tree.

treeviewer(PriceTree, EQPSubSet)

See Also eqpsens | eqptimespec | eqptree

6-232

eqpsens

Purpose Instrument prices and sensitivities from Equal Probabilities binomial
tree

Syntax [Delta, Gamma, Vega, Price] = eqpsens(EQPTree, InstSet,
Options)

Arguments

EQPTree Interest-rate tree structure created by eqptree.

InstSet Variable containing a collection of NINST instruments.
Instruments are categorized by type; each type can
have different data fields. The stored data field is a
row vector or string for each instrument.

Options (Optional) Derivatives pricing options structure
created with derivset.

Description [Delta, Gamma, Vega, Price] = eqpsens(EQPTree, InstSet,
Options) computes dollar sensitivities and prices for instruments
using a binomial tree created with eqptree. NINST instruments from a
financial instrument variable, InstSet, are priced. eqpsens handles
instrument types: 'Asian', 'Barrier', 'Compound', 'Lookback', and
'OptStock'. See instadd for information on instrument types.

Delta is an NINST-by-1 vector of deltas, representing the rate of change
of instrument prices with respect to changes in the stock price. Delta
is computed by finite differences in calls to eqptree. See eqptree for
information on the stock tree.

Gamma is an NINST-by-1 vector of gammas, representing the rate of
change of instrument deltas with respect to the changes in the stock
price. Gamma is computed by finite differences in calls to eqptree.

Vega is an NINST-by-1 vector of vegas, representing the rate of change
of instrument prices with respect to the changes in the volatility of the
stock. Vega is computed by finite differences in calls to eqptree.

6-233

eqpsens

Note All sensitivities are returned as dollar sensitivities. To find the
per-dollar sensitivities, divide by the respective instrument price.

Examples Load the EQP tree and instruments from the data file deriv.mat.
Compute the Delta and Gamma sensitivities of the put options contained
in the instrument set.

load deriv.mat;

EQPSubSet = instselect(EQPInstSet, 'FieldName', 'OptSpec', ...

'Data', 'put')

instdisp(EQPSubSet)

%Table of instrument portfolio partially displayed:

Index Type OptSpec Strike Settle ExerciseDates AmericanOpt Name...

1 OptStock put 105 01-Jan-2003 01-Jan-2006 0 Put 105...

Index Type OptSpec Strike Settle ExerciseDates AmericanOpt AvgType...

2 Asian put 110 01-Jan-2003 01-Jan-2006 0 arithmetic...

3 Asian put 110 01-Jan-2003 01-Jan-2007 0 arithmetic...

[Delta, Gamma] = eqpsens(EQPTree, EQPSubSet)

Delta =

-0.2336

-0.5443

-0.4516

Gamma =

0.0218

0.0000

6-234

eqpsens

0.0000

See Also eqpprice | eqptree

6-235

eqptimespec

Purpose Specify time structure for Equal Probabilities binomial tree

Syntax TimeSpec = eqptimespec(ValuationDate, Maturity, NumPeriods)

Arguments

ValuationDate Scalar date indicating the pricing date and first
observation in the tree. A serial date number or
date string.

Maturity Scalar date indicating depth of the tree.

NumPeriods Scalar determining number of time steps in the
tree.

Description TimeSpec = eqptimespec(ValuationDate, Maturity, NumPeriods)
sets the number of levels and node times for an equal probabilities tree.

TimeSpec is a structure specifying the time layout for an equal
probabilities tree.

Examples Specify a four-period tree with time steps of 1 year.

ValuationDate = '1-July-2002';
Maturity = '1-July-2006';
TimeSpec = eqptimespec(ValuationDate, Maturity, 4)

TimeSpec =

FinObj: 'BinTimeSpec'
ValuationDate: 731398

Maturity: 732859
NumPeriods: 4

Basis: 0
EndMonthRule: 1

tObs: [0 1 2 3 4]
dObs: [1x5 double]

6-236

eqptimespec

See Also eqptree | stockspec

6-237

eqptree

Purpose Construct Equal Probabilities stock tree

Syntax EQPTree = eqptree(StockSpec, RateSpec, TimeSpec)

Arguments

StockSpec Stock specification. See stockspec for information on
creating a stock specification.

RateSpec Interest-rate specification for the initial risk free rate
curve. See intenvset for information on declaring
an interest-rate variable.

TimeSpec Tree time layout specification. Defines the
observation dates of the equal probabilities binomial
tree. See eqptimespec for information on the tree
structure.

Note The standard equal probabilities tree assumes a constant interest
rate, but RateSpec allows you to specify an interest-rate curve with
varying rates. If you specify variable interest rates, the resulting tree
will not be a standard equal probabilities tree.

Description EQPTree = eqptree(StockSpec, RateSpec, TimeSpec) constructs
an equal probabilities stock tree.

EQPTree is a MATLAB structure specifying the time layout for an equal
probabilities stock tree.

Examples Using the data provided, create a stock specification (StockSpec), rate
specification (RateSpec), and tree time layout specification (TimeSpec).
Then use these specifications to create an EQP tree with eqptree.

Sigma = 0.20;

AssetPrice = 50;

6-238

eqptree

DividendType = 'cash';

DividendAmounts = [0.50; 0.50; 0.50; 0.50];

ExDividendDates = {'03-Jan-2003'; '01-Apr-2003'; '05-July-2003';

'01-Oct-2003'}

StockSpec = stockspec(Sigma, AssetPrice, DividendType, ...

DividendAmounts, ExDividendDates)

StockSpec =

FinObj: 'StockSpec'

Sigma: 0.2000

AssetPrice: 50

DividendType: 'cash'

DividendAmounts: [4x1 double]

ExDividendDates: [4x1 double]

RateSpec = intenvset('Rates', 0.05, 'StartDates',...

'01-Jan-2003', 'EndDates', '31-Dec-2003')

RateSpec =

FinObj: 'RateSpec'

Compounding: 2

Disc: 0.9519

Rates: 0.0500

EndTimes: 1.9945

StartTimes: 0

EndDates: 731946

StartDates: 731582

ValuationDate: 731582

Basis: 0

EndMonthRule: 1

ValuationDate = '1-Jan-2003';

Maturity = '31-Dec-2003';

TimeSpec = eqptimespec(ValuationDate, Maturity, 4)

6-239

eqptree

TimeSpec =

FinObj: 'BinTimeSpec'

ValuationDate: 731582

Maturity: 731946

NumPeriods: 4

Basis: 0

EndMonthRule: 1

tObs: [0 0.2493 0.4986 0.7479 0.9972]

dObs: [731582 731673 731764 731855 731946]

EQPTree = eqptree(StockSpec, RateSpec, TimeSpec)

EQPTree =

FinObj: 'BinStockTree'

Method: 'EQP'

StockSpec: [1x1 struct]

TimeSpec: [1x1 struct]

RateSpec: [1x1 struct]

tObs: [0 0.2493 0.4986 0.7479 0.9972]

dObs: [731582 731672 731763 731856 731946]

STree: {1x5 cell}

UpProbs: [0.5000 0.5000 0.5000 0.5000]

Use treeviewer to observe the tree you have created.

6-240

eqptree

See Also eqptimespec | intenvset | stockspec

6-241

fixedbybdt

Purpose Price fixed-rate note from Black-Derman-Toy interest-rate tree

Syntax [Price, PriceTree] = fixedbybdt(BDTTree, CouponRate, Settle,
Maturity)
[Price, PriceTree] = fixedbybdt(BDTTree, CouponRate, Settle,
Maturity, Reset, Basis, Principal, Options, EndMonthRule)
[Price, PriceTree] = fixedbybdt(BDTTree, CouponRate, Settle,
Maturity, Name,Value)

Input
Arguments

BDTTree Interest-rate tree structure created by bdttree.

CouponRate Decimal annual rate.

Settle Settlement dates. Number of instruments
(NINST)-by-1 vector of dates representing the
settlement dates of the fixed-rate note.

Maturity NINST-by-1 vector of dates representing the maturity
dates of the fixed-rate note.

Ordered Input or Name-Value Pair Arguments

Enter the following optional inputs using an ordered syntax or as
name-value pair arguments. You cannot mix ordered syntax with
name-value pair arguments.

Reset

NINST-by-1 vector representing the frequency of payments per year.

Default: 1

Basis

Day-count basis of the instrument. A vector of integers.

• 0 = actual/actual

6-242

fixedbybdt

• 1 = 30/360 (SIA)

• 2 = actual/360

• 3 = actual/365

• 4 = 30/360 (PSA)

• 5 = 30/360 (ISDA)

• 6 = 30/360 (European)

• 7 = actual/365 (Japanese)

• 8 = actual/actual (ISMA)

• 9 = actual/360 (ISMA)

• 10 = actual/365 (ISMA)

• 11 = 30/360E (ISMA)

• 12 = actual/365 (ISDA)

• 13 = BUS/252
For more information, see basis.

Default: 0 (actual/actual)

Principal

The notional principal amount.

Default: 100

Options

Derivatives pricing options structure created with derivset.

EndMonthRule

End-of-month rule. A NINST-by-1 vector. This rule applies only when
Maturity is an end-of-month date for a month having 30 or fewer days.

6-243

fixedbybdt

• 0 = Ignore rule, meaning that a bond coupon payment date is always
the same numerical day of the month.

• 1 = Set rule on, meaning that a bond coupon payment date is always
the last actual day of the month.

Default: 1

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments,
where Name is the argument name and Value is the corresponding
value. Name must appear inside single quotes (' '). You can
specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

AdjustCashFlowsBasis

Adjust the cash flows based on the actual period day count. NINST-by-1
of logicals.

Default: False

BusinessDayConvention

Require payment dates to be business dates. NINST-by-1 cell array with
possible choices of business day convention:

• actual

• follow

• modifiedfollow

• previous

• modifiedprevious

Default: actual

Holidays

6-244

fixedbybdt

Holidays used for business day convention. NHOLIDAYS-by-1 of MATLAB
date numbers.

Default: If no dates are specified, holidays.m is used.

Description [Price, PriceTree] = fixedbybdt(BDTTree, CouponRate,
Settle, Maturity) computes the price of a fixed-rate note from a BDT
interest-rate tree.

[Price, PriceTree] = fixedbybdt(BDTTree, CouponRate,
Settle, Maturity, Reset, Basis, Principal, Options,
EndMonthRule) computes the price of a fixed-rate note from a BDT
interest-rate tree using additional input arguments.

[Price, PriceTree] = fixedbybdt(BDTTree, CouponRate,
Settle, Maturity, Name,Value) computes the price of a price of a
fixed-rate note from a BDT interest-rate tree with additional options
specified by one or more Name,Value pair arguments.

Price is an NINST-by-1 vector of expected prices of the fixed-rate note at
time 0.

PriceTree is a structure of trees containing vectors of instrument prices
and accrued interest, and a vector of observation times for each node.

PriceTree.PTree contains the clean prices.

PriceTree.AITree contains the accrued interest.

PriceTree.tObs contains the observation times.

The Settle date for every fixed-rate note is set to the ValuationDate of
the BDT tree. The fixed-rate note argument Settle is ignored.

Examples Price a 10% fixed-rate note using a BDT interest-rate tree.

Load the file deriv.mat, which provides BDTTree. The BDTTree
structure contains the time and interest-rate information needed to
price the note.

load deriv.mat

6-245

fixedbybdt

Set the required values. Other arguments will use defaults.

CouponRate = 0.10;
Settle = '01-Jan-2000';
Maturity = '01-Jan-2004';
Reset = 1;

Use fixedbybdt to compute the price of the note.

Price = fixedbybdt(BDTTree, CouponRate, Settle, Maturity, Reset)

Price =

92.9974

See Also bdttree | bondbybdt | capbybdt | cfbybdt | floatbybdt |
floorbybdt | swapbybdt

6-246

fixedbybk

Purpose Price fixed-rate note from Black-Karasinski interest-rate tree

Syntax [Price, PriceTree] = fixedbybk(BKTree, CouponRate, Settle,
Maturity)
[Price, PriceTree] = fixedbybk(BKTree, CouponRate, Settle,
Maturity, Reset, Basis, Principal, Options, EndMonthRule)
[Price, PriceTree] = fixedbybk(BKTree, CouponRate, Settle,
Maturity, Name,Value)

Input
Arguments

BKTree Interest-rate tree structure created by bktree.

CouponRate Decimal annual rate.

Settle Settlement dates. NINST-by-1 vector of dates
representing the settlement dates of the fixed-rate
note.

Maturity NINST-by-1 vector of dates representing the maturity
dates of the fixed-rate note.

Ordered Input or Name-Value Pair Arguments

Enter the following optional inputs using an ordered syntax or as
name-value pair arguments. You cannot mix ordered syntax with
name-value pair arguments.

Reset

NINST-by-1 vector representing the frequency of payments per year.

Default: 1

Basis

Day-count basis of the instrument. A vector of integers.

• 0 = actual/actual

6-247

fixedbybk

• 1 = 30/360 (SIA)

• 2 = actual/360

• 3 = actual/365

• 4 = 30/360 (PSA)

• 5 = 30/360 (ISDA)

• 6 = 30/360 (European)

• 7 = actual/365 (Japanese)

• 8 = actual/actual (ISMA)

• 9 = actual/360 (ISMA)

• 10 = actual/365 (ISMA)

• 11 = 30/360E (ISMA)

• 12 = actual/365 (ISDA)

• 13 = BUS/252
For more information, see basis.

Default: 0 (actual/actual)

Principal

The notional principal amount.

Default: 100

Options

Derivatives pricing options structure created with derivset.

EndMonthRule

End-of-month rule. A NINST-by-1 vector. This rule applies only when
Maturity is an end-of-month date for a month having 30 or fewer days.

6-248

fixedbybk

• 0 = Ignore rule, meaning that a bond coupon payment date is always
the same numerical day of the month.

• 1 = Set rule on, meaning that a bond coupon payment date is always
the last actual day of the month.

Default: 1

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments,
where Name is the argument name and Value is the corresponding
value. Name must appear inside single quotes (' '). You can
specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

AdjustCashFlowsBasis

Adjust the cash flows based on the actual period day count. NINST-by-1
of logicals.

Default: False

BusinessDayConvention

Require payment dates to be business dates. NINST-by-1 cell array with
possible choices of business day convention:

• actual

• follow

• modifiedfollow

• previous

• modifiedprevious

Default: actual

Holidays

6-249

fixedbybk

Holidays used for business day convention. NHOLIDAYS-by-1 of MATLAB
date numbers.

Default: If no dates are specified, holidays.m is used.

Description [Price, PriceTree] = fixedbybk(BKTree, CouponRate,
Settle, Maturity) computes the price of a fixed-rate note from a
Black-Karasinski tree.

[Price, PriceTree] = fixedbybk(BKTree, CouponRate, Settle,
Maturity, Reset, Basis, Principal, Options, EndMonthRule)
computes the price of a fixed-rate note from a Black-Karasinski tree
using optional input arguments.

[Price, PriceTree] = fixedbybk(BKTree, CouponRate, Settle,
Maturity, Name,Value) computes the price of a price of a fixed-rate
note from a Black-Karasinski interest-rate tree with additional options
specified by one or more Name,Value pair arguments.

Price is an NINST-by-1 vector of expected prices of the fixed-rate note at
time 0.

PriceTree is a structure of trees containing vectors of instrument prices
and accrued interest, and a vector of observation times for each node.

PriceTree.PTree contains the clean prices.

PriceTree.AITree contains the accrued interest.

PriceTree.tObs contains the observation times.

The Settle date for every fixed-rate note is set to the ValuationDate of
the BK tree. The fixed-rate note argument Settle is ignored.

Examples Price a 5% fixed-rate note using a Black-Karasinski interest-rate tree.

Load the file deriv.mat, which provides BKTree. The BKTree structure
contains the time and interest-rate information needed to price the note.

load deriv.mat;

6-250

fixedbybk

Set the required values. Other arguments will use defaults.

CouponRate = 0.05;
Settle = '01-Jan-2005';
Maturity = '01-Jan-2006';

Use fixedbybk to compute the price of the note.

Price = fixedbybk(BKTree, CouponRate, Settle, Maturity)

Price =

103.5126

See Also bktree | bondbybk | capbybk | cfbybk | floatbybk | floorbybk |
swapbybk

6-251

fixedbyhjm

Purpose Price fixed-rate note from Heath-Jarrow-Morton interest-rate tree

Syntax [Price, PriceTree] = fixedbyhjm(HJMTree, CouponRate, Settle,
Maturity)
[Price, PriceTree] = fixedbyhjm(HJMTree, CouponRate, Settle,
Maturity, Reset, Basis, Principal, Options, EndMonthRule)
[Price, PriceTree] = fixedbyhjm(HJMTree, CouponRate, Settle,
Maturity, Name,Value)

Input
Arguments

HJMTree Forward-rate tree structure created by hjmtree.

CouponRate Decimal annual rate.

Settle Settlement dates. Number of instruments
(NINST)-by-1 vector of dates representing the
settlement dates of the fixed-rate note.

Maturity NINST-by-1 vector of dates representing the maturity
dates of the fixed-rate note.

Ordered Input or Name-Value Pair Arguments

Enter the following optional inputs using an ordered syntax or as
name-value pair arguments. You cannot mix ordered syntax with
name-value pair arguments.

Reset

NINST-by-1 vector representing the frequency of payments per year.

Default: 1

Basis

Day-count basis of the instrument. A vector of integers.

• 0 = actual/actual

6-252

fixedbyhjm

• 1 = 30/360 (SIA)

• 2 = actual/360

• 3 = actual/365

• 4 = 30/360 (PSA)

• 5 = 30/360 (ISDA)

• 6 = 30/360 (European)

• 7 = actual/365 (Japanese)

• 8 = actual/actual (ISMA)

• 9 = actual/360 (ISMA)

• 10 = actual/365 (ISMA)

• 11 = 30/360E (ISMA)

• 12 = actual/365 (ISDA)

• 13 = BUS/252
For more information, see basis.

Default: 0 (actual/actual)

Principal

The notional principal amount.

Default: 100

Options

Derivatives pricing options structure created with derivset.

EndMonthRule

End-of-month rule. A NINST-by-1 vector. This rule applies only when
Maturity is an end-of-month date for a month having 30 or fewer days.

6-253

fixedbyhjm

• 0 = Ignore rule, meaning that a bond coupon payment date is always
the same numerical day of the month.

• 1 = Set rule on, meaning that a bond coupon payment date is always
the last actual day of the month.

Default: 1

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments,
where Name is the argument name and Value is the corresponding
value. Name must appear inside single quotes (' '). You can
specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

AdjustCashFlowsBasis

Adjust the cash flows based on the actual period day count. NINST-by-1
of logicals.

Default: False

BusinessDayConvention

Require payment dates to be business dates. NINST-by-1 cell array with
possible choices of business day convention:

• actual

• follow

• modifiedfollow

• previous

• modifiedprevious

Default: actual

Holidays

6-254

fixedbyhjm

Holidays used for business day convention. NHOLIDAYS-by-1 of MATLAB
date numbers.

Default: If no dates are specified, holidays.m is used.

Description [Price, PriceTree] = fixedbyhjm(HJMTree, CouponRate,
Settle, Maturity) computes the price of a fixed-rate note from a HJM
forward-rate tree.

[Price, PriceTree] = fixedbyhjm(HJMTree, CouponRate,
Settle, Maturity, Reset, Basis, Principal, Options,
EndMonthRule) computes the price of a fixed-rate note from a HJM
forward-rate tree using optional input asrguments.

[Price, PriceTree] = fixedbyhjm(HJMTree, CouponRate,
Settle, Maturity, Name,Value) computes the price of a price of a
fixed-rate note from a HJM forward-rate tree with additional options
specified by one or more Name,Value pair arguments.

Price is an NINST-by-1 vector of expected prices of the fixed-rate note at
time 0.

PriceTree is a structure of trees containing vectors of instrument prices
and accrued interest, and a vector of observation times for each node.

PriceTree.PBush contains the clean prices.

PriceTree.AIBush contains the accrued interest.

PriceTree.tObs contains the observation times.

The Settle date for every fixed-rate note is set to the ValuationDate of
the HJM tree. The fixed-rate note argument Settle is ignored.

Examples Price a 4% fixed-rate note using an HJM forward-rate tree.

Load the file deriv.mat, which provides HJMTree. The HJMTree
structure contains the time and forward-rate information needed to
price the note.

load deriv.mat

6-255

fixedbyhjm

Set the required values. Other arguments will use defaults.

CouponRate = 0.04;
Settle = '01-Jan-2000';
Maturity = '01-Jan-2003';

Use fixedbyhjm to compute the price of the note.

Price = fixedbyhjm(HJMTree, CouponRate, Settle, Maturity)

Price =

98.7159

See Also bondbyhjm | capbyhjm | cfbyhjm | floatbyhjm | floorbyhjm |
hjmtree | swapbyhjm

6-256

fixedbyhw

Purpose Price fixed-rate note from Hull-White interest-rate tree

Syntax [Price, PriceTree] = fixedbyhw(HWTree, CouponRate, Settle,
Maturity)
[Price, PriceTree] = fixedbyhw(HWTree, CouponRate, Settle,
Maturity, Reset, Basis, Principal, Options, EndMonthRule)
[Price, PriceTree] = fixedbyhw(HWTree, CouponRate, Settle,
Maturity, Name,Value)

Arguments

HWTree Interest-rate tree structure created by hwtree.

CouponRate Decimal annual rate.

Settle Settlement dates. NINST-by-1 vector of dates
representing the settlement dates of the fixed-rate
note.

Maturity NINST-by-1 vector of dates representing the maturity
dates of the fixed-rate note.

Ordered Input or Name-Value Pair Arguments

Enter the following optional inputs using an ordered syntax or as
name-value pair arguments. You cannot mix ordered syntax with
name-value pair arguments.

Reset

NINST-by-1 vector representing the frequency of payments per year.

Default: 1

Basis

Day-count basis of the instrument. A vector of integers.

• 0 = actual/actual

6-257

fixedbyhw

• 1 = 30/360 (SIA)

• 2 = actual/360

• 3 = actual/365

• 4 = 30/360 (PSA)

• 5 = 30/360 (ISDA)

• 6 = 30/360 (European)

• 7 = actual/365 (Japanese)

• 8 = actual/actual (ISMA)

• 9 = actual/360 (ISMA)

• 10 = actual/365 (ISMA)

• 11 = 30/360E (ISMA)

• 12 = actual/365 (ISDA)

• 13 = BUS/252
For more information, see basis.

Default: 0 (actual/actual)

Principal

The notional principal amount.

Default: 100

Options

Derivatives pricing options structure created with derivset.

EndMonthRule

End-of-month rule. A NINST-by-1 vector. This rule applies only when
Maturity is an end-of-month date for a month having 30 or fewer days.

6-258

fixedbyhw

• 0 = Ignore rule, meaning that a bond coupon payment date is always
the same numerical day of the month.

• 1 = Set rule on, meaning that a bond coupon payment date is always
the last actual day of the month.

Default: 1

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments,
where Name is the argument name and Value is the corresponding
value. Name must appear inside single quotes (' '). You can
specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

AdjustCashFlowsBasis

Adjust the cash flows based on the actual period day count. NINST-by-1
of logicals.

Default: False

BusinessDayConvention

Require payment dates to be business dates. NINST-by-1 cell array with
possible choices of business day convention:

• actual

• follow

• modifiedfollow

• previous

• modifiedprevious

Default: actual

Holidays

6-259

fixedbyhw

Holidays used for business day convention. NHOLIDAYS-by-1 of MATLAB
date numbers.

Default: If no dates are specified, holidays.m is used.

Description [Price, PriceTree] = fixedbyhw(HWTree, CouponRate, Settle,
Maturity) computes the price of a fixed-rate note from a Hull-White
tree.

[Price, PriceTree] = fixedbyhw(HWTree, CouponRate, Settle,
Maturity, Reset, Basis, Principal, Options, EndMonthRule)
computes the price of a fixed-rate note from a Hull-White tree using
optional input arguments.

[Price, PriceTree] = fixedbyhw(HWTree, CouponRate, Settle,
Maturity, Name,Value) computes the price of a price of a fixed-rate
note from a Hull-White tree with additional options specified by one or
more Name,Value pair arguments.

Price is an NINST-by-1 vector of expected prices of the fixed-rate note at
time 0.

PriceTree is a structure of trees containing vectors of instrument prices
and accrued interest, and a vector of observation times for each node.

PriceTree.PTree contains the clean prices.

PriceTree.AITree contains the accrued interest.

PriceTree.tObs contains the observation times.

The Settle date for every fixed-rate note is set to the ValuationDate of
the HW tree. The fixed-rate note argument Settle is ignored.

Examples Price a 5% fixed-rate note using a Hull-White interest-rate tree.

Load the file deriv.mat, which provides HWTree. The HWTree structure
contains the time and interest-rate information needed to price the note.

load deriv.mat;

6-260

fixedbyhw

Set the required values. Other arguments will use defaults.

CouponRate = 0.05;
Settle = '01-Jan-2005';
Maturity = '01-Jan-2006';

Use fixedbyhw to compute the price of the note.

Price = fixedbyhw(HWTree, CouponRate, Settle, Maturity)

Price =

103.5126

See Also bondbyhw | capbyhw | cfbyhw | floatbyhw | floorbyhw | hwtree |
swapbyhw

6-261

fixedbyzero

Purpose Price fixed-rate note from set of zero curves

Syntax [Price, PriceNoAI, CFlowAmounts, CFlowDates] =
fixedbyzero(RateSpec, CouponRate, Settle, Maturity)
[Price, PriceNoAI, CFlowAmounts, CFlowDates] =
fixedbyzero(RateSpec, CouponRate, Settle, Maturity,
Reset, Basis, Principal, EndMonthRule)
[Price PriceNoAI, CFlowAmounts, CFlowDates] =
fixedbyzero(RateSpec, CouponRate, Settle, Maturity,
Name, Value)

Description [Price, PriceNoAI, CFlowAmounts, CFlowDates] =
fixedbyzero(RateSpec, CouponRate, Settle, Maturity) computes
the price of a fixed-rate note from a set of zero curves. All inputs are
either scalars or NINST-by-1 vectors unless otherwise specified. Any
date may be a serial date number or date string. An optional argument
may be passed as an empty matrix [].

[Price, PriceNoAI, CFlowAmounts, CFlowDates] =
fixedbyzero(RateSpec, CouponRate, Settle, Maturity, Reset,
Basis, Principal, EndMonthRule) computes the price of a fixed-rate
note from a set of zero curves using optional input arguments. All inputs
are either scalars or NINST-by-1vectors unless otherwise specified. Any
date may be a serial date number or date string. An optional argument
may be passed as an empty matrix [].

[Price PriceNoAI, CFlowAmounts, CFlowDates] =
fixedbyzero(RateSpec, CouponRate, Settle, Maturity,Name,
Value) computes the price of a fixed-rate note from a set of zero curves
with additional options specified by one or more Name, Value pair
arguments.

Input
Arguments

RateSpec

Structure containing the properties of an interest-rate structure. See
intenvset for information on creating RateSpec.

CouponRate

6-262

fixedbyzero

Decimal annual rate.

Settle

Settlement date. Settle must be earlier than Maturity.

Maturity

Maturity date.

Ordered Input or Name-Value Pair Arguments

Enter the following optional inputs using an ordered syntax or as
name-value pair arguments. You cannot mix ordered syntax with
name-value pair arguments.

Reset

NINST-by-1 vector representing the frequency of payments per year.

Default: 1

Basis

Day-count basis of the instrument. A vector of integers.

• 0 = actual/actual

• 1 = 30/360 (SIA)

• 2 = actual/360

• 3 = actual/365

• 4 = 30/360 (PSA)

• 5 = 30/360 (ISDA)

• 6 = 30/360 (European)

• 7 = actual/365 (Japanese)

• 8 = actual/actual (ISMA)

• 9 = actual/360 (ISMA)

6-263

fixedbyzero

• 10 = actual/365 (ISMA)

• 11 = 30/360E (ISMA)

• 12 = actual/365 (ISDA)

• 13 = BUS/252
For more information, see basis.

Default: 0 (actual/actual)

Principal

The notional principal amount.

Default: 100

Options

Derivatives pricing options structure created with derivset.

EndMonthRule

End-of-month rule. A NINST-by-1 vector. This rule applies only when
Maturity is an end-of-month date for a month having 30 or fewer days.

• 0 = Ignore rule, meaning that a bond coupon payment date is always
the same numerical day of the month.

• 1 = Set rule on, meaning that a bond coupon payment date is always
the last actual day of the month.

Default: 1

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments,
where Name is the argument name and Value is the corresponding
value. Name must appear inside single quotes (' '). You can
specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

6-264

fixedbyzero

AdjustCashFlowsBasis

Adjust the cash flows based on the actual period day count. NINST-by-1
of logicals.

Default: False

BusinessDayConvention

Require payment dates to be business dates. NINST-by-1 cell array with
possible choices of business day convention:

• actual

• follow

• modifiedfollow

• previous

• modifiedprevious

Default: actual

Holidays

Holidays used for business day convention. NHOLIDAYS-by-1 of MATLAB
date numbers.

Default: If no dates are specified, holidays.m is used.

Output
Arguments

Price

A number of instruments (NINST) by number of curves (NUMCURVES)
matrix of fixed-rate note prices. Each column arises from one of the
zero curves.

PriceNoAI

A NINST-by-NUMCURVES matrix of dirty bond price (clean + accrued
interest). Each column arises from one of the zero curves.

6-265

fixedbyzero

CFlowAmounts

A NINST-by-NUMCFS matrix of cash flows for each bond.

CFlowDates

A NINST-by-NUMCFS matrix of payment dates for each bond.

Examples Price a 4% fixed-rate note using a set of zero curves. Load the file
deriv.mat, which provides ZeroRateSpec, the interest-rate term
structure needed to price the note.

load deriv.mat

Set the required values. Other arguments will use defaults.

CouponRate = 0.04;
Settle = '01-Jan-2000';
Maturity = '01-Jan-2003';

Use fixedbyzero to compute the price of the note:

Price = fixedbyzero(ZeroRateSpec, CouponRate, Settle, Maturity)

Price =

98.7159

See Also | bondbyzero | cfbyzero | floatbyzero | swapbyzero

6-266

floatbybdt

Purpose Price floating-rate note from Black-Derman-Toy interest-rate tree

Syntax [Price, PriceTree] = floatbybdt(BDTTree, Spread,
Settle, Maturity)
[Price, PriceTree] = floatbybdt(BDTTree, Spread,
Settle, Maturity, Reset, Basis, Principal, Options,
EndMonthRule)
[Price, PriceTree] = floatbybdt(BDTTree, Spread, Settle,
Maturity,Name,Value)

Input
Arguments

BDTTree Interest-rate tree structure created by bdttree.

Spread Number of instruments (NINST)-by-1 vector of number
of basis points over the reference rate.

Settle Settlement dates. NINST-by-1 vector of dates
representing the settlement dates of the floating-rate
note.

Note The Settle date for every floating-rate note
is set to the ValuationDate of the BDT Tree. The
floating-rate note argument Settle is ignored.

Maturity NINST-by-1 vector of dates representing the maturity
dates of the floating-rate note.

Ordered Input or Name-Value Pair Arguments

Enter the following optional inputs using an ordered syntax or as
name-value pair arguments. You cannot mix ordered syntax with
name-value pair arguments.

Reset

6-267

floatbybdt

NINST-by-1 vector representing the frequency of payments per year.

Note Payments on floating-rate notes (FRNs) are determined by the
effective interest-rate between reset dates. If the reset period for a
FRN spans more than one tree level, calculating the payment becomes
impossible due to the recombining nature of the tree. That is, the tree
path connecting the two consecutive reset dates can not be uniquely
determined because there will be more than one possible path for
connecting the two payment dates.

Default: 1

Basis

Day-count basis of the instrument. A vector of integers.

• 0 = actual/actual

• 1 = 30/360 (SIA)

• 2 = actual/360

• 3 = actual/365

• 4 = 30/360 (PSA)

• 5 = 30/360 (ISDA)

• 6 = 30/360 (European)

• 7 = actual/365 (Japanese)

• 8 = actual/actual (ISMA)

• 9 = actual/360 (ISMA)

• 10 = actual/365 (ISMA)

• 11 = 30/360E (ISMA)

• 12 = actual/365 (ISDA)

6-268

floatbybdt

• 13 = BUS/252
For more information, see basis.

Default: 0 (actual/actual)

Principal

NINST-by-1 vector of notional principal amounts or NINST-by-1
cell array. For the latter case, each element of the cell array is a
NumDates-by-2 matrix where the first column is dates and the second
column is associated principal amount. The date indicates the last day
that the principal value is valid.

Default: 100

Options

Derivatives pricing options structure created with derivset.

EndMonthRule

End-of-month rule. NINST-by-1 vector. This rule applies only when
Maturity is an end-of-month date for a month having 30 or fewer days.

• 0 = Ignore rule, meaning that a bond coupon payment date is always
the same numerical day of the month.

• 1 = Set rule on, meaning that a bond coupon payment date is always
the last actual day of the month.

Default: 1

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments,
where Name is the argument name and Value is the corresponding
value. Name must appear inside single quotes (' '). You can
specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

6-269

floatbybdt

AdjustCashFlowsBasis

Adjust the cash flows based on the actual period day count. NINST-by-1
of logicals.

Default: false

BusinessDayConvention

Require payment dates to be business dates. NINST-by-1 cell array with
possible choices of business day convention:

• actual

• follow

• modifiedfollow

• previous

• modifiedprevious

Default: actual

Holidays

Holidays used for business day convention. NHOLIDAYS-by-1 of MATLAB
date numbers.

Default: If no dates are specified, holidays.m is used.

Description [Price, PriceTree] = floatbybdt(BDTTree, Spread, Settle,
Maturity) computes the price of a floating-rate note from a BDT tree.

[Price, PriceTree] = floatbybdt(BDTTree, Spread, Settle,
Maturity, Reset, Basis, Principal, Options, EndMonthRule)
computes the price of a floating-rate note with optional inputs from
a BDT tree.

[Price, PriceTree] = floatbybdt(BDTTree, Spread,
Settle,Maturity,Name,Value) computes the price of a floating-rate

6-270

floatbybdt

note from a BDT tree with additional options specified by one or more
Name,Value pair arguments..

Price is an NINST-by-1 vector of expected prices of the floating-rate
note at time 0.

PriceTree is a structure of trees containing vectors of instrument prices
and accrued interest, and a vector of observation times for each node.

PriceTree.PTree contains the clean prices.

PriceTree.AITree contains the accrued interest.

PriceTree.tObs contains the observation times.

The Settle date for every floating-rate note is set to the ValuationDate
of the BDT tree. The floating-rate note argument Settle is ignored.

Examples Price a Floating-Rate Note Using a BDT Tree

Price a 20-basis point floating-rate note using a BDT interest-rate tree.

Load the file deriv.mat, which provides BDTTree. The BDTTree
structure contains the time and interest-rate information needed to
price the note.

load deriv.mat;

Define the floating-rate note using the required arguments. Other
arguments use defaults.

Spread = 20;
Settle = '01-Jan-2000';
Maturity = '01-Jan-2003';

Use floatbybdt to compute the price of the note.

Price = floatbybk(BKTree, Spread, Settle, Maturity)

Price =

6-271

floatbybdt

100.4865

Price an Amortizing Floating-Rate Note

Price an amortizing floating-rate note using the Principal input
argument to define the amortization schedule.

Create the RateSpec.

Rates = [0.03583; 0.042147; 0.047345; 0.052707; 0.054302];

ValuationDate = '15-Nov-2011';

StartDates = ValuationDate;

EndDates = {'15-Nov-2012';'15-Nov-2013';'15-Nov-2014' ;'15-Nov-2015';'15-Nov-2016'};

Compounding = 1;

RateSpec = intenvset('ValuationDate', ValuationDate,'StartDates', StartDates,...

'EndDates', EndDates,'Rates', Rates, 'Compounding', Compounding)

RateSpec =

FinObj: 'RateSpec'
Compounding: 1

Disc: [5x1 double]
Rates: [5x1 double]

EndTimes: [5x1 double]
StartTimes: [5x1 double]

EndDates: [5x1 double]
StartDates: 734822

ValuationDate: 734822
Basis: 0

EndMonthRule: 1

Create the floating-rate instrument using the following data:

Settle ='15-Nov-2011';
Maturity = '15-Nov-2015';
Spread = 15;

Define the floating-rate note amortizing schedule.

6-272

floatbybdt

Principal ={{'15-Nov-2012' 100;'15-Nov-2013' 70;'15-Nov-2014' 40;'15-Nov-2015' 10}};

Build the BDT tree and assume volatility is 10%.

MatDates = {'15-Nov-2012'; '15-Nov-2013';'15-Nov-2014';'15-Nov-2015';'15-Nov-2016';'15-Nov-2017'};

BDTTimeSpec = bdttimespec(ValuationDate, MatDates);

Volatility = 0.10;

BDTVolSpec = bdtvolspec(ValuationDate, MatDates, Volatility*ones(1,length(MatDates))');

BDTT = bdttree(BDTVolSpec, RateSpec, BDTTimeSpec);

Compute the price of the amortizing floating-rate note.

Price = floatbybdt(BDTT, Spread, Settle, Maturity, 'Principal', Principal)

Price =

100.3059

See Also bdttree | bondbybdt | capbybdt | cfbybdt | fixedbybdt |
floorbybdt | swapbybdt

6-273

floatbybk

Purpose Price floating-rate note from Black-Karasinski interest-rate tree

Syntax [Price, PriceTree] = floatbybk(BKTree, Spread,
Settle, Maturity)
[Price, PriceTree] = floatbybk(BKTree, Spread,
Settle, Maturity, Reset, Basis, Principal, Options,
EndMonthRule)
[Price, PriceTree] = floatbybk(BKTree, Spread, Settle,
Maturity,Name,Value)

Input
Arguments

BKTree Interest-rate tree structure created by bktree.

Spread Number of instruments (NINST)-by-1 vector of number
of basis points over the reference rate.

Settle Settlement dates. NINST-by-1 vector of dates
representing the settlement dates of the floating-rate
note.

Note The Settle date for every floating-rate note
is set to the ValuationDate of the BK tree. The
floating-rate note argument Settle is ignored.

Maturity NINST-by-1 vector of dates representing the maturity
dates of the floating-rate note.

Ordered Input or Name-Value Pair Arguments

Enter the following optional inputs using an ordered syntax or as
name-value pair arguments. You cannot mix ordered syntax with
name-value pair arguments.

Reset

6-274

floatbybk

NINST-by-1 vector representing the frequency of payments per year.

Note Payments on floating-rate notes (FRNs) are determined by the
effective interest-rate between reset dates. If the reset period for a
FRN spans more than one tree level, calculating the payment becomes
impossible due to the recombining nature of the tree. That is, the tree
path connecting the two consecutive reset dates can not be uniquely
determined because there will be more than one possible path for
connecting the two payment dates.

Default: 1

Basis

Day-count basis of the instrument. A vector of integers.

• 0 = actual/actual

• 1 = 30/360 (SIA)

• 2 = actual/360

• 3 = actual/365

• 4 = 30/360 (PSA)

• 5 = 30/360 (ISDA)

• 6 = 30/360 (European)

• 7 = actual/365 (Japanese)

• 8 = actual/actual (ISMA)

• 9 = actual/360 (ISMA)

• 10 = actual/365 (ISMA)

• 11 = 30/360E (ISMA)

• 12 = actual/365 (ISDA)

6-275

floatbybk

• 13 = BUS/252
For more information, see basis.

Default: 0 (actual/actual)

Principal

NINST-by-1 vector of notional principal amounts or NINST-by-1
cell array. For the latter case, each element of the cell array is a
NumDates-by-2 matrix where the first column is dates and the second
column is associated principal amount. The date indicates the last day
that the principal value is valid.

Default: 100

Options

Derivatives pricing options structure created with derivset.

EndMonthRule

End-of-month rule. NINST-by-1 vector. This rule applies only when
Maturity is an end-of-month date for a month having 30 or fewer days.

• 0 = Ignore rule, meaning that a bond coupon payment date is always
the same numerical day of the month.

• 1 = Set rule on, meaning that a bond coupon payment date is always
the last actual day of the month.

Default: 1

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments,
where Name is the argument name and Value is the corresponding
value. Name must appear inside single quotes (' '). You can
specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

6-276

floatbybk

AdjustCashFlowsBasis

Adjust the cash flows based on the actual period day count. NINST-by-1
of logicals.

Default: false

BusinessDayConvention

Require payment dates to be business dates. NINST-by-1 cell array with
possible choices of business day convention:

• actual

• follow

• modifiedfollow

• previous

• modifiedprevious

Default: actual

Holidays

Holidays used for business day convention. NHOLIDAYS-by-1 of MATLAB
date numbers.

Default: If no dates are specified, holidays.m is used.

Description [Price, PriceTree] = floatbybk(BKTree, Spread, Settle,
Maturity) computes the price of a floating-rate note from a
Black-Karasinski tree.

[Price, PriceTree] = floatbybk(BKTree, Spread, Settle,
Maturity, Reset, Basis, Principal, Options, EndMonthRule)
computes the price of a floating-rate note with optional inputs from
a Black-Karasinski tree.

6-277

floatbybk

[Price, PriceTree] = floatbybk(BKTree, Spread, Settle,
Maturity,Name,Value) computes the price of a floating-rate note from
a Black-Karasinski tree with additional options specified by one or more
Name,Value pair arguments.

Price is an NINST-by-1 vector of expected prices of the floating-rate
note at time 0.

PriceTree is a structure of trees containing vectors of instrument prices
and accrued interest, and a vector of observation times for each node.

PriceTree.PTree contains the clean prices.

PriceTree.AITree contains the accrued interest.

PriceTree.tObs contains the observation times.

The Settle date for every floating-rate note is set to the ValuationDate
of the BK tree. The floating-rate note argument Settle is ignored.

Examples Price a Floating-Rate Note Using a Black-Karasinski Tree

Price a 20–basis point floating-rate note using a Black-Karasinski
interest-rate tree.

Load the file deriv.mat, which provides BKTree. The BKTree structure
contains the time and interest-rate information needed to price the note.

load deriv.mat;

Define the floating-rate note using the required arguments. Other
arguments use defaults.

Spread = 20;
Settle = '01-Jan-2005';
Maturity = '01-Jan-2006';

Use floatbybk to compute the price of the note.

Price = floatbybk(BKTree, Spread, Settle, Maturity)

6-278

floatbybk

Price =

100.3825

Price an Amortizing Floating-Rate Note

Price an amortizing floating-rate note using the Principal input
argument to define the amortization schedule.

Create the RateSpec.

Rates = [0.03583; 0.042147; 0.047345; 0.052707; 0.054302];

ValuationDate = '15-Nov-2011';

StartDates = ValuationDate;

EndDates = {'15-Nov-2012';'15-Nov-2013';'15-Nov-2014' ;'15-Nov-2015';'15-Nov-2016'};

Compounding = 1;

RateSpec = intenvset('ValuationDate', ValuationDate,'StartDates', StartDates,...

'EndDates', EndDates,'Rates', Rates, 'Compounding', Compounding)

RateSpec =

FinObj: 'RateSpec'
Compounding: 1

Disc: [5x1 double]
Rates: [5x1 double]

EndTimes: [5x1 double]
StartTimes: [5x1 double]

EndDates: [5x1 double]
StartDates: 734822

ValuationDate: 734822
Basis: 0

EndMonthRule: 1

Create the floating-rate instrument using the following data:

Settle ='15-Nov-2011';
Maturity = '15-Nov-2015';
Spread = 15;

6-279

floatbybk

Define the floating-rate note amortizing schedule.

Principal ={{'15-Nov-2012' 100;'15-Nov-2013' 70;'15-Nov-2014' 40;'15-Nov-2015' 10}};

Build the BK tree and assume the volatility is 10%.

VolDates = ['15-Nov-2012'; '15-Nov-2013';'15-Nov-2014';'15-Nov-2015';'15-Nov-2016';'15-Nov-2017'];

VolCurve = 0.1;

AlphaDates = '15-Nov-2017';

AlphaCurve = 0.1;

BKVolSpec = bkvolspec(RateSpec.ValuationDate, VolDates, VolCurve,...

AlphaDates, AlphaCurve);

BKTimeSpec = bktimespec(RateSpec.ValuationDate, VolDates, Compounding);

BKT = bktree(BKVolSpec, RateSpec, BKTimeSpec);

Compute the price of the amortizing floating-rate note.

Price = floatbybk(BKT, Spread, Settle, Maturity, 'Principal', Principal)

Price =

100.3059

See Also bktree | bondbybk | capbybk | cfbybk | fixedbybk | floorbybk |
swapbybk

6-280

floatbyhjm

Purpose Price floating-rate note from Heath-Jarrow-Morton interest-rate tree

Syntax [Price, PriceTree] = floatbybk(HJMTree, Spread,
Settle, Maturity)
[Price, PriceTree] = floatbybk(HJMTree, Spread,
Settle, Maturity, Reset, Basis, Principal, Options,
EndMonthRule)
[Price, PriceTree] = floatbybk(HJMTree, Spread, Settle,
Maturity,Name,Value)

Input
Arguments

HJMTree Forward-rate tree structure created by hjmtree.

Spread Number of instruments (NINST)-by-1 vector of number
of basis points over the reference rate.

Settle Settlement dates. NINST-by-1 vector of dates
representing the settlement dates of the floating-rate
note.

Note The Settle date for every floating-rate note
is set to the ValuationDate of the HJM tree. The
floating-rate note argument Settle is ignored.

Maturity NINST-by-1 vector of dates representing the maturity
dates of the floating-rate note.

Ordered Input or Name-Value Pair Arguments

Enter the following optional inputs using an ordered syntax or as
name-value pair arguments. You cannot mix ordered syntax with
name-value pair arguments.

Reset

6-281

floatbyhjm

NINST-by-1 vector representing the frequency of payments per year.

Note Payments on floating-rate notes (FRNs) are determined by the
effective interest-rate between reset dates. If the reset period for a
FRN spans more than one tree level, calculating the payment becomes
impossible due to the recombining nature of the tree. That is, the tree
path connecting the two consecutive reset dates can not be uniquely
determined because there will be more than one possible path for
connecting the two payment dates.

Default: 1

Basis

Day-count basis of the instrument. A vector of integers.

• 0 = actual/actual

• 1 = 30/360 (SIA)

• 2 = actual/360

• 3 = actual/365

• 4 = 30/360 (PSA)

• 5 = 30/360 (ISDA)

• 6 = 30/360 (European)

• 7 = actual/365 (Japanese)

• 8 = actual/actual (ISMA)

• 9 = actual/360 (ISMA)

• 10 = actual/365 (ISMA)

• 11 = 30/360E (ISMA)

• 12 = actual/365 (ISDA)

6-282

floatbyhjm

• 13 = BUS/252
For more information, see basis.

Default: 0 (actual/actual)

Principal

NINST-by-1 vector of notional principal amounts or NINST-by-1
cell array. For the latter case, each element of the cell array is a
NumDates-by-2 matrix where the first column is dates and the second
column is associated principal amount. The date indicates the last day
that the principal value is valid.

Default: 100

Options

Derivatives pricing options structure created with derivset.

EndMonthRule

End-of-month rule. NINST-by-1 vector. This rule applies only when
Maturity is an end-of-month date for a month having 30 or fewer days.

• 0 = Ignore rule, meaning that a bond coupon payment date is always
the same numerical day of the month.

• 1 = Set rule on, meaning that a bond coupon payment date is always
the last actual day of the month.

Default: 1

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments,
where Name is the argument name and Value is the corresponding
value. Name must appear inside single quotes (' '). You can
specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

6-283

floatbyhjm

AdjustCashFlowsBasis

Adjust the cash flows based on the actual period day count. NINST-by-1
of logicals.

Default: false

BusinessDayConvention

Require payment dates to be business dates. NINST-by-1 cell array with
possible choices of business day convention:

• actual

• follow

• modifiedfollow

• previous

• modifiedprevious

Default: actual

Holidays

Holidays used for business day convention. NHOLIDAYS-by-1 of MATLAB
date numbers.

Default: If no dates are specified, holidays.m is used.

Description [Price, PriceTree] = floatbybk(HJMTree, Spread, Settle,
Maturity) computes the price of a floating-rate note from an HJM tree.

[Price, PriceTree] = floatbybk(HJMTree, Spread, Settle,
Maturity, Reset, Basis, Principal, Options, EndMonthRule)
computes the price of a floating-rate note with optional inputs from
an HJM tree.

[Price, PriceTree] = floatbybk(HJMTree, Spread, Settle,
Maturity,Name,Value) computes the price of a floating-rate note

6-284

floatbyhjm

from an HJM tree with additional options specified by one or more
Name,Value pair arguments.

Price is an NINST-by-1 vector of expected prices of the floating-rate
note at time 0.

PriceTree is a structure of trees containing vectors of instrument prices
and accrued interest, and a vector of observation times for each node.

PriceTree.PBush contains the clean prices.

PriceTree.AIBush contains the accrued interest.

PriceTree.tObs contains the observation times.

The Settle date for every floating-rate note is set to the ValuationDate
of the HJM tree. The floating-rate note argument Settle is ignored.

Examples Price a Floating-Rate Note Using an HJM Tree

Price a 20-basis point floating-rate note using an HJM forward-rate tree.

Load the file deriv.mat, which provides HJMTree. The HJMTree
structure contains the time and interest-rate information needed to
price the note.

load deriv.mat;

Define the floating-rate note using the required arguments. Other
arguments use defaults.

Spread = 20;
Settle = '01-Jan-2000';
Maturity = '01-Jan-2003';

Use floatbyhjm to compute the price of the note.

Price = floatbyhw(HJMTree, Spread, Settle, Maturity)

Price =

6-285

floatbyhjm

100.5529

Price an Amortizing Floating-Rate Note

Price an amortizing floating-rate note using the Principal input
argument to define the amortization schedule.

Create the RateSpec.

Rates = [0.03583; 0.042147; 0.047345; 0.052707; 0.054302];

ValuationDate = '15-Nov-2011';

StartDates = ValuationDate;

EndDates = {'15-Nov-2012';'15-Nov-2013';'15-Nov-2014' ;'15-Nov-2015';'15-Nov-2016'};

Compounding = 1;

RateSpec = intenvset('ValuationDate', ValuationDate,'StartDates', StartDates,...

'EndDates', EndDates,'Rates', Rates, 'Compounding', Compounding)

RateSpec =

FinObj: 'RateSpec'
Compounding: 1

Disc: [5x1 double]
Rates: [5x1 double]

EndTimes: [5x1 double]
StartTimes: [5x1 double]

EndDates: [5x1 double]
StartDates: 734822

ValuationDate: 734822
Basis: 0

EndMonthRule: 1

Create the floating-rate instrument using the following data:

Settle ='15-Nov-2011';
Maturity = '15-Nov-2015';
Spread = 15;

Define the floating-rate note amortizing schedule.

6-286

floatbyhjm

Principal ={{'15-Nov-2012' 100;'15-Nov-2013' 70;'15-Nov-2014' 40;'15-Nov-2015' 10}};

Build the HJM tree using the following data:

MatDates = {'15-Nov-2012'; '15-Nov-2013';'15-Nov-2014';'15-Nov-2015';'15-Nov-2016';'15-Nov-2017'};

HJMTimeSpec = hjmtimespec(RateSpec.ValuationDate, MatDates);

Volatility = [.10; .08; .06; .04];

CurveTerm = [1; 2; 3; 4];

HJMVolSpec = hjmvolspec('Proportional', Volatility, CurveTerm, 1e6);

HJMT = hjmtree(HJMVolSpec,RateSpec,HJMTimeSpec);

Compute the price of the amortizing floating-rate note.

Price = floatbyhjm(HJMT, Spread, Settle, Maturity, 'Principal', Principal)

Price =

100.3059

See Also bondbyhjm | capbyhjm | cfbyhjm | fixedbyhjm | floorbyhjm |
hjmtree | swapbyhjm

6-287

floatbyhw

Purpose Price floating-rate note from Hull-White interest-rate tree

Syntax [Price, PriceTree] = floatbybk(HWTree, Spread,
Settle, Maturity)
[Price, PriceTree] = floatbybk(HWTree, Spread,
Settle, Maturity, Reset, Basis, Principal, Options,
EndMonthRule)
[Price, PriceTree] = floatbybk(HWTree, Spread, Settle,
Maturity,Name,Value)

Input
Arguments

HWTree Interest-rate tree structure created by hwtree.

Spread Number of instruments (NINST)-by-1 vector of number
of basis points over the reference rate.

Settle Settlement dates. NINST-by-1 vector of dates
representing the settlement dates of the floating-rate
note.

Note The Settle date for every floating-rate note
is set to the ValuationDate of the HW tree. The
floating-rate note argument Settle is ignored.

Maturity NINST-by-1 vector of dates representing the maturity
dates of the floating-rate note.

Ordered Input or Name-Value Pair Arguments

Enter the following optional inputs using an ordered syntax or as
name-value pair arguments. You cannot mix ordered syntax with
name-value pair arguments.

Reset

6-288

floatbyhw

NINST-by-1 vector representing the frequency of payments per year.

Note Payments on floating-rate notes (FRNs) are determined by the
effective interest-rate between reset dates. If the reset period for a
FRN spans more than one tree level, calculating the payment becomes
impossible due to the recombining nature of the tree. That is, the tree
path connecting the two consecutive reset dates can not be uniquely
determined because there will be more than one possible path for
connecting the two payment dates.

Default: 1

Basis

Day-count basis of the instrument. A vector of integers.

• 0 = actual/actual

• 1 = 30/360 (SIA)

• 2 = actual/360

• 3 = actual/365

• 4 = 30/360 (PSA)

• 5 = 30/360 (ISDA)

• 6 = 30/360 (European)

• 7 = actual/365 (Japanese)

• 8 = actual/actual (ISMA)

• 9 = actual/360 (ISMA)

• 10 = actual/365 (ISMA)

• 11 = 30/360E (ISMA)

• 12 = actual/365 (ISDA)

6-289

floatbyhw

• 13 = BUS/252
For more information, see basis.

Default: 0 (actual/actual)

Principal

NINST-by-1 vector of notional principal amounts or NINST-by-1
cell array. For the latter case, each element of the cell array is a
NumDates-by-2 matrix where the first column is dates and the second
column is associated principal amount. The date indicates the last day
that the principal value is valid.

Default: 100

Options

Derivatives pricing options structure created with derivset.

EndMonthRule

End-of-month rule. NINST-by-1 vector. This rule applies only when
Maturity is an end-of-month date for a month having 30 or fewer days.

• 0 = Ignore rule, meaning that a bond coupon payment date is always
the same numerical day of the month.

• 1 = Set rule on, meaning that a bond coupon payment date is always
the last actual day of the month.

Default: 1

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments,
where Name is the argument name and Value is the corresponding
value. Name must appear inside single quotes (' '). You can
specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

6-290

floatbyhw

AdjustCashFlowsBasis

Adjust the cash flows based on the actual period day count. NINST-by-1
of logicals.

Default: false

BusinessDayConvention

Require payment dates to be business dates. NINST-by-1 cell array with
possible choices of business day convention:

• actual

• follow

• modifiedfollow

• previous

• modifiedprevious

Default: actual

Holidays

Holidays used for business day convention. NHOLIDAYS-by-1 of MATLAB
date numbers.

Default: If no dates are specified, holidays.m is used.

Description [Price, PriceTree] = floatbybk(HWTree, Spread, Settle,
Maturity) computes the price of a floating-rate note from a Hull-White
tree.

[Price, PriceTree] = floatbybk(HWTree, Spread, Settle,
Maturity, Reset, Basis, Principal, Options, EndMonthRule)
computes the price of a floating-rate note with optional inputs from a
Hull-White tree.

6-291

floatbyhw

[Price, PriceTree] = floatbybk(HWTree, Spread, Settle,
Maturity,Name,Value) computes the price of a floating-rate note from
a Hull-White tree with additional options specified by one or more
Name,Value pair arguments.

Price is an NINST-by-1 vector of expected prices of the floating-rate
note at time 0.

PriceTree is a structure of trees containing vectors of instrument prices
and accrued interest, and a vector of observation times for each node.

PriceTree.PTree contains the clean prices.

PriceTree.AITree contains the accrued interest.

PriceTree.tObs contains the observation times.

The Settle date for every floating-rate note is set to the ValuationDate
of the HW tree. The floating-rate note argument Settle is ignored.

Examples Price a Floating-Rate Note Using a Hull-White Tree

Price a 20-basis point floating-rate note using a Hull-White interest-rate
tree.

Load the file deriv.mat, which provides HWTree. The HWTree structure
contains the time and interest-rate information needed to price the note.

load deriv.mat;

Define the floating-rate note using the required arguments. Other
arguments use defaults.

Spread = 20;
Settle = '01-Jan-2005';
Maturity = '01-Jan-2006';

Use floatbyhw to compute the price of the note.

Price = floatbyhw(HWTree, Spread, Settle, Maturity)

6-292

floatbyhw

Price =

100.3825

Price an Amortizing Floating-Rate Note

Price an amortizing floating-rate note using the Principal input
argument to define the amortization schedule.

Create the RateSpec.

Rates = [0.03583; 0.042147; 0.047345; 0.052707; 0.054302];

ValuationDate = '15-Nov-2011';

StartDates = ValuationDate;

EndDates = {'15-Nov-2012';'15-Nov-2013';'15-Nov-2014' ;'15-Nov-2015';'15-Nov-2016'};

Compounding = 1;

RateSpec = intenvset('ValuationDate', ValuationDate,'StartDates', StartDates,...

'EndDates', EndDates,'Rates', Rates, 'Compounding', Compounding)

RateSpec =

FinObj: 'RateSpec'
Compounding: 1

Disc: [5x1 double]
Rates: [5x1 double]

EndTimes: [5x1 double]
StartTimes: [5x1 double]

EndDates: [5x1 double]
StartDates: 734822

ValuationDate: 734822
Basis: 0

EndMonthRule: 1

Create the floating-rate instrument using the following data:

Settle ='15-Nov-2011';
Maturity = '15-Nov-2015';
Spread = 15;

6-293

floatbyhw

Define the floating-rate note amortizing schedule.

Principal ={{'15-Nov-2012' 100;'15-Nov-2013' 70;'15-Nov-2014' 40;'15-Nov-2015' 10}};

Build the HW tree and assume the volatility is 10%.

VolDates = ['15-Nov-2012'; '15-Nov-2013';'15-Nov-2014';'15-Nov-2015';'15-Nov-2016';'15-Nov-2017'];

VolCurve = 0.1;

AlphaDates = '15-Nov-2017';

AlphaCurve = 0.1;

HWVolSpec = hwvolspec(RateSpec.ValuationDate, VolDates, VolCurve,...

AlphaDates, AlphaCurve);

HWTimeSpec = hwtimespec(RateSpec.ValuationDate, VolDates, Compounding);

HWT = hwtree(HWVolSpec, RateSpec, HWTimeSpec);

Compute the price of the amortizing floating-rate note.

Price = floatbyhw(HWT, Spread, Settle, Maturity, 'Principal', Principal)

Price =

100.3059

See Also bondbyhw | capbyhw | cfbyhw | fixedbyhw | floorbyhw | hwtree |
swapbyhw

6-294

floatbyzero

Purpose Price floating-rate note from set of zero curves

Syntax [Price, PriceNoAI, OutputCashFlows, CFlowDates] =
floatbyzero(RateSpec, Spread, Settle, Maturity)
[Price, PriceNoAI, OutputCashFlows, CFlowDates] =
floatbyzero(RateSpec, Spread, Settle, Maturity,
Reset, Basis, Principal, EndMonthRule,
LatestFloatingRate, ForwardRateSpec)
[Price PriceNoAI, OutputCashFlows, CFlowDates] =
floatbyzero(RateSpec, Spread, Settle, Maturity,
Name, Value)

Description [Price, PriceNoAI, OutputCashFlows, CFlowDates] =
floatbyzero(RateSpec, Spread, Settle, Maturity) computes the
price of a floating-rate note from a set of zero curves.

[Price, PriceNoAI, OutputCashFlows, CFlowDates] =
floatbyzero(RateSpec, Spread, Settle, Maturity, Reset,
Basis, Principal, EndMonthRule, LatestFloatingRate,
ForwardRateSpec) computes the price of a floating-rate note from a set
of zero curves using optional input arguments.

[Price PriceNoAI, OutputCashFlows, CFlowDates] =
floatbyzero(RateSpec, Spread, Settle, Maturity,Name, Value)
computes the price of a floating-rate note from a set of zero curves
with additional options specified by one or more Name, Value pair
arguments.

Input
Arguments

RateSpec

Structure containing the properties of an interest-rate structure. See
intenvset for information on creating RateSpec.

Spread

Number of basis points over the reference rate.

Settle

6-295

floatbyzero

Settlement date. Settle must be earlier than Maturity.

Maturity

Maturity date.

Ordered Input or Name-Value Pair Arguments

Enter the following optional inputs using an ordered syntax or as
name-value pair arguments. You cannot mix ordered syntax with
name-value pair arguments.

Reset

NINST-by-1 vector representing the frequency of payments per year.

Default: 1

Basis

Day-count basis of the instrument. A vector of integers.

• 0 = actual/actual

• 1 = 30/360 (SIA)

• 2 = actual/360

• 3 = actual/365

• 4 = 30/360 (PSA)

• 5 = 30/360 (ISDA)

• 6 = 30/360 (European)

• 7 = actual/365 (Japanese)

• 8 = actual/actual (ISMA)

• 9 = actual/360 (ISMA)

• 10 = actual/365 (ISMA)

• 11 = 30/360E (ISMA)

6-296

floatbyzero

• 12 = actual/365 (ISDA)

• 13 = BUS/252
For more information, see basis.

Default: 0 (actual/actual)

Principal

NINST-by-1 vector of notional principal amounts or NINST-by-1
cell array. For the latter case, each element of the cell array is a
NumDates-by-2 matrix where the first column is dates and the second
column is associated principal amount. The date indicates the last day
that the principal value is valid.

Default: 100

EndMonthRule

End-of-month rule. NINST-by-1 vector. This rule applies only when
Maturity is an end-of-month date for a month having 30 or fewer days.

• 0 = Ignore rule, meaning that a bond coupon payment date is always
the same numerical day of the month.

• 1 = Set rule on, meaning that a bond coupon payment date is always
the last actual day of the month.

Default: 1

LatestFloatingRate

Rate for the next floating payment set at the last reset date. NINST-by-1
of scalars. If this is not specified, the floating rate at the previous reset
date must be computed from the RateSpec.

ForwardRateSpec

6-297

floatbyzero

The RateSpec to be used in generating floating cash flows. If no
ForwardRateSpec is specified then the RateSpec is used to generate
floating cash flows.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments,
where Name is the argument name and Value is the corresponding
value. Name must appear inside single quotes (' '). You can
specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

AdjustCashFlowsBasis

Adjust the cash flows based on the actual period day count. NINST-by-1
of logicals.

Default: false

BusinessDayConvention

Require payment dates to be business dates. NINST-by-1 cell array with
possible choices of business day convention:

• actual

• follow

• modifiedfollow

• previous

• modifiedprevious

Default: actual

Holidays

Holidays used for business day convention. NHOLIDAYS-by-1 of MATLAB
date numbers.

6-298

floatbyzero

Default: If no dates are specified, holidays.m is used.

Output
Arguments

Price

Number of instruments (NINST) by number of curves (NUMCURVES)
matrix of floating-rate note prices. Each column arises from one of the
zero curves.

PriceNoAI

NINST-by-NUMCURVES matrix of dirty bond price (clean + accrued
interest). Each column arises from one of the zero curves.

OutputCashFlows

NINST-by-NUMCFS matrix of cash flows for each bond.

Note If there is more than one curve specified in the RateSpec input,
then the first NCURVES rows correspond to the first bond, the second
NCURVES rows correspond to the second bond, and so on.

CFlowDates

NINST-by-NUMCFS matrix of payment dates for each bond.

Examples Price a Floating-Rate Note Using a Set of Zero Curves

Price a 20-basis point floating-rate note using a set of zero curves.

Load deriv.mat, which provides ZeroRateSpec, the interest-rate term
structure, needed to price the bond.

load deriv.mat;

Define the floating-rate note using the required arguments. Other
arguments use defaults.

Spread = 20;

6-299

floatbyzero

Settle = '01-Jan-2000';
Maturity = '01-Jan-2003';

Use floatbyzero to compute the price of the note.

Price = floatbyzero(ZeroRateSpec, Spread, Settle, Maturity)

Price =

100.5529

Price an Amortizing Floating-Rate Note

Price an amortizing floating-rate note using the Principal input
argument to define the amortization schedule.

Create the RateSpec.

Rates = [0.03583; 0.042147; 0.047345; 0.052707; 0.054302];

ValuationDate = '15-Nov-2011';

StartDates = ValuationDate;

EndDates = {'15-Nov-2012';'15-Nov-2013';'15-Nov-2014' ;'15-Nov-2015';'15-Nov-2016'};

Compounding = 1;

RateSpec = intenvset('ValuationDate', ValuationDate,'StartDates', StartDates,...

'EndDates', EndDates,'Rates', Rates, 'Compounding', Compounding)

RateSpec =

FinObj: 'RateSpec'
Compounding: 1

Disc: [5x1 double]
Rates: [5x1 double]

EndTimes: [5x1 double]
StartTimes: [5x1 double]

EndDates: [5x1 double]
StartDates: 734822

ValuationDate: 734822
Basis: 0

6-300

floatbyzero

EndMonthRule: 1

Create the floating-rate instrument using the following data:

Settle ='15-Nov-2011';
Maturity = '15-Nov-2015';
Spread = 15;

Define the floating-rate note amortizing schedule.

Principal ={{'15-Nov-2012' 100;'15-Nov-2013' 70;'15-Nov-2014' 40;'15-Nov-2015' 10}};

Compute the price of the amortizing floating-rate note.

Price = floatbyzero(RateSpec, Spread, Settle, Maturity, 'Principal', Principal)

Price =

100.3059

See Also | bondbyzero | cfbyzero | fixedbyzero | swapbyzero

6-301

floorbybdt

Purpose Price floor instrument from Black-Derman-Toy interest-rate tree

Syntax [Price, PriceTree] = floorbybdt(BDTTree, Strike, Settle, Maturity,
Reset, Basis, Principal, Options)

Arguments

BDTTree Interest-rate tree structure created by bdttree.

Strike Number of instruments (NINST)-by-1 vector of rates
at which the floor is exercised.

Settle Settlement date. NINST-by-1 vector of dates
representing the settlement dates of the floor.
The Settle date for every floor is set to the
ValuationDate of the BDT tree. The floor argument
Settle is ignored.

Maturity NINST-by-1 vector of dates representing the maturity
dates of the floor.

Reset (Optional) NINST-by-1 vector representing the
frequency of payments per year. Default = 1.

Basis (Optional) Day-count basis of the instrument. A
vector of integers.

• 0 = actual/actual (default)

• 1 = 30/360 (SIA)

• 2 = actual/360

• 3 = actual/365

• 4 = 30/360 (BMA)

• 5 = 30/360 (ISDA)

• 6 = 30/360 (European)

• 7 = actual/365 (Japanese)

6-302

floorbybdt

• 8 = actual/actual (ICMA)

• 9 = actual/360 (ICMA)

• 10 = actual/365 (ICMA)

• 11 = 30/360E (ICMA)

• 12 = actual/actual (ISDA)

• 13 = BUS/252
For more information, see basis.

Principal (Optional) The notional principal amount. Default
= 100.

Options (Optional) Derivatives pricing options structure
created with derivset.

Description [Price, PriceTree] = floorbybdt(BDTTree, Strike,
Settlement, Maturity, Reset, Basis, Principal, Options)
computes the price of a floor instrument from a BDT interest-rate tree.

Price is an NINST-by-1 vector of the expected prices of the floor at
time 0.

PriceTree is the tree structure with values of the floor at each node.

Examples Example 1. Price a 10% floor instrument using a BDT interest-rate
tree.

Load the file deriv.mat, which provides BDTTree. BDTTree contains the
time and interest-rate information needed to price the floor instrument.

load deriv.mat;

Set the required values. Other arguments will use defaults.

Strike = 0.10;
Settle = '01-Jan-2000';

6-303

floorbybdt

Maturity = '01-Jan-2004';

Use floorbybdt to compute the price of the floor instrument.

Price = floorbybdt(BDTTree, Strike, Settle, Maturity)

Price =

0.1770

Example 2. Here is a second example, showing the pricing of a 10%
floor instrument using a newly created BDT tree.

First set the required arguments for the three needed specifications.

Compounding = 1;
ValuationDate = '01-01-2000';
StartDate = ValuationDate;
EndDates = ['01-01-2001'; '01-01-2002'; '01-01-2003';
'01-01-2004'; '01-01-2005'];
Rates = [.1; .11; .12; .125; .13];
Volatility = [.2; .19; .18; .17; .16];

Next create the specifications.

RateSpec = intenvset('Compounding', Compounding,...

'ValuationDate', ValuationDate,...

'StartDates', StartDate,...

'EndDates', EndDates,...

'Rates', Rates);

BDTTimeSpec = bdttimespec(ValuationDate, EndDates, Compounding);

BDTVolSpec = bdtvolspec(ValuationDate, EndDates, Volatility);

Now create the BDT tree from the specifications.

BDTTree = bdttree(BDTVolSpec, RateSpec, BDTTimeSpec);

Set the floor arguments. Remaining arguments will use defaults.

6-304

floorbybdt

FloorStrike = 0.10;
Settlement = ValuationDate;
Maturity = '01-01-2002';
FloorReset = 1;

Finally, use floorbybdt to find the price of the floor instrument.

Price= floorbybdt(BDTTree, FloorStrike, Settlement, Maturity,...

FloorReset)

Price =

0.0431

See Also bdttree | capbybdt | cfbybdt | swapbybdt

6-305

floorbybk

Purpose Price floor instrument from Black-Karasinski interest-rate tree

Syntax [Price, PriceTree] = floorbybk(BKTree, Strike, Settle, Maturity,
Reset, Basis, Principal, Options)

Arguments

BKTree Interest-rate tree structure created by bktree.

Strike Number of instruments (NINST)-by-1 vector of rates at
which the floor is exercised.

Settle Settlement date. NINST-by-1 vector of dates
representing the settlement dates of the floor. The
Settle date for every floor is set to the ValuationDate
of the BK tree. The floor argument Settle is ignored.

Maturity NINST-by-1 vector of dates representing the maturity
dates of the floor.

Reset (Optional) NINST-by-1 vector representing the
frequency of payments per year. Default = 1.

Basis (Optional) Day-count basis of the instrument. A
vector of integers.

• 0 = actual/actual (default)

• 1 = 30/360 (SIA)

• 2 = actual/360

• 3 = actual/365

• 4 = 30/360 (BMA)

• 5 = 30/360 (ISDA)

• 6 = 30/360 (European)

• 7 = actual/365 (Japanese)

• 8 = actual/actual (ICMA)

6-306

floorbybk

• 9 = actual/360 (ICMA)

• 10 = actual/365 (ICMA)

• 11 = 30/360E (ICMA)

• 12 = actual/actual (ISDA)

• 13 = BUS/252
For more information, see basis.

Principal (Optional) The notional principal amount. Default
= 100.

Options (Optional) Derivatives pricing options structure
created with derivset.

Description [Price, PriceTree] = floorbybk(BKTree, Strike, Settlement,
Maturity, Reset, Basis, Principal, Options) computes the price
of a floor instrument from a Black-Karasinski tree.

Price is an NINST-by-1 vector of the expected prices of the floor at
time 0.

PriceTree is the tree structure with values of the floor at each node.

Examples Price a 3% floor instrument using a Black-Karasinski interest-rate tree.

Load the file deriv.mat, which provides BKTree. The BKTree structure
contains the time and interest rate information needed to price the
floor instrument.

load deriv.mat;

Set the required values. Other arguments will use defaults.

Strike = 0.03;
Settle = '01-Jan-2005';
Maturity = '01-Jan-2009';

6-307

floorbybk

Use floorbyhw to compute the price of the floor instrument.

Price = floorbybk(BKTree, Strike, Settle, Maturity)

Price =

0.2061

See Also bktree | capbybk | cfbybk | swapbybk

6-308

floorbyblk

Purpose Price floors using Black option pricing model

Syntax [FloorPrice, Floorlets] = floorbyblk(RateSpec, Strike, Settle,
Maturity, Volatility)
[FloorPrice, Floorlets] = floorbyblk(RateSpec, Strike, Settle,
Maturity, Volatility, 'Name1', Value1...)

Arguments

RateSpec The annualized, continuously compounded rate term
structure. For more information, see intenvset.

Strike NINST-by-1 vector of rates at which the floor is
exercised, as a decimal number.

Settle Scalar representing the settle date of the floor.

Maturity Scalar representing the maturity date of the floor.

Volatility NINST-by-1 vector of volatilities.

Reset (Optional) NINST-by-1 vector representing the
frequency of payments per year. Default is 1.

Principal (Optional) NINST-by-1 vector representing the
notional principal amount. Default is 100.

Basis NINST-by-1 vector representing the basis used when
annualizing the input forward rate.

• 0 = actual/actual (default)

• 1 = 30/360 (SIA)

• 2 = actual/360

• 3 = actual/365

• 4 = 30/360 (BMA)

• 5 = 30/360 (ISDA)

• 6 = 30/360 (European)

6-309

floorbyblk

• 7 = actual/365 (Japanese)

• 8 = actual/actual (ICMA)

• 9 = actual/360 (ICMA)

• 10 = actual/365 (ICMA)

• 11 = 30/360E (ICMA)

• 12 = actual/actual (ISDA)

• 13 = BUS/252
For more information, see basis.

ValuationDate (Optional) Scalar representing the observation date
of the investment horizons. The default is the Settle
date.

Note All optional inputs are specified as matching parameter
name/value pairs. The parameter name is specified as a character
string, followed by the corresponding parameter value. You can specify
parameter name/value pairs in any order. Names are case-insensitive
and partial string matches are allowed provided no ambiguities exist.

Description [FloorPrice, Floorlets] = floorbyblk(RateSpec, Strike,
Settle, Maturity, Volatility)

[FloorPrice, Floorlets] = floorbyblk(RateSpec, Strike,
Settle, Maturity, Volatility, 'Name1', Value1...)

Use floorbyblk to price floors using the Black option pricing model.

The outputs are:

• FloorPrice— NINST-by-1 expected prices of the floor.

• Floorlets— NINST-by-NCF array of floorlets, padded with NaNs.

6-310

floorbyblk

Examples Consider an investor who gets into a contract that floors the interest
rate on a $100,000 loan at 6% quarterly compounded for 3 months,
starting on January 1, 2009’. Assuming that on January 1, 2008 the
zero rate is 6.9394% continuously compounded and the volatility is 20%,
use this data to compute the floor price.

Calculate the RateSpec:

ValuationDate = 'Jan-01-2008';
EndDates ='April-01-2010';
Rates = 0.069394;
Compounding = -1;
Basis = 1;

RateSpec = intenvset('ValuationDate', ValuationDate, ...
'StartDates', ValuationDate,'EndDates', EndDates, ...
'Rates', Rates,'Compounding', Compounding,'Basis', Basis);

Compute the price of the cap:

Settle = 'Jan-01-2009'; % floor starts in a year

Maturity = 'April-01-2009';

Volatility = 0.20;

FloorRate = 0.06;

FloorReset = 4;

Principal=100000;

FloorPrice = floorbyblk(RateSpec, FloorRate, Settle, Maturity, Volatility,...

'Reset',FloorReset,'ValuationDate',ValuationDate,'Principal', Principal,...

'Basis', Basis)

FloorPrice =

37.4864

See Also capbyblk

6-311

floorbyhjm

Purpose Price floor instrument from Heath-Jarrow-Morton interest-rate tree

Syntax [Price, PriceTree] = floorbyhjm(HJMTree, Strike, Settle, Maturity,
Reset, Basis, Principal, Options)

Arguments

HJMTree Forward-rate tree structure created by hjmtree.

Strike Number of instruments (NINST)-by-1 vector of rates
at which the floor is exercised.

Settle Settlement date. NINST-by-1 vector of dates
representing the settlement dates of the floor.
The Settle date for every floor is set to the
ValuationDate of the HJM tree. The floor argument
Settle is ignored.

Maturity NINST-by-1 vector of dates representing the maturity
dates of the floor.

Reset (Optional) NINST-by-1 vector representing the
frequency of payments per year. Default = 1.

Basis (Optional) Day-count basis of the instrument. A
vector of integers.

• 0 = actual/actual (default)

• 1 = 30/360 (SIA)

• 2 = actual/360

• 3 = actual/365

• 4 = 30/360 (BMA)

• 5 = 30/360 (ISDA)

• 6 = 30/360 (European)

• 7 = actual/365 (Japanese)

6-312

floorbyhjm

• 8 = actual/actual (ICMA)

• 9 = actual/360 (ICMA)

• 10 = actual/365 (ICMA)

• 11 = 30/360E (ICMA)

• 12 = actual/actual (ISDA)

• 13 = BUS/252
For more information, see basis.

Principal (Optional) The notional principal amount. Default
= 100.

Options (Optional) Derivatives pricing options structure
created with derivset.

Description [Price, PriceTree] = floorbyhjm(HJMTree, Strike,
Settlement, Maturity, Reset, Basis, Principal, Options)
computes the price of a floor instrument from an HJM tree.

Price is an NINST-by-1 vector of the expected prices of the floor at
time 0.

PriceTree is the tree structure with values of the floor at each node.

Examples Price a 3% floor instrument using an HJM forward-rate tree.

Load the file deriv.mat, which provides HJMTree. The HJMTree
structure contains the time and forward-rate information needed to
price the floor instrument.

load deriv.mat;

Set the required values. Other arguments will use defaults.

Strike = 0.03;
Settle = '01-Jan-2000';

6-313

floorbyhjm

Maturity = '01-Jan-2004';

Use floorbyhjm to compute the price of the floor instrument.

Price = floorbyhjm(HJMTree, Strike, Settle, Maturity)

Price =

0.0486

See Also capbyhjm | cfbyhjm | hjmtree | swapbyhjm

6-314

floorbyhw

Purpose Price floor instrument from Hull-White interest-rate tree

Syntax [Price, PriceTree] = floorbyhw(HWTree, Strike, Settle, Maturity,
Reset, Basis, Principal, Options)

Arguments

HWTree Interest-rate tree structure created by hwtree.

Strike Number of instruments (NINST)-by-1 vector of rates
at which the floor is exercised.

Settle Settlement date. NINST-by-1 vector of dates
representing the settlement dates of the floor.
The Settle date for every floor is set to the
ValuationDate of the HW tree. The floor argument
Settle is ignored.

Maturity NINST-by-1 vector of dates representing the maturity
dates of the floor.

Reset (Optional) NINST-by-1 vector representing the
frequency of payments per year. Default = 1.

Basis (Optional) Day-count basis of the instrument. A
vector of integers.

• 0 = actual/actual (default)

• 1 = 30/360 (SIA)

• 2 = actual/360

• 3 = actual/365

• 4 = 30/360 (BMA)

• 5 = 30/360 (ISDA)

• 6 = 30/360 (European)

• 7 = actual/365 (Japanese)

6-315

floorbyhw

• 8 = actual/actual (ICMA)

• 9 = actual/360 (ICMA)

• 10 = actual/365 (ICMA)

• 11 = 30/360E (ICMA)

• 12 = actual/actual (ISDA)

• 13 = BUS/252
For more information, see basis.

Principal (Optional) The notional principal amount. Default
= 100.

Options (Optional) Derivatives pricing options structure
created with derivset.

Description [Price, PriceTree] = floorbyhw(HWTree, Strike, Settlement,
Maturity, Reset, Basis, Principal, Options) computes the price
of a floor instrument from an HW tree.

Price is an NINST-by-1 vector of the expected prices of the floor at
time 0.

PriceTree is the tree structure with values of the floor at each node.

Examples Price a 3% floor instrument using a Hull-White interest-rate tree.

Load the file deriv.mat, which provides HWTree. The HWTree structure
contains the time and interest rate information needed to price the
floor instrument.

load deriv.mat;

Set the required values. Other arguments will use defaults.

Strike = 0.03;
Settle = '01-Jan-2005';

6-316

floorbyhw

Maturity = '01-Jan-2009';

Use floorbyhw to compute the price of the floor instrument.

Price = floorbyhw(HWTree, Strike, Settle, Maturity)

Price =

0.4616

See Also capbyhw | cfbyhw | hwtree | swapbyhw

6-317

gapbybls

Purpose Determine price of gap digital options using Black-Scholes model

Syntax Price = gapbybls(RateSpec, StockSpec, Settle, Maturity,
OptSpec, Strike, StrikeThreshold)

Arguments

RateSpec The annualized, continuously compounded rate
term structure. For information on the interest
rate specification, see intenvset.

StockSpec Stock specification. See stockspec.

Settle NINST-by-1 vector of settlement or trade dates.

Maturity NINST-by-1 vector of maturity dates.

OptSpec NINST-by-1 cell array of strings 'call' or 'put'.

Strike NINST-by-1 vector of payoff strike price values.

StrikeThreshold NINST-by-1 vector of strike values that determine
if the option pays off.

Description Price = gapbybls(RateSpec, StockSpec, Settle, Maturity,
OptSpec, Strike, StrikeThreshold) computes gap option prices
using the Black-Scholes option pricing model.

Price is a NINST-by-1 vector of expected option prices.

Examples Consider a gap call and put options on a nondividend paying stock with
a strike of 57 and expiring on January 1, 2008. On July 1, 2008 the stock
is trading at 50. Using this data, compute the price of the option if the
risk-free rate is 9%, the strike threshold is 50, and the volatility is 20%.

Create the RateSpec:

Settle = 'Jan-1-2008';

Maturity = 'Jul-1-2008';

6-318

gapbybls

Compounding = -1;

Rates = 0.09;

RateSpec = intenvset('ValuationDate', Settle, 'StartDates', Settle,...

'EndDates', Maturity, 'Rates', Rates, 'Compounding', Compounding, 'Basis', 1);

Define the StockSpec:

AssetPrice = 50;
Sigma = .2;
StockSpec = stockspec(Sigma, AssetPrice);

Define the call and put options:

OptSpec = {'call'; 'put'};
Strike = 57;
StrikeThreshold = 50;

Calculate the price:

Pgap = gapbybls(RateSpec, StockSpec, Settle, Maturity, OptSpec,...

Strike, StrikeThreshold)

Pgap =

-0.0053

4.4866

See Also assetbybls | cashbybls | gapsensbybls | supersharebybls

6-319

gapsensbybls

Purpose Determine price and sensitivities of gap digital options using
Black-Scholes model

Syntax PriceSens = gapsensbybls(RateSpec, StockSpec, Settle,
Maturity, OptSpec, Strike, StrikeThreshold)
PriceSens = gapsensbybls(RateSpec, StockSpec, Settle,
Maturity, OptSpec, Strike, StrikeThreshold, OutSpec)

Arguments

RateSpec The annualized, continuously compounded rate
term structure. For information on the interest
rate specification, see intenvset.

StockSpec Stock specification. See stockspec.

Settle NINST-by-1 vector of settlement or trade dates.

Maturity NINST-by-1 vector of maturity dates.

OptSpec NINST-by-1 cell array of strings 'call' or 'put'.

Strike NINST-by-1 vector of strike price values.

StrikeThreshold NINST-by-1 vector of strike values that determine
if the option pays off.

OutSpec (Optional) All optional inputs are specified as
matching parameter name/value pairs. The
parameter name is specified as a character string,
followed by the corresponding parameter value.
You can specify parameter name/value pairs may
in any order. Names are case-insensitive and
partial string matches are allowed provided no
ambiguities exist. Valid parameter names are:

• NOUT-by-1 or 1-by-NOUT cell array of strings
indicating the nature and order of the outputs
for the function. Possible values are 'Price',
'Delta', 'Gamma', 'Vega', 'Lambda', 'Rho',
'Theta', or 'All'.

6-320

gapsensbybls

For example, OutSpec = {'Price'; 'Lamba';
'Rho'} specifies that the output should be
Price, Lambda, and Rho, in that order.

To invoke from a function: [Price, Lambda,
Rho] = gapsensbybls(..., 'OutSpec',
{'Price', 'Lamba', 'Rho'})

OutSpec = {'All'} specifies that the output
should be Delta, Gamma, Vega, Lambda, Rho,
Theta, and Price, in that order. This is the
same as specifying OutSpec as OutSpec =
{'Delta', 'Gamma', 'Vega', 'Lambda',
'Rho', 'Theta', 'Price'};.

• Default is OutSpec = {'Price'}.

Description PriceSens = gapsensbybls(RateSpec, StockSpec, Settle,
Maturity, OptSpec, Strike, StrikeThreshold) computes gap
option prices using the Black-Scholes option pricing model.

PriceSens = gapsensbybls(RateSpec, StockSpec, Settle,
Maturity, OptSpec, Strike, StrikeThreshold, OutSpec) includes
an OutSpec argument defined as parameter/value pairs, and computes
gap option prices and sensitivities using the Black-Scholes option
pricing model.

PriceSens is a NINST-by-1 vector of expected option prices and
sensitivities.

Examples Consider a gap call and put options on a nondividend paying stock with
a strike of 57 and expiring on January 1, 2008. On July 1, 2008 the
stock is trading at 50. Using this data, compute the price and sensitivity
of the option if the risk-free rate is 9%, the strike threshold is 50, and
the volatility is 20%.

Create the RateSpec:

6-321

gapsensbybls

Settle = 'Jan-1-2008';

Maturity = 'Jul-1-2008';

Compounding = -1;

Rates = 0.09;

RateSpec = intenvset('ValuationDate', Settle, 'StartDates', Settle,...

'EndDates', Maturity, 'Rates', Rates, 'Compounding', Compounding, 'Basis', 1);

Define the StockSpec:

AssetPrice = 50;
Sigma = .2;
StockSpec = stockspec(Sigma, AssetPrice);

Define the call and put options:

OptSpec = {'call'; 'put'};
Strike = 57;
StrikeThreshold = 50;

Calculate the price:

Pgap = gapbybls(RateSpec, StockSpec, Settle, Maturity, OptSpec,...

Strike, StrikeThreshold)

Pgap =

-0.0053

4.4866

Compute the gamma and delta:

OutSpec = {'gamma'; 'delta'};

[Gamma ,Delta] = gapsensbybls(RateSpec, StockSpec, Settle, Maturity,...

OptSpec, Strike, StrikeThreshold, 'OutSpec', OutSpec)

Gamma =

0.0724

6-322

gapsensbybls

0.0724

Delta =

0.2852

-0.7148

See Also gapbybls

6-323

hedgeopt

Purpose Allocate optimal hedge for target costs or sensitivities

Syntax [PortSens, PortCost, PortHolds] = hedgeopt(Sensitivities,
Price, CurrentHolds, FixedInd, NumCosts, TargetCost,
TargetSens, ConSet)

Arguments

Sensitivities Number of instruments (NINST) by number of
sensitivities (NSENS) matrix of dollar sensitivities
of each instrument. Each row represents a
different instrument. Each column represents
a different sensitivity.

Price NINST-by-1 vector of portfolio instrument unit
prices.

CurrentHolds NINST-by-1 vector of contracts allocated to each
instrument.

FixedInd (Optional) Number of fixed instruments
(NFIXED)-by-1 vector of indices of instruments
to hold fixed. For example, to hold the first and
third instruments of a 10 instrument portfolio
unchanged, set FixedInd = [1 3]. Default = [],
no instruments held fixed.

NumCosts (Optional) Number of points generated along
the cost frontier when a vector of target costs
(TargetCost) is not specified. The default is
10 equally spaced points between the point
of minimum cost and the point of minimum
exposure. When specifying TargetCost, enter
NumCosts as an empty matrix [].

6-324

hedgeopt

TargetCost (Optional) Vector of target cost values along the
cost frontier. If TargetCost is empty, or not
entered, hedgeopt evaluates NumCosts equally
spaced target costs between the minimum cost
and minimum exposure. When specified, the
elements of TargetCost should be positive
numbers that represent the maximum amount of
money the owner is willing to spend to rebalance
the portfolio.

TargetSens (Optional) 1-by-NSENS vector containing the
target sensitivity values of the portfolio. When
specifying TargetSens, enter NumCosts and
TargetCost as empty matrices [].

ConSet (Optional) Number of constraints (NCONS)
by number of instruments (NINST) matrix
of additional conditions on the portfolio
reallocations. An eligible NINST-by-1 vector of
contract holdings, PortWts, satisfies all the
inequalities A*PortWts <= b, where
A = ConSet(:,1:end-1) and b =
ConSet(:,end).

6-325

hedgeopt

Notes
The user-specified constraints included in ConSet may be created with
the functions pcalims or portcons. However, the portcons default
PortHolds positivity constraints are typically inappropriate for hedging
problems since short-selling is usually required.

NPOINTS, the number of rows in PortSens and PortHolds and the
length of PortCost, is inferred from the inputs. When the target
sensitivities, TargetSens, is entered, NPOINTS = 1; otherwise NPOINTS
= NumCosts, or is equal to the length of the TargetCost vector.

Not all problems are solvable (for example, the solution space may be
infeasible or unbounded, or the solution may fail to converge). When
a valid solution is not found, the corresponding rows of PortSens and
PortHolds and the elements of PortCost are padded with NaNs as
placeholders.

Description [PortSens, PortCost, PortHolds] = hedgeopt(Sensitivities,
Price, CurrentHolds, FixedInd, NumCosts, TargetCost,
TargetSens, ConSet) allocates an optimal hedge by one of two criteria:

• Minimize portfolio sensitivities (exposure) for a given set of target
costs.

• Minimize the cost of hedging a portfolio given a set of target
sensitivities.

Hedging involves the fundamental tradeoff between portfolio insurance
and the cost of insurance coverage. This function lets investors modify
portfolio allocations among instruments to achieve either of the criteria.
The chosen criterion is inferred from the input argument list. The
problem is cast as a constrained linear least-squares problem.

PortSens is a number of points (NPOINTS)-by-NSENS matrix of
portfolio sensitivities. When a perfect hedge exists, PortSens is zeros.
Otherwise, the best hedge possible is chosen.

6-326

hedgeopt

PortCost is a 1-by-NPOINTS vector of total portfolio costs.

PortHolds is an NPOINTS-by-NINST matrix of contracts allocated to each
instrument. These are the reallocated portfolios.

See Also hedgeslf | pcalims | portcons | portopt | lsqlin

6-327

hedgeslf

Purpose Self-financing hedge

Syntax [PortSens, PortValue, PortHolds] = hedgeslf(Sensitivities,
Price, CurrentHolds, FixedInd, ConSet)

Arguments

Sensitivities Number of instruments (NINST) by number of
sensitivities (NSENS) matrix of dollar sensitivities
of each instrument. Each row represents a
different instrument. Each column represents
a different sensitivity.

Price NINST-by-1 vector of instrument unit prices.

CurrentHolds NINST-by-1 vector of contracts allocated in each
instrument.

FixedInd (Optional) Empty or number of fixed instruments
(NFIXED)-by-1 vector of indices of instruments
to hold fixed. The default is FixedInd = 1; the
holdings in the first instrument are held fixed. If
NFIXED instruments will not be changed, enter all
their locations in the portfolio in a vector. If no
instruments are to be held fixed, enter FixedInd
= [].

ConSet (Optional) Number of constraints
(NCONS)-by-NINST matrix of additional
conditions on the portfolio reallocations. An
eligible NINST-by-1 vector of contract holdings,
PortHolds, satisfies all the inequalities
A*PortHolds <= b, where
A = ConSet(:,1:end-1) and b =
ConSet(:,end).

6-328

hedgeslf

Description [PortSens, PortValue, PortHolds] = hedgeslf(Sensitivities,
Price, CurrentHolds, FixedInd, ConSet) allocates a self-financing
hedge among a collection of instruments. hedgeslf finds the reallocation
in a portfolio of financial instruments that hedges the portfolio against
market moves and that is closest to being self-financing (maintaining
constant portfolio value). By default the first instrument entered is
hedged with the other instruments.

PortSens is a 1-by-NSENS vector of portfolio dollar sensitivities. When
a perfect hedge exists, PortSens is zeros. Otherwise, the best possible
hedge is chosen.

PortValue is the total portfolio value (scalar). When a perfectly
self-financing hedge exists, PortValue is equal to dot(Price,
CurrentWts) of the initial portfolio.

PortHolds is an NINST-by-1 vector of contracts allocated to each
instrument. This is the reallocated portfolio.

Notes
1. The constraints PortHolds(FixedInd) = CurrentHolds(FixedInd)
are appended to any constraints passed in ConSet. Pass FixedInd =
[] to specify all constraints through ConSet.

2. The default constraints generated by portcons are inappropriate,
since they require the sum of all holdings to be positive and equal to one.

3. hedgeself first tries to find the allocations of the portfolio that
make it closest to being self-financing, while reducing the sensitivities
to 0. If no solution is found, it finds the allocations that minimize the
sensitivities. If the resulting portfolio is self-financing, PortValue is
equal to the value of the original portfolio.

Examples Example 1. Perfect sensitivity cannot be reached.

Sens = [0.44 0.32; 1.0 0.0];

6-329

hedgeslf

Price = [1.2; 1.0];
W0 = [1; 1];
[PortSens, PortValue, PortHolds]= hedgeslf(Sens, Price, W0)

PortSens =

0.0000
0.3200

PortValue =

0.7600

PortHolds =

1.0000
-0.4400

Example 2. Constraints are in conflict.

Sens = [0.44 0.32; 1.0 0.0];

Price = [1.2; 1.0];

W0 = [1; 1];

ConSet = pcalims([2 2])

% O.K. if nothing fixed.

[PortSens, PortValue, PortHolds]= hedgeslf(Sens, Price, W0,...

[], ConSet)

PortSens =

2.8800

0.6400

PortValue =

6-330

hedgeslf

4.4000

PortHolds =

2

2

% W0(1) is not greater than 2.

[PortSens, PortValue, PortHolds] = hedgeslf(Sens, Price, W0,...

1, ConSet)

??? Error using ==> hedgeslf

Overly restrictive allocation constraints implied by ConSet and

by fixing the weight of instruments(s): 1

Example 3. Constraints are impossible to meet.

Sens = [0.44 0.32; 1.0 0.0];

Price = [1.2; 1.0];

W0 = [1; 1];

ConSet = pcalims([2 2],[1 1]);

[PortSens, PortValue, PortHolds] = hedgeslf(Sens, Price, W0,...

[],ConSet)

??? Error using ==> hedgeslf

Overly restrictive allocation constraints specified in ConSet

See Also hedgeopt | lsqlin | portcons

6-331

hjmprice

Purpose Instrument prices from Heath-Jarrow-Morton interest-rate tree

Syntax Price = hjmprice(HJMTree, InstSet, Options)

Arguments

HJMTree Heath-Jarrow-Morton tree sampling a forward-rate
process. See hjmtree for information on creating
HJMTree.

InstSet Variable containing a collection of instruments.
Instruments are categorized by type. Each type can
have different data fields. The stored data field is a
row vector or string for each instrument.

Options (Optional) Derivatives pricing options structure
created with derivset.

Description Price = hjmprice(HJMTree, InstSet, Options) computes
arbitrage-free prices for instruments using an interest-rate tree
created with hjmtree. A subset of NINST instruments from a financial
instrument variable, InstSet, are priced.

Price is a NINST-by-1 vector of prices for each instrument. The prices
are computed by backward dynamic programming on the interest-rate
tree. If an instrument cannot be priced, NaN is returned.

PriceTree is a MATLAB structure of trees containing vectors of
instrument prices and accrued interest, and a vector of observation
times for each node.

PriceTree.PBush contains the clean prices.

PriceTree.AIBush contains the accrued interest.

PriceTree.tObs contains the observation times.

6-332

hjmprice

hjmprice handles instrument types: 'Bond', 'CashFlow', 'OptBond',
'OptEmBond', 'Fixed', 'Float', 'Cap', 'Floor', 'RangeFloat',
'Swap'. See instadd to construct defined types.

Related single-type pricing functions are:

• bondbyhjm: Price a bond from an HJM tree.

• capbyhjm: Price a cap from an HJM tree.

• cfbyhjm: Price an arbitrary set of cash flows from an HJM tree.

• fixedbyhjm: Price a fixed-rate note from an HJM tree.

• floatbyhjm: Price a floating-rate note from an HJM tree.

• floorbyhjm: Price a floor from an HJM tree.

• optbndbyhjm: Price a bond option from an HJM tree.

• optembndbyhjm: Price a bond with embedded option by an HJM tree.

• rangefloatbyhjm: Price range floating note using a HJM tree.

• swapbyhjm: Price a swap from an HJM tree.

• swaptionbyhjm: Price a swaption from an HJM tree.

Examples Load the HJM tree and instruments from the data file deriv.mat. Price
the cap and bond instruments contained in the instrument set.

load deriv.mat;

HJMSubSet = instselect(HJMInstSet,'Type', {'Bond', 'Cap'});

instdisp(HJMSubSet)

%Table of instrument portfolio partially displayed:

Index Type CouponRate Settle Maturity Period Basis ... Name Quantity

1 Bond 0.04 01-Jan-2000 01-Jan-2003 1 NaN ... 4% bond 100

2 Bond 0.04 01-Jan-2000 01-Jan-2004 2 NaN ... 4% bond 50

Index Type Strike Settle Maturity CapReset Basis ... Name Quantity

3 Cap 0.03 01-Jan-2000 01-Jan-2004 1 NaN ... 3% Cap 30

6-333

hjmprice

[Price, PriceTree] = hjmprice(HJMTree, HJMSubSet)

Warning: Not all cash flows are aligned with the tree. Result will

be approximated.

Price =

98.7159

97.5280

6.2831

PriceTree =

FinObj: 'HJMPriceTree'

PBush: {[3x1 double] [3x1x2 double] [3x2x2 double] [3x4x2 double] [3x8 double]}

AIBush: {[3x1 double] [3x1x2 double] [3x2x2 double] [3x4x2 double] [3x8 double]}

tObs: [0 1 2 3 4]

You can use treeviewer to see the prices of these three instruments
along the price tree.

treeviewer(PriceTree, HJMSubSet)

6-334

hjmprice

Price the following multi-stepped coupon bonds using the following data:

% The data for the interest rate term structure is as follows:

Rates = [0.035; 0.042147; 0.047345; 0.052707];

ValuationDate = 'Jan-1-2010';

StartDates = ValuationDate;

EndDates = {'Jan-1-2011'; 'Jan-1-2012'; 'Jan-1-2013'; 'Jan-1-2014'};

Compounding = 1;

% Create RateSpec

RS = intenvset('ValuationDate', ValuationDate, 'StartDates', StartDates,...

'EndDates', EndDates,'Rates', Rates, 'Compounding', Compounding);

6-335

hjmprice

% Create a portfolio of stepped coupon bonds with different maturities

Settle = '01-Jan-2010';

Maturity = {'01-Jan-2011';'01-Jan-2012';'01-Jan-2013';'01-Jan-2014'};

CouponRate = {{'01-Jan-2011' .042;'01-Jan-2012' .05; '01-Jan-2013' .06; '01-Jan-2014' .07}};

ISet = instbond(CouponRate, Settle, Maturity, 1);

instdisp(ISet)

%Table of instrument portfolio partially displayed:

Index Type CouponRate Settle Maturity Period Basis EndMonthRule ... Face

1 Bond [Cell] 01-Jan-2010 01-Jan-2011 1 0 1 ... 100

2 Bond [Cell] 01-Jan-2010 01-Jan-2012 1 0 1 ... 100

3 Bond [Cell] 01-Jan-2010 01-Jan-2013 1 0 1 ... 100

4 Bond [Cell] 01-Jan-2010 01-Jan-2014 1 0 1 ... 100

% Build the tree with the following data

Volatility = [.2; .19; .18; .17];

CurveTerm = [1; 2; 3; 4];

HJMTimeSpec = hjmtimespec(ValuationDate, EndDates);

HJMVolSpec = hjmvolspec('Proportional', Volatility, CurveTerm, 1e6);

HJMT = hjmtree(HJMVolSpec,RS,HJMTimeSpec);

% Compute the price of the stepped coupon bonds

PHJM = hjmprice(HJMT, ISet)

%Table of instrument portfolio partially displayed:

Index Type CouponRate Settle Maturity Period Basis EndMonthRule ... Face

1 Bond [Cell] 01-Jan-2010 01-Jan-2011 1 0 1 ... 100

2 Bond [Cell] 01-Jan-2010 01-Jan-2012 1 0 1 ... 100

3 Bond [Cell] 01-Jan-2010 01-Jan-2013 1 0 1 ... 100

4 Bond [Cell] 01-Jan-2010 01-Jan-2014 1 0 1 ... 100

PHJM =

100.6763

100.7368

6-336

hjmprice

100.9266

101.0115

Price a portfolio of stepped callable bonds and stepped vanilla bonds
using the following data:

% Price a portfolio of stepped callable bonds and stepped vanilla bonds

% using the following data.

% The data for the interest rate term structure is as follows:

Rates = [0.035; 0.042147; 0.047345; 0.052707];

ValuationDate = 'Jan-1-2010';

StartDates = ValuationDate;

EndDates = {'Jan-1-2011'; 'Jan-1-2012'; 'Jan-1-2013'; 'Jan-1-2014'};

Compounding = 1;

%Create RateSpec

RS = intenvset('ValuationDate', ValuationDate, 'StartDates', StartDates,...

'EndDates', EndDates,'Rates', Rates, 'Compounding', Compounding);

% Create an instrument portfolio of 3 stepped callable bonds and three

% stepped vanilla bonds

Settle = '01-Jan-2010';

Maturity = {'01-Jan-2012';'01-Jan-2013';'01-Jan-2014'};

CouponRate = {{'01-Jan-2011' .042;'01-Jan-2012' .05; '01-Jan-2013' .06; '01-Jan-2014' .07}};

OptSpec='call';

Strike=100;

ExerciseDates='01-Jan-2011'; %Callable in one year

% Bonds with embedded option

ISet = instoptembnd(CouponRate, Settle, Maturity, OptSpec, Strike,...

ExerciseDates, 'Period', 1);

% Vanilla bonds

ISet = instbond(ISet, CouponRate, Settle, Maturity, 1);

6-337

hjmprice

% Display the instrument portfolio

instdisp(ISet)

%Table of instrument portfolio partially displayed:

Index Type CouponRate Settle Maturity OptSpec Strike ExerciseDates ... AmericanOpt

1 OptEmBond [Cell] 01-Jan-2010 01-Jan-2012 call 100 01-Jan-2011 ... 0

2 OptEmBond [Cell] 01-Jan-2010 01-Jan-2013 call 100 01-Jan-2011 ... 0

3 OptEmBond [Cell] 01-Jan-2010 01-Jan-2014 call 100 01-Jan-2011 ... 0

Index Type CouponRate Settle Maturity Period Basis EndMonthRule ... Face

4 Bond [Cell] 01-Jan-2010 01-Jan-2012 1 0 1 ... 100

5 Bond [Cell] 01-Jan-2010 01-Jan-2013 1 0 1 ... 100

6 Bond [Cell] 01-Jan-2010 01-Jan-2014 1 0 1 ... 100

% Build the tree with the following data

Volatility = [.2; .19; .18; .17];

CurveTerm = [1; 2; 3; 4];

HJMTimeSpec = hjmtimespec(ValuationDate, EndDates);

HJMVolSpec = hjmvolspec('Proportional', Volatility, CurveTerm, 1e6);

HJMT = hjmtree(HJMVolSpec,RS,HJMTimeSpec);

%The first three rows corresponds to the price of the stepped callable bonds

% and the last three rows corresponds to the price of the stepped vanilla bonds.

PHJM = hjmprice(HJMT, ISet)

PHJM =

100.3682

100.1557

99.9232

100.7368

100.9266

101.0115

6-338

hjmprice

Compute the price of a portfolio using the following data:

% The data for the interest rate term structure is as follows:

Rates = [0.035; 0.042147; 0.047345; 0.052707];

ValuationDate = 'Jan-1-2011';

StartDates = ValuationDate;

EndDates = {'Jan-1-2012'; 'Jan-1-2013'; 'Jan-1-2014'; 'Jan-1-2015'};

Compounding = 1;

% Create RateSpec

RS = intenvset('ValuationDate', ValuationDate, 'StartDates',...

StartDates, 'EndDates', EndDates,'Rates', Rates, 'Compounding', Compounding);

% Create an instrument portfolio with two range notes and a floating rate

% note with the following data:

Spread = 200;

Settle = 'Jan-1-2011';

Maturity = 'Jan-1-2014';

% First Range Note:

RateSched(1).Dates = {'Jan-1-2012'; 'Jan-1-2013' ; 'Jan-1-2014'};

RateSched(1).Rates = [0.045 0.055; 0.0525 0.0675; 0.06 0.08];

% Second Range Note:

RateSched(2).Dates = {'Jan-1-2012'; 'Jan-1-2013' ; 'Jan-1-2014'};

RateSched(2).Rates = [0.048 0.059; 0.055 0.068 ; 0.07 0.09];

% Create InstSet

InstSet = instadd('RangeFloat', Spread, Settle, Maturity, RateSched);

% Add a floating-rate note

InstSet = instadd(InstSet, 'Float', Spread, Settle, Maturity);

% Display the portfolio instrument

instdisp(InstSet)

6-339

hjmprice

Index Type Spread Settle Maturity RateSched FloatReset Basis Principal EndMonthRule

1 RangeFloat 200 01-Jan-2011 01-Jan-2014 [Struct] 1 0 100 1

2 RangeFloat 200 01-Jan-2011 01-Jan-2014 [Struct] 1 0 100 1

Index Type Spread Settle Maturity FloatReset Basis Principal EndMonthRule

3 Float 200 01-Jan-2011 01-Jan-2014 1 0 100 1

% The data to build the tree is as follows:

Volatility = [.2; .19; .18; .17];

CurveTerm = [1; 2; 3; 4];

MaTree = {'Jan-1-2012'; 'Jan-1-2013'; 'Jan-1-2014'; 'Jan-1-2015'};

HJMTS = hjmtimespec(ValuationDate, MaTree);

HJMVS = hjmvolspec('Proportional', Volatility, CurveTerm, 1e6);

HJMT = hjmtree(HJMVS, RS, HJMTS);

% Price the portfolio

Price = hjmprice(HJMT, InstSet)

Price =

91.1555

90.6656

105.5147

See Also hjmsens | hjmtree | hjmvolspec | instadd | intenvprice |
intenvsens

6-340

hjmsens

Purpose Instrument prices and sensitivities from Heath-Jarrow-Morton
interest-rate tree

Syntax [Delta, Gamma, Vega, Price] = hjmsens(HJMTree, InstSet,
Options)

Arguments

HJMTree Heath-Jarrow-Morton tree sampling a forward-rate
process. See hjmtree for information on creating
HJMTree.

InstSet Variable containing a collection of instruments.
Instruments are categorized by type. Each type can
have different data fields. The stored data field is a
row vector or string for each instrument.

Options (Optional) Derivatives pricing options structure
created with derivset.

Description [Delta, Gamma, Vega, Price] = hjmsens(HJMTree, InstSet,
Options) computes instrument sensitivities and prices for instruments
using an interest-rate tree created with hjmtree. NINST instruments
from a financial instrument variable, InstSet, are priced. hjmsens
handles instrument types: 'Bond', 'CashFlow', 'OptBond',
'OptEmBond', 'Fixed', 'Float', 'Cap', 'Floor', 'RangeFloat',
'Swap'. See instadd for information on instrument types.

Delta is an NINST-by-1 vector of deltas, representing the rate of change
of instrument prices with respect to changes in the interest rate. Delta
is computed by finite differences in calls to hjmtree. See hjmtree for
information on the observed yield curve.

Gamma is an NINST-by-1 vector of gammas, representing the rate of
change of instrument deltas with respect to the changes in the interest
rate. Gamma is computed by finite differences in calls to hjmtree.

6-341

hjmsens

Vega is an NINST-by-1 vector of vegas, representing the rate of change
of instrument prices with respect to the changes in the volatility

 t T,() . Vega is computed by finite differences in calls to hjmtree. See
hjmvolspec for information on the volatility process.

Note All sensitivities are returned as dollar sensitivities. To find the
per-dollar sensitivities, divide by the respective instrument price.

Price is an NINST-by-1 vector of prices of each instrument. The prices
are computed by backward dynamic programming on the interest-rate
tree. If an instrument cannot be priced, NaN is returned.

Delta and Gamma are calculated based on yield shifts of 100 basis points.
Vega is calculated based on a 1% shift in the volatility process.

Examples Load the tree and instruments from a data file. Compute Delta and
Gamma for the cap and bond instruments contained in the instrument set.

load deriv.mat;

HJMSubSet = instselect(HJMInstSet,'Type', {'Bond', 'Cap'});

instdisp(HJMSubSet)

%Table of instrument portfolio partially displayed:

Index Type CouponRate Settle Maturity Period ... Name

1 Bond 0.04 01-Jan-2000 01-Jan-2003 1 ... 4% bond

2 Bond 0.04 01-Jan-2000 01-Jan-2004 2 ... 4% bond

Index Type Strike Settle Maturity CapReset ... Name ...

3 Cap 0.03 01-Jan-2000 01-Jan-2004 1 ... 3% Cap ...

[Delta, Gamma] = hjmsens(HJMTree, HJMSubSet)

Warning: Not all cash flows are aligned with the tree. Result will

be approximated.

6-342

hjmsens

Delta =

-272.6462

-347.4315

294.9700

Gamma =

1.0e+003 *

1.0299

1.6227

6.8526

See Also hjmprice | hjmtree | hjmvolspec | instadd

6-343

hjmtimespec

Purpose Specify time structure for Heath-Jarrow-Morton interest-rate tree

Syntax TimeSpec = hjmtimespec(ValuationDate, Maturity, Compounding)

Arguments

ValuationDate Scalar date marking the pricing date and first
observation in the tree. Specify as serial date
number or date string.

Maturity Number of levels (depth) of the tree. A number of
levels (NLEVELS)-by-1 vector of dates marking the
cash flow dates of the tree. Cash flows with these
maturities fall on tree nodes. Maturity should
be in increasing order.

Compounding (Optional) Scalar value representing the rate
at which the input zero rates were compounded
when annualized. Default = 1. This argument
determines the formula for the discount factors:

Compounding = 1, 2, 3, 4, 6, 12

Disc = (1 + Z/F)^(-T), where F is the
compounding frequency, Z is the zero rate, and
T is the time in periodic units; for example, T =
F is 1 year.

Compounding = 365

Disc = (1 + Z/F)^(-T), where F is the number
of days in the basis year and T is a number of
days elapsed computed by basis.

Compounding = -1

Disc = exp(-T*Z), where T is time in years.

6-344

hjmtimespec

Description TimeSpec = hjmtimespec(ValuationDate, Maturity,
Compounding) sets the number of levels and node times for an HJM
tree and determines the mapping between dates and time for rate
quoting.

TimeSpec is a structure specifying the time layout for hjmtree. The
state observation dates are [Settle; Maturity(1:end-1)]. Because a
forward rate is stored at the last observation, the tree can value cash
flows out to Maturity.

Examples Specify an eight-period tree with semiannual nodes (every six months).
Use exponential compounding to report rates.

Compounding = -1;

ValuationDate = '15-Jan-1999';

Maturity = datemnth(ValuationDate, 6*(1:8)');

TimeSpec = hjmtimespec(ValuationDate, Maturity, Compounding)

TimeSpec =

FinObj: 'HJMTimeSpec'

ValuationDate: 730135

Maturity: [8x1 double]

Compounding: -1

Basis: 0

EndMonthRule: 1

See Also hjmtree | hjmvolspec

6-345

hjmtree

Purpose Construct Heath-Jarrow-Morton interest-rate tree

Syntax HJMTree = hjmtree(VolSpec, RateSpec, TimeSpec)

Arguments

VolSpec Volatility process specification. Sets the number of
factors and the rules for computing the volatility

 t T,() for each factor. See hjmvolspec for information
on the volatility process.

RateSpec Interest-rate specification for the initial rate curve. See
intenvset for information on declaring an interest-rate
variable.

TimeSpec Tree time layout specification. Defines the observation
dates of the HJM tree and the compounding rule for
date to time mapping and price-yield formulas. See
hjmtimespec for information on the tree structure.

Description HJMTree = hjmtree(VolSpec, RateSpec, TimeSpec) creates a
structure containing time and forward-rate information on a bushy tree.

Examples Using the data provided, create an HJM volatility specification
(VolSpec), rate specification (RateSpec), and tree time layout
specification (TimeSpec). Then use these specifications to create an
HJM tree using hjmtree.

Compounding = 1;

ValuationDate = '01-01-2000';

StartDate = ['01-01-2000'; '01-01-2001'; '01-01-2002'; '01-01-2003'; '01-01-2004'];

EndDates = ['01-01-2001'; '01-01-2002'; '01-01-2003'; '01-01-2004'; '01-01-2005'];

Rates = [.1; .11; .12; .125; .13];

Volatility = [.2; .19; .18; .17; .16];

CurveTerm = [1; 2; 3; 4; 5];

6-346

hjmtree

HJMVolSpec = hjmvolspec('Stationary', Volatility , CurveTerm);

RateSpec = intenvset('Compounding', Compounding,...

'ValuationDate', ValuationDate,...

'StartDates', StartDate,...

'EndDates', EndDates,...

'Rates', Rates);

HJMTimeSpec = hjmtimespec(ValuationDate, EndDates, Compounding);

HJMTree = hjmtree(HJMVolSpec, RateSpec, HJMTimeSpec)

Use treeviewer to observe the tree you have created.

treeviewer(HJMTree)

See Also hjmprice | hjmtimespec | hjmvolspec | intenvset

6-347

hjmvolspec

Purpose Specify Heath-Jarrow-Morton interest-rate volatility process

Syntax Volspec = hjmvolspec(varargin)

Arguments The arguments to hjmvolspec vary according to the type and number
of volatility factors specified when calling the function. Factors
are specified by pairs of names and parameter sets. Factor names
can be 'Constant', 'Stationary', 'Exponential', 'Vasicek', or
'Proportional'. The parameter set is specific for each of these factor
types:

• Constant volatility (Ho-Lee):
VolSpec = hjmvolspec('Constant', Sigma_0)

• Stationary volatility:
VolSpec = hjmvolspec('Stationary', CurveVol, CurveTerm)

• Exponential volatility:
VolSpec = hjmvolspec('Exponential', Sigma_0, Lambda)

• Vasicek, Hull-White:
VolSpec = hjmvolspec('Vasicek', Sigma_0, CurveDecay,
CurveTerm)

• Nearly proportional stationary:
VolSpec = hjmvolspec('Proportional', CurveProp,
CurveTerm, MaxSpot)

You can specify more than one factor by concatenating names and
parameter sets.

The following table defines the various arguments to hjmvolspec.

Argument Description

Sigma_0 Scalar base volatility over a unit time.

Lambda Scalar decay factor.

CurveVol Number of curves (NCURVES)-by1 vector of Vol values
at sample points.

6-348

hjmvolspec

Argument Description

CurveDecay NCURVES-by-1 vector of Decay values at sample points.

CurveProp NCURVES-by-1 vector of Prop values at sample points.

CurveTerm NCURVES-by-1 vector of Term sample points.

Note See the volatility specifications formulas below for a description
of Vol, Decay, Prop, and Term.

Description Volspec = hjmvolspec(varargin) computes VolSpec, a structure
that specifies the volatility model for hjmtree.

hjmvolspec specifies an HJM forward-rate volatility process. Each
factor is specified with one of the functional forms.

Volatility Specification Formula

Constant
 t T,() = Sigma_0

Stationary
 t T,() = Vol(T-t) = Vol(Term)

Exponential
 t T,() = Sigma_0*exp(-Lambda*(T-t))

Vasicek, Hull-White
 t T,() = Sigma_0*exp(-Decay(T-t))

Proportional
 t T,() = Prop(T-t)*max(SpotRate(t),
MaxSpot)

6-349

hjmvolspec

The volatility process is  t T,() , where t is the observation time and
T is the starting time of a forward rate. In a stationary process, the
volatility term is T–t. Multiple factors can be specified sequentially.

The time values T, t, and Term are in coupon interval units specified by
the Compounding input of hjmtimespec. For instance if Compounding =
2, Term = 1 is a semiannual period (six months).

Examples Example 1. Volatility is single-factor proportional.

CurveProp = [0.11765; 0.08825; 0.06865];

CurveTerm = [1; 2; 3];

VolSpec = hjmvolspec('Proportional', CurveProp, CurveTerm, 1e6)

VolSpec =

FinObj: 'HJMVolSpec'

FactorModels: {'Proportional'}

FactorArgs: {{1x3 cell}}

SigmaShift: 0

NumFactors: 1

NumBranch: 2

PBranch: [0.5000 0.5000]

Fact2Branch: [-1 1]

Example 2. Volatility is two-factor exponential and constant.

VolSpec = hjmvolspec('Exponential', 0.1, 1, 'Constant', 0.2)

VolSpec =

FinObj: 'HJMVolSpec'

FactorModels: {'Exponential' 'Constant'}

FactorArgs: {{1x2 cell} {1x1 cell}}

SigmaShift: 0

NumFactors: 2

NumBranch: 3

PBranch: [0.2500 0.2500 0.5000]

Fact2Branch: [2x3 double]

6-350

hjmvolspec

See Also hjmtimespec | hjmtree

6-351

hwcalbycap

Purpose Calibrate Hull-White tree using caps

Syntax [Alpha, Sigma, OptimOut] = hwcalbycap(RateSpec, MarketStrike,
MarketMaturity, MarketVolatility, Strike, Settle, Maturity)
[Alpha, Sigma, OptimOut] = hwcalbycap(RateSpec, MarketStrike,
MarketMaturity, MarketVolatility, Strike, Settle, Maturity,
'Name1', Value1...)

Arguments

RateSpec The annualized, continuously
compounded rate term structure. For
more information, see intenvset.

MarketStrike NSTRIKES-by-1 vector of market caplet
strikes, as a decimal number.

MarketMaturity NMATS-by-1 vector of market caplet
maturity dates.

MarketVolatility NSTRIKES-by-NMATS matrix of market
flat volatilities, where NSTRIKES is
the number of caplet strikes from
MarketStrike and NMATS is the caplet
maturity dates from MarketMaturity.

Strike Scalar representing the rate at which
the cap is exercised, as a decimal
number.

Settle Scalar representing the settle date of
the cap.

Maturity Scalar representing the maturity date
of the cap.

Reset (Optional) Scalar representing the
frequency of payments per year.
Default is 1.

6-352

hwcalbycap

Principal (Optional) Scalar representing the
notional principal amount. Default is
100.

Basis (Optional) NINST-by-1 vector
representing the basis used when
annualizing the input forward rate.

• 0 = actual/actual (default)

• 1 = 30/360 (SIA)

• 2 = actual/360

• 3 = actual/365

• 4 = 30/360 (BMA)

• 5 = 30/360 (ISDA)

• 6 = 30/360 (European)

• 7 = actual/365 (Japanese)

• 8 = actual/actual (ICMA)

• 9 = actual/360 (ICMA)

• 10 = actual/365 (ICMA)

• 11 = 30/360E (ICMA)

• 12 = actual/actual (ISDA)

• 13 = BUS/252
For more information, see basis.

ValuationDate (Optional) Scalar representing the
observation date of the investment
horizons. The default is the Settle
date.

6-353

hwcalbycap

LB (Optional) 2-by-1 vector of the
lower bounds, defined as [LBSigma;
LBAlpha], used in the search algorithm
function. Default is LB =[0;0]. For
more information, see lsqnonlin.

UB (Optional) 2-by-1 vector of the
upper bounds, defined as [UBSigma;
LBAlpha], used in the search algorithm
function. Default is UB =[](unbound).
For more information, see lsqnonlin.

X0 (Optional) 2-by-1 vector of the initial
values, defined as [Sigma0; Alpha0],
used in the search algorithm function.
Default is X0 = [0.5;0.5]. For more
information, see lsqnonlin.

OptimOptions (Optional) Structure with optimization
parameters. For more information, see
optimset.

Note All optional inputs are specified as matching parameter
name/value pairs. The parameter name is specified as a character
string, followed by the corresponding parameter value. You can specify
parameter name/value pairs in any order. Names are case-insensitive
and partial string matches are allowed provided no ambiguities exist.

Description [Alpha, Sigma, OptimOut] = hwcalbycap(RateSpec,
MarketStrike,MarketMaturity, MarketVolatility, Strike,
Settle, Maturity)

6-354

hwcalbycap

[Alpha, Sigma, OptimOut] = hwcalbycap(RateSpec,
MarketStrike,MarketMaturity, MarketVolatility, Strike,
Settle, Maturity,'Name1', Value1...)

Use hwcalbycap to estimate the Alpha (mean reversion) and Sigma
(volatility) using cap market data and the Hull-White model.

The outputs are:

• Alpha— Scalar representing the mean reversion value obtained from
calibrating the cap using caplet market information.

• Sigma — Scalar representing the volatility value obtained from
calibrating the cap using market caplet information.

• OptimOut — Structure with optimization results.

Examples For an example, see “Calibrating the Hull-White Model Using Market
Data” on page 2-76.

See Also capbyblk | hwcalbyfloor | hwtree | lsqnonlin

6-355

hwcalbyfloor

Purpose Calibrate Hull-White tree using floors

Syntax [Alpha, Sigma, OptimOut] = hwcalbyfloor(RateSpec,
MarketStrike, MarketMaturity, MarketVolatility, Strike,
Settle, Maturity)
[Alpha, Sigma, OptimOut] = hwcalbyfloor(RateSpec,
MarketStrike, MarketMaturity, MarketVolatility, Strike,
Settle, Maturity, 'Name1', Value1...)

Arguments

RateSpec The annualized, continuously
compounded rate term structure. For
more information, see intenvset.

MarketStrike NSTRIKES-by-1 vector of market floorlet
strikes as a decimal number.

MarketMaturity NMATS-by-1 vector of market floorlet
maturity dates.

MarketVolatility NSTRIKES-by-NMATS matrix of market
flat volatilities.

Strike Scalar representing the rate at which
the floor is exercised, as a decimal
number.

Settle Scalar representing the settle date of
the floor.

Maturity Scalar representing the maturity date
of the floor.

Reset (Optional) Scalar representing the
frequency of payments per year.
Default is 1.

6-356

hwcalbyfloor

Principal (Optional) Scalar representing the
notional principal amount. Default is
100.

Basis (Optional) NINST-by-1 vector
representing the basis used when
annualizing the input forward rate.

• 0 = actual/actual (default)

• 1 = 30/360 (SIA)

• 2 = actual/360

• 3 = actual/365

• 4 = 30/360 (BMA)

• 5 = 30/360 (ISDA)

• 6 = 30/360 (European)

• 7 = actual/365 (Japanese)

• 8 = actual/actual (ICMA)

• 9 = actual/360 (ICMA)

• 10 = actual/365 (ICMA)

• 11 = 30/360E (ICMA)

• 12 = actual/actual (ISDA)

• 13 = BUS/252
For more information, see basis.

ValuationDate (Optional) Scalar representing the
observation date of the investment
horizons. The default is the Settle
date.

6-357

hwcalbyfloor

LB (Optional) 2-by-1 vector of the
lower bounds, defined as [LBSigma;
LBAlpha], used in the search algorithm
function. Default is LB =[0;0]. For
more information, see lsqnonlin.

UB (Optional) 2-by-1 vector of the
upper bounds, defined as [UBSigma;
LBAlpha], used in the search algorithm
function. Default is UB =[](unbound).
For more information, see lsqnonlin.

X0 (Optional) 2-by-1 vector of the initial
values, defined as [Sigma0; Alpha0],
used in the search algorithm function.
Default is X0 = [0.5;0.5]. For more
information, see lsqnonlin.

OptimOptions (Optional) Structure with optimization
parameters. For more information, see
optimset.

Note All optional inputs are specified as matching parameter
name/value pairs. The parameter name is specified as a character
string, followed by the corresponding parameter value. You can specify
parameter name/value pairs in any order. Names are case-insensitive
and partial string matches are allowed provided no ambiguities exist.

Description [Alpha, Sigma, OptimOut] =
hwcalbyfloor(RateSpec,MarketStrike, MarketMaturity,
MarketVolatility, Strike, Settle, Maturity)

[Alpha, Sigma, OptimOut] =
hwcalbyfloor(RateSpec,MarketStrike, MarketMaturity,

6-358

hwcalbyfloor

MarketVolatility, Strike, Settle, Maturity, 'Name1',
Value1...)

Use hwcalbyfloor to estimate the Alpha (mean reversion) and Sigma
(volatility) using floor market data and the Hull-White model.

The outputs are:

• Alpha— Scalar representing the mean reversion value obtained from
calibrating the floor using floorlet market information.

• Sigma — Scalar representing the volatility value obtained from
calibrating the floor using floorlet market information.

• OptimOut — Structure with optimization results.

Examples For an example, see “Calibrating the Hull-White Model Using Market
Data” on page 2-76.

See Also floorbyblk | hwcalbycap | hwtree | lsqnonlin

6-359

hwprice

Purpose Instrument prices from Hull-White interest-rate tree

Syntax [Price, PriceTree] = hwprice(HWTree, InstSet, Options)

Arguments

HWTree Interest-rate tree structure created by hwtree.

InstSet Variable containing a collection of NINST instruments.
Instruments are categorized by type; each type can
have different data fields. The stored data field is a
row vector or string for each instrument.

Options (Optional) Derivatives pricing options structure
created with derivset.

Description [Price, PriceTree] = hwprice(HWTree, InstSet, Options)
computes arbitrage-free prices for instruments using an interest-rate
tree created with hwtree. All instruments contained in a financial
instrument variable, InstSet, are priced.

Price is a number of instruments (NINST)-by-1 vector of prices for
each instrument. The prices are computed by backward dynamic
programming on the interest-rate tree. If an instrument cannot be
priced, NaN is returned.

PriceTree is a MATLAB structure of trees containing vectors of
instrument prices and accrued interest, and a vector of observation
times for each node.

PriceTree.PTree contains the clean prices.

PriceTree.AITree contains the accrued interest.

PriceTree.tObs contains the observation times.

hwprice handles instrument types: 'Bond', 'CashFlow', 'OptBond',
'OptEmBond', 'Fixed', 'Float', 'Cap', 'Floor', 'RangeFloat',
'Swap'. See instadd to construct defined types.

6-360

hwprice

Related single-type pricing functions are:

• bondbyhw: Price a bond from a Hull-White tree.

• capbyhw: Price a cap from a Hull-White tree.

• cfbyhw: Price an arbitrary set of cash flows from a Hull-White tree.

• fixedbyhw: Price a fixed-rate note from a Hull-White tree.

• floatbyhw: Price a floating-rate note from a Hull-White tree.

• floorbyhw: Price a floor from a Hull-White tree.

• optbndbyhw: Price a bond option from a Hull-White tree.

• optembndbyhw: Price a bond with embedded option by a Hull-White
tree.

• rangefloatbyhw: Price range floating note using a Hull-White tree.

• swapbyhw: Price a swap from a Hull-White tree.

• swaptionbyhw: Price a swaption from a Hull-White tree.

Examples Load the HW tree and instruments from the data file deriv.mat. Price
the cap and bond instruments contained in the instrument set.

load deriv.mat;

HWSubSet = instselect(HWInstSet,'Type', {'Bond', 'Cap'});

instdisp(HWSubSet)

%Table of instrument portfolio partially displayed:

Index Type CouponRate Settle Maturity Period ... Name ...

1 Bond 0.04 01-Jan-2004 01-Jan-2007 1 ... 4% bond

2 Bond 0.04 01-Jan-2004 01-Jan-2008 1 ... 4% bond

Index Type Strike Settle Maturity CapReset ... Name ...

3 Cap 0.06 01-Jan-2004 01-Jan-2008 1 ... 6% Cap

[Price, PriceTree] = hwprice(HWTree, HWSubSet);

6-361

hwprice

Price =

100.9188

99.3296

0.5837

You can use treeviewer to see the prices of these three instruments
along the price tree.

treeviewer(PriceTree, HWSubSet)

6-362

hwprice

Price the following multi-stepped coupon bonds using the following data:

6-363

hwprice

% The data for the interest rate term structure is as follows:

Rates = [0.035; 0.042147; 0.047345; 0.052707];

ValuationDate = 'Jan-1-2010';

StartDates = ValuationDate;

EndDates = {'Jan-1-2011'; 'Jan-1-2012'; 'Jan-1-2013'; 'Jan-1-2014'};

Compounding = 1;

% Create RateSpec

RS = intenvset('ValuationDate', ValuationDate, 'StartDates', StartDates,...

'EndDates', EndDates,'Rates', Rates, 'Compounding', Compounding);

% Create a portfolio of stepped coupon bonds with different maturities

Settle = '01-Jan-2010';

Maturity = {'01-Jan-2011';'01-Jan-2012';'01-Jan-2013';'01-Jan-2014'};

CouponRate = {{'01-Jan-2011' .042;'01-Jan-2012' .05; '01-Jan-2013' .06; '01-Jan-2014' .07}};

ISet = instbond(CouponRate, Settle, Maturity, 1);

instdisp(ISet)

%Table of instrument portfolio partially displayed:

Index Type CouponRate Settle Maturity Period Basis EndMonthRule ... Face

1 Bond [Cell] 01-Jan-2010 01-Jan-2011 1 0 1 ... 100

2 Bond [Cell] 01-Jan-2010 01-Jan-2012 1 0 1 ... 100

3 Bond [Cell] 01-Jan-2010 01-Jan-2013 1 0 1 ... 100

4 Bond [Cell] 01-Jan-2010 01-Jan-2014 1 0 1 ... 100

% Build the tree with the following data

VolDates = ['1-Jan-2011'; '1-Jan-2012'; '1-Jan-2013'; '1-Jan-2014'];

VolCurve = 0.01;

AlphaDates = '01-01-2014';

AlphaCurve = 0.1;

HWVolSpec = hwvolspec(RS.ValuationDate, VolDates, VolCurve,...

AlphaDates, AlphaCurve);

HWTimeSpec = hwtimespec(RS.ValuationDate, VolDates, Compounding);

6-364

hwprice

HWT = hwtree(HWVolSpec, RS, HWTimeSpec);

% Compute the price of the stepped coupon bonds

PHW = hwprice(HWT, ISet)

%Table of instrument portfolio partially displayed:

Index Type CouponRate Settle Maturity Period Basis EndMonthRule ... Face

1 Bond [Cell] 01-Jan-2010 01-Jan-2011 1 0 1 ... 100

2 Bond [Cell] 01-Jan-2010 01-Jan-2012 1 0 1 ... 100

3 Bond [Cell] 01-Jan-2010 01-Jan-2013 1 0 1 ... 100

4 Bond [Cell] 01-Jan-2010 01-Jan-2014 1 0 1 ... 100

PHJM =

100.6763

100.7368

100.9266

101.0115

Price a portfolio of stepped callable bonds and stepped vanilla bonds
using the following data:

% The data for the interest rate term structure is as follows:

Rates = [0.035; 0.042147; 0.047345; 0.052707];

ValuationDate = 'Jan-1-2010';

StartDates = ValuationDate;

EndDates = {'Jan-1-2011'; 'Jan-1-2012'; 'Jan-1-2013'; 'Jan-1-2014'};

Compounding = 1;

%Create RateSpec

RS = intenvset('ValuationDate', ValuationDate, 'StartDates', StartDates,...

'EndDates', EndDates,'Rates', Rates, 'Compounding', Compounding);

% Create an instrument portfolio of 3 stepped callable bonds and three

6-365

hwprice

% stepped vanilla bonds

Settle = '01-Jan-2010';

Maturity = {'01-Jan-2012';'01-Jan-2013';'01-Jan-2014'};

CouponRate = {{'01-Jan-2011' .042;'01-Jan-2012' .05; '01-Jan-2013' .06; '01-Jan-2014' .07}};

OptSpec='call';

Strike=100;

ExerciseDates='01-Jan-2011'; %Callable in one year

% Bonds with embedded option

ISet = instoptembnd(CouponRate, Settle, Maturity, OptSpec, Strike,...

ExerciseDates, 'Period', 1);

% Vanilla bonds

ISet = instbond(ISet, CouponRate, Settle, Maturity, 1);

% Display the instrument portfolio

instdisp(ISet)

%Table of instrument portfolio partially displayed:

Index Type CouponRate Settle Maturity OptSpec Strike ExerciseDates ... AmericanOpt

1 OptEmBond [Cell] 01-Jan-2010 01-Jan-2012 call 100 01-Jan-2011 ... 0

2 OptEmBond [Cell] 01-Jan-2010 01-Jan-2013 call 100 01-Jan-2011 ... 0

3 OptEmBond [Cell] 01-Jan-2010 01-Jan-2014 call 100 01-Jan-2011 ... 0

Index Type CouponRate Settle Maturity Period Basis EndMonthRule ... Face

4 Bond [Cell] 01-Jan-2010 01-Jan-2012 1 0 1 ... 100

5 Bond [Cell] 01-Jan-2010 01-Jan-2013 1 0 1 ... 100

6 Bond [Cell] 01-Jan-2010 01-Jan-2014 1 0 1 ... 100

% Build the tree with the following data

VolDates = ['1-Jan-2011'; '1-Jan-2012'; '1-Jan-2013'; '1-Jan-2014'];

VolCurve = 0.01;

AlphaDates = '01-01-2014';

AlphaCurve = 0.1;

HWVolSpec = hwvolspec(RS.ValuationDate, VolDates, VolCurve,...

AlphaDates, AlphaCurve);

6-366

hwprice

HWTimeSpec = hwtimespec(RS.ValuationDate, VolDates, Compounding);

HWT = hwtree(HWVolSpec, RS, HWTimeSpec);

%The first three rows corresponds to the price of the stepped callable bonds

% and the last three rows corresponds to the price of the stepped vanilla bonds.

PHW = hwprice(HWT, ISet)

PHW =

100.4222

100.2275

100.0502

100.7368

100.9266

101.0115

Compute the price of a portfolio using the following data:

% The data for the interest rate term structure is as follows:

Rates = [0.035; 0.042147; 0.047345; 0.052707];

ValuationDate = 'Jan-1-2011';

StartDates = ValuationDate;

EndDates = {'Jan-1-2012'; 'Jan-1-2013'; 'Jan-1-2014'; 'Jan-1-2015'};

Compounding = 1;

% Create RateSpec

RS = intenvset('ValuationDate', ValuationDate, 'StartDates',...

StartDates, 'EndDates', EndDates,'Rates', Rates, 'Compounding', Compounding);

% Create an instrument portfolio with two range notes and a floating rate

% note with the following data:

Spread = 200;

Settle = 'Jan-1-2011';

Maturity = 'Jan-1-2014';

6-367

hwprice

% First Range Note:

RateSched(1).Dates = {'Jan-1-2012'; 'Jan-1-2013' ; 'Jan-1-2014'};

RateSched(1).Rates = [0.045 0.055; 0.0525 0.0675; 0.06 0.08];

% Second Range Note:

RateSched(2).Dates = {'Jan-1-2012'; 'Jan-1-2013' ; 'Jan-1-2014'};

RateSched(2).Rates = [0.048 0.059; 0.055 0.068 ; 0.07 0.09];

% Create InstSet

InstSet = instadd('RangeFloat', Spread, Settle, Maturity, RateSched);

% Add a floating-rate note

InstSet = instadd(InstSet, 'Float', Spread, Settle, Maturity);

% Display the portfolio instrument

instdisp(InstSet)

Index Type Spread Settle Maturity RateSched FloatReset Basis Principal EndMonthRule

1 RangeFloat 200 01-Jan-2011 01-Jan-2014 [Struct] 1 0 100 1

2 RangeFloat 200 01-Jan-2011 01-Jan-2014 [Struct] 1 0 100 1

Index Type Spread Settle Maturity FloatReset Basis Principal EndMonthRule

3 Float 200 01-Jan-2011 01-Jan-2014 1 0 100 1

% The data to build the tree is as follows:

VolDates = ['1-Jan-2012'; '1-Jan-2013'; '1-Jan-2014';'1-Jan-2015'];

VolCurve = 0.01;

AlphaDates = '01-01-2015';

AlphaCurve = 0.1;

HWVS = hwvolspec(RS.ValuationDate, VolDates, VolCurve,...

AlphaDates, AlphaCurve);

HWTS = hwtimespec(RS.ValuationDate, VolDates, Compounding);

HWT = hwtree(HWVS, RS, HWTS);

6-368

hwprice

% Price the portfolio

Price = hwprice(HWT, InstSet)

Price =

99.4075

98.1003

105.5147

See Also hwsens | hwtree | instadd | intenvprice | intenvsens

6-369

hwsens

Purpose Instrument prices and sensitivities from Hull-White interest-rate tree

Syntax [Delta, Gamma, Vega, Price] = hwsens(HWTree, InstSet,
Options)

Arguments

HWTree Interest-rate tree structure created by hwtree.

InstSet Variable containing a collection of NINST instruments.
Instruments are categorized by type; each type can
have different data fields. The stored data field is a
row vector or string for each instrument.

Options (Optional) Derivatives pricing options structure
created with derivset.

Description [Delta, Gamma, Vega, Price] = hwsens(HWTree, InstSet,
Options) computes instrument sensitivities and prices for instruments
using an interest-rate tree created with the hwtree function. NINST
instruments from a financial instrument variable, InstSet, are priced.
hwsens handles instrument types: 'Bond', 'CashFlow', 'OptBond',
'OptEmBond', 'Fixed', 'Float', 'Cap', 'Floor', 'RangeFloat',
'Swap'. See instadd for information on instrument types.

Delta is an NINST-by-1 vector of deltas, representing the rate of change
of instrument prices with respect to changes in the interest rate. Delta
is computed by finite differences in calls to hwtree. See hwtree for
information on the observed yield curve.

Gamma is an NINST-by-1 vector of gammas, representing the rate of
change of instrument deltas with respect to the changes in the interest
rate. Gamma is computed by finite differences in calls to hwtree.

Vega is an NINST-by-1 vector of vegas, representing the rate of change of

instrument prices with respect to the changes in the volatility  t T,() .

6-370

hwsens

Vega is computed by finite differences in calls to hwtree. See hwvolspec
for information on the volatility process.

Note All sensitivities are returned as dollar sensitivities. To find the
per-dollar sensitivities, divide by the respective instrument price.

Price is an NINST-by-1 vector of prices of each instrument. The prices
are computed by backward dynamic programming on the interest-rate
tree. If an instrument cannot be priced, NaN is returned.

Delta and Gamma are calculated based on yield shifts of 100 basis points.
Vega is calculated based on a 1% shift in the volatility process.

Examples Load the tree and instruments from a data file. Compute Delta and
Gamma for the cap and bond instruments contained in the instrument set.

load deriv.mat;

HWSubSet = instselect(HWInstSet,'Type', {'Bond', 'Cap'});

instdisp(HWSubSet)

%Table of instrument portfolio partially displayed:

Index Type CouponRate Settle Maturity Period ... Name ...

1 Bond 0.04 01-Jan-2004 01-Jan-2007 1 ... 4% Bond

2 Bond 0.04 01-Jan-2004 01-Jan-2008 1 ... 4% Bond

Index Type Strike Settle Maturity CapReset ... Name ...

3 Cap 0.06 01-Jan-2004 01-Jan-2008 1 ... 6% Cap

[Delta, Gamma] = hwsens(HWTree, HWSubSet)

Delta =

-291.26

-374.64

6-371

hwsens

59.55

Gamma =

858.41

1460.88

4843.65

See Also hwprice | hwtree | hwvolspec | instadd

6-372

hwtimespec

Purpose Specify time structure for Hull-White interest-rate tree

Syntax TimeSpec = hwtimespec(ValuationDate, Maturity, Compounding)

Arguments

ValuationDate Scalar date marking the pricing date and first
observation in the tree. Specify as a serial date
number or date string

Maturity Number of levels (depth) of the tree. A number
of levels (NLEVELS)-by-1 vector of dates marking
the cash flow dates of the tree. Cash flows with
these maturities fall on tree nodes. Maturity
should be in increasing order.

Compounding (Optional) Scalar value representing the rate
at which the input zero rates were compounded
when annualized. Default = -1 (continuous
compounding). This argument determines the
formula for the discount factors:

Compounding = 1, 2, 3, 4, 6, 12

Disc = (1 + Z/F)^(-T), where F is the
compounding frequency, Z is the zero rate, and
T is the time in periodic units; for example, T
= F is 1 year.

Compounding = 365

Disc = (1 + Z/F)^(-T), where F is the
number of days in the basis year and T is a
number of days elapsed computed by basis.

Compounding = -1

Disc = exp(-T*Z), where T is time in years.

6-373

hwtimespec

Description TimeSpec = hwtimespec(ValuationDate, Maturity, Compounding)
sets the number of levels and node times for a Hull-White tree and
determines the mapping between dates and time for rate quoting.

TimeSpec is a structure specifying the time layout for hwtree. The
state observation dates are [Settle; Maturity(1:end-1)]. Because a
forward rate is stored at the last observation, the tree can value cash
flows out to Maturity.

Examples Specify a four-period tree with annual nodes. Use annual compounding
to report rates.

ValuationDate = 'Jan-1-2004';
Maturity = ['12-31-2004'; '12-31-2005'; '12-31-2006';
'12-31-2007'];
Compounding = 1;
TimeSpec = hwtimespec(ValuationDate, Maturity, Compounding)

TimeSpec =

FinObj: 'HWTimeSpec'
ValuationDate: 731947

Maturity: [4x1 double]
Compounding: 1

Basis: 0
EndMonthRule: 1

See Also bktree | hwtree | hwvolspec

6-374

hwtree

Purpose Construct Hull-White interest-rate tree

Syntax HWTree = hwtree(VolSpec, RateSpec, TimeSpec)
HWTree = hwtree(VolSpec, RateSpec, TimeSpec, Name,Value)

Description HWTree = hwtree(VolSpec, RateSpec, TimeSpec) creates a structure
containing time and interest-rate information on a recombining tree.

HWTree = hwtree(VolSpec, RateSpec, TimeSpec, Name,Value)
creates a structure containing time and interest-rate information on
a recombining tree with additional options specified by one or more
Name,Value pair arguments.

Input
Arguments

VolSpec

Volatility process specification. See hwvolspec for information on the
volatility process.

RateSpec

Interest-rate specification for the initial rate curve. See intenvset for
information on declaring an interest-rate variable.

TimeSpec

Tree time layout specification. Defines the observation dates of the HW
tree and the compounding rule for date to time mapping and price-yield
formulas. See hwtimespec for information on the tree structure.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments,
where Name is the argument name and Value is the corresponding
value. Name must appear inside single quotes (' '). You can
specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

Method

6-375

hwtree

String specifies the Hull-White method upon which the tree-node
connectivity algorithm is based. Possible values are HW1996 and HW2000.

Note hwtree supports two tree-node connectivity algorithms. HW1996
is based on the original paper published in the Journal of Derivatives,
and HW2000 is the general version of the algorithm, as specified in the
paper published in August 2000.

Default: HW1996

Output
Arguments

HWTree

Structure containing time and interest rate information of a trinomial
recombining tree.

Examples Using the data provided, create a Hull-White volatility specification
(VolSpec), rate specification (RateSpec), and tree time layout
specification (TimeSpec). Then use these specifications to create a
Hull-White tree using hwtree.

Compounding = -1;

ValuationDate = '01-01-2004';

StartDate = ValuationDate;

VolDates = ['12-31-2004'; '12-31-2005'; '12-31-2006';

'12-31-2007'];

VolCurve = 0.01;

AlphaDates = '01-01-2008';

AlphaCurve = 0.1;

Rates = [0.0275; 0.0312; 0.0363; 0.0415];

HWVolSpec = hwvolspec(ValuationDate, VolDates, VolCurve,...

AlphaDates, AlphaCurve);

RateSpec = intenvset('Compounding', Compounding,...

'ValuationDate', ValuationDate,...

6-376

hwtree

'StartDates', ValuationDate,...

'EndDates', VolDates,...

'Rates', Rates);

HWTimeSpec = hwtimespec(ValuationDate, VolDates, Compounding);

HWTree = hwtree(HWVolSpec, RateSpec, HWTimeSpec)

HWTree =

FinObj: 'HWFwdTree'

VolSpec: [1x1 struct]

TimeSpec: [1x1 struct]

RateSpec: [1x1 struct]

tObs: [0 0.9973 1.9973 2.9973]

dObs: [731947 732312 732677 733042]

CFlowT: {[4x1 double] [3x1 double] [2x1 double] [3.9973]}

Probs: {[3x1 double] [3x3 double] [3x5 double]}

Connect: {[2] [2 3 4] [2 2 3 4 4]}

FwdTree: {1x4 cell}

Use treeviewer to observe the tree you have created.

treeviewer(HWTree)

6-377

hwtree

Using the data provided, create a Hull-White volatility specification
(VolSpec), rate specification (RateSpec), and tree time layout
specification (TimeSpec). Then use these specifications to create a
Hull-White tree using hwtree.

Compounding = -1;

ValuationDate = '01-01-2004';

StartDate = ValuationDate;

VolDates = ['12-31-2004'; '12-31-2005'; '12-31-2006';

'12-31-2007'];

VolCurve = 0.01;

AlphaDates = '01-01-2008';

AlphaCurve = 0.1;

Rates = [0.0275; 0.0312; 0.0363; 0.0415];

HWVolSpec = hwvolspec(ValuationDate, VolDates, VolCurve,...

AlphaDates, AlphaCurve);

6-378

hwtree

RateSpec = intenvset('Compounding', Compounding,...

'ValuationDate', ValuationDate,...

'StartDates', ValuationDate,...

'EndDates', VolDates,...

'Rates', Rates);

HWTimeSpec = hwtimespec(ValuationDate, VolDates, Compounding);

HWTree = hwtree(HWVolSpec, RateSpec, HWTimeSpec)

HWTree =

FinObj: 'HWFwdTree'

VolSpec: [1x1 struct]

TimeSpec: [1x1 struct]

RateSpec: [1x1 struct]

tObs: [0 0.9973 1.9973 2.9973]

dObs: [731947 732312 732677 733042]

CFlowT: {[4x1 double] [3x1 double] [2x1 double] [3.9973]}

Probs: {[3x1 double] [3x3 double] [3x5 double]}

Connect: {[2] [2 3 4] [2 2 3 4 4]}

FwdTree: {1x4 cell}

Use treeviewer to observe the tree you have created.

treeviewer(HWTree)

6-379

hwtree

References Hull, J., and A. White, "Using Hull-White Interest Rate Trees", Journal
of Derivatives, 1996.

Hull, J., and A. White, "The General Hull-White Model and Super
Calibration", August 2000.

See Also | hwcalbycap | hwcalbyfloor | hwprice | hwtimespec | hwvolspec
| intenvset |

Tutorials • “Calibrating the Hull-White Model Using Market Data” on page 2-76

6-380

hwvolspec

Purpose Specify Hull-White interest-rate volatility process

Syntax Volspec = hwvolspec(ValuationDate, VolDates, VolCurve,
AlphaDates, AlphaCurve, InterpMethod)

Arguments

ValuationDate Scalar value representing the observation date
of the investment horizon.

VolDates Number of points (NPOINTS)-by-1 vector of
yield volatility end dates.

VolCurve NPOINTS-by-1 vector or scalar of yield volatility
values in decimal form.

AlphaDates MPOINTS-by-1 vector of mean reversion end
dates.

AlphaCurve MPOINTS-by-1 vector of positive mean reversion
values or scalar in decimal form.

InterpMethod (Optional) Interpolation method. Default is
'linear'. See interp1 for more information.

Note The number of points in VolCurve and AlphaCurve do not have
to be the same.

Description Volspec = hwvolspec(ValuationDate, VolDates, VolCurve,
AlphaDates, AlphaCurve, InterpMethod) creates a structure
specifying the volatility for hwtree.

The volatility process is such that the variance of r(t + dt) - r(t) is defined
as follows: V = (Volatility.^2 .* (1 - exp(-2*Alpha .* dt))) ./ (2 * Alpha).
For more information on using Hull-White interest rate trees, see
“Hull-White (HW) and Black-Karasinski (BK) Modeling” on page B-4.

6-381

hwvolspec

Examples Using the data provided, create a Hull-White volatility specification
(VolSpec).

ValuationDate = '01-01-2004';

StartDate = ValuationDate;

VolDates = ['12-31-2004'; '12-31-2005'; '12-31-2006';

'12-31-2007'];

VolCurve = 0.01;

AlphaDates = '01-01-2008';

AlphaCurve = 0.1;

HWVolSpec = hwvolspec(ValuationDate, VolDates, VolCurve,...

AlphaDates, AlphaCurve)

HWVolSpec =

FinObj: 'HWVolSpec'

ValuationDate: 731947

VolDates: [4x1 double]

VolCurve: [4x1 double]

AlphaCurve: 0.1000

AlphaDates: 733408

VolInterpMethod: 'linear'

See Also bktree | hwcalbycap | hwcalbyfloor | interp1

6-382

impvbybjs

Purpose Determine implied volatility using Bjerksund-Stensland 2002 option
pricing model

Syntax Volatility = impvbybjs(RateSpec, StockSpec, Settle,
Maturity, OptSpec, Strike, OptPrice, 'Name1', Value1...)

Arguments

RateSpec The annualized continuously compounded rate
term structure. For information on the interest
rate specification, see intenvset.

StockSpec Stock specification. See stockspec.

Settle NINST-by-1 vector of settlement or trade dates.

Maturity NINST-by-1 vector of maturity dates.

OptSpec NINST-by-1 cell array of strings 'call' or 'put'.

Strike NINST-by-1 vector of strike price values.

OptPrice NINST-by-1 vector of American option prices from
which the implied volatility of the underlying
asset are derived.

Note All optional inputs are specified as matching parameter
name/parameter value pairs. The parameter name is specified as
a character string, followed by the corresponding parameter value.
You can specify parameter name/parameter value pairs in any order;
names are case-insensitive and partial string matches are allowed
provided no ambiguities exist.

6-383

impvbybjs

Limit (Optional) 1-by-2 positive vector representing the
lower and upper bound of the implied volatility
search interval. Default is [0.1 10], or 10% to
1000% per annum.

Tolerance (Optional) Positive scalar implied volatility
termination tolerance. Default is 1e-6.

Description Volatility = impvbybjs(RateSpec, StockSpec, Settle,
Maturity, OptSpec, Strike, OptPrice, 'Name1', Value1...)
computes implied volatility using the Bjerksund-Stensland 2002 option
pricing model.

Volatility is a NINST-by-1 vector of expected implied volatility values.
If no solution is found, a NaN is returned.

Note impvbybjs computes implied volatility of American options with
continuous dividend yield using the Bjerksund-Stensland option pricing
model.

Examples Consider three American call options with exercise prices of $100
that expire on July 1, 2008. The underlying stock is trading at $100
on January 1, 2008 and pays a continuous dividend yield of 10%.
The annualized continuously compounded risk-free rate is 10% per
annum and the option prices are $4.063, $6.77 and $9.46. Using
this data, calculate the implied volatility of the stock using the
Bjerksund-Stensland 2002 option pricing model:

AssetPrice = 100;
Settle = 'Jan-1-2008';
Maturity = 'Jul-1-2008';
Strike = 100;
DivAmount = 0.1;
Rate = 0.1;

6-384

impvbybjs

Define RateSpec and StockSpec:

RateSpec = intenvset('ValuationDate', Settle, 'StartDates', Settle,...

'EndDates', Maturity, 'Rates', Rate, 'Compounding', -1, 'Basis', 1);

StockSpec = stockspec(NaN, AssetPrice, {'continuous'}, DivAmount);

Calculate the implied volatility of the call options:

OptSpec = {'call'};

OptionPrice = [4.063;6.77;9.46];

ImpVol = impvbybjs(RateSpec, StockSpec, Settle, Maturity, OptSpec,...

Strike, OptionPrice)

ImpvVol =

0.1500

0.2501

0.3500

The implied volatility is 15% for the first call, and 25% and 35% for
the second and third call options.

See Also optstockbybjs | optstocksensbybjs

6-385

impvbyblk

Purpose Determine implied volatility using Black option pricing model

Syntax Volatility = impvbyblk(RateSpec, StockSpec, Settle,
Maturity, Strike, OptPrice, 'Name1', Value1...)

Arguments

RateSpec The annualized continuously compounded rate
term structure. For information on the interest
rate specification, see intenvset.

StockSpec Stock specification. See stockspec.

Settle NINST-by-1 vector of settlement or trade dates.

Maturity NINST-by-1 vector of maturity dates.

OptSpec NINST-by-1 cell array of strings 'call' or 'put'.

Strike NINST-by-1 vector of strike price values.

OptPrice NINST-by-1 vector of European option prices from
which the implied volatility of the underlying
asset are derived.

Note All optional inputs are specified as matching parameter
name/parameter value pairs. The parameter name is specified as
a character string, followed by the corresponding parameter value.
You can specify parameter name/parameter value pairs in any order;
names are case-insensitive and partial string matches are allowed
provided no ambiguities exist.

Limit (Optional) Positive scalar representing the upper
bound of the implied volatility search interval.
Default is 10, or 1000% per annum.

Tolerance (Optional) Positive scalar implied volatility
termination tolerance. Default is 1e-6.

6-386

impvbyblk

Description Volatility = impvbyblk(RateSpec, StockSpec, Settle,
Maturity, Strike, OptPrice, 'Name1', Value1...) computes
implied volatility using the Black option pricing model.

Volatility is a NINST-by-1 vector of expected implied volatility values.
If no solution is found, a NaN is returned.

Examples Consider a European call and put options on a futures contract with
exercise prices of $30 for the put and $40 for the call that expire on
September 1, 2008. Assume that on May 1, 2008 the contract is trading
at $35. The annualized continuously compounded risk-free rate is 5%
per annum. What are the implied volatilities of the stock, if on that
date, the call price is $1.14 and the put price is $0.82

AssetPrice = 35;
Strike = [30; 40];
Rates = 0.05;
Settle = 'May-01-08';
Maturity = 'Sep-01-08';

Create RateSpec and StockSpec:

RateSpec = intenvset('ValuationDate', Settle, 'StartDates', Settle,...

'EndDates', Maturity, 'Rates', Rates, 'Compounding', -1);

StockSpec = stockspec(NaN, AssetPrice);

Define the options:

OptSpec = {'put';'call'};

Calculate the implied volatility of the options:

Price = [1.14;0.82];

Volatility = impvbyblk(RateSpec, StockSpec, Settle, Maturity, OptSpec,...

Strike, Price)

6-387

impvbyblk

Volatility =

0.4052

0.3021

The implied volatility would be 41% and 30%.

See Also optstockbyblk | optstocksensbyblk

6-388

impvbybls

Purpose Determine implied volatility using Black-Scholes option pricing model

Syntax Volatility = impvbybls(RateSpec, StockSpec, Settle,
Maturity, Strike, OptPrice, 'Name1', Value1...)

Arguments

RateSpec The annualized continuously compounded rate
term structure. For information on the interest
rate specification, see intenvset.

StockSpec Stock specification. See stockspec.

Settle NINST-by-1 vector of settlement or trade dates.

Maturity NINST-by-1 vector of maturity dates.

OptSpec NINST-by-1 cell array of strings 'call' or 'put'.

Strike NINST-by-1 vector of strike price values.

OptPrice NINST-by-1 vector of European option prices from
which the implied volatility of the underlying
asset are derived.

Note All optional inputs are specified as matching parameter
name/parameter value pairs. The parameter name is specified as
a character string, followed by the corresponding parameter value.
You can specify parameter name/parameter value pairs in any order;
names are case-insensitive and partial string matches are allowed
provided no ambiguities exist.

Limit (Optional) Positive scalar representing the upper
bound of the implied volatility search interval.
Default is 10, or 1000% per annum.

Tolerance (Optional) Positive scalar implied volatility
termination tolerance. Default is 1e-6.

6-389

impvbybls

Description Volatility = impvbybls(RateSpec, StockSpec, Settle,
Maturity, Strike, OptPrice, 'Name1', Value1...) computes
implied volatility using the Black-Scholes option pricing model.

Volatility is a NINST-by-1 vector of expected implied volatility values.
If no solution is found, a NaN is returned.

Examples Consider a European call and put options with an exercise price of
$40 that expires on June 1, 2008. The underlying stock is trading at
$45 on January 1, 2008 and the risk-free rate is 5% per annum. The
option price is $7.10 for the call and $2.85 for the put. Using this data,
calculate the implied volatility of the European call and put using the
Black-Scholes option pricing model:

AssetPrice = 45;
Settlement = 'Jan-01-2008';
Maturity = 'June-01-2008';
Strike = 40;
Rates = 0.05;
OptionPrice = [7.10; 2.85];
OptSpec = {'call';'put'};

Define RateSpec and StockSpec :

RateSpec = intenvset('ValuationDate', Settlement, 'StartDates', Settlement,...

'EndDates', Maturity, 'Rates', Rates, 'Compounding', -1, 'Basis', 1);

StockSpec = stockspec(NaN, AssetPrice);

Calculate the implied volatility of the options:

ImpvVol = impvbybls(RateSpec, StockSpec, Settlement, Maturity, OptSpec,...

Strike, OptionPrice)

ImpvVol =

6-390

impvbybls

0.3175

0.4878

The implied volatility is 31.75% for the call and 48.78% for the put.

See Also optstockbybls | optstocksensbybls

6-391

impvbyrgw

Purpose Determine implied volatility using Roll-Geske-Whaley option pricing
model for American call option

Syntax Volatility = impvbyrgw(RateSpec, StockSpec, Settle,
Maturity, Strike, OptPrice, 'Name1', Value1...)

Arguments

RateSpec The annualized continuously compounded rate
term structure. For information on the interest
rate specification, see intenvset.

StockSpec Stock specification. See stockspec.

Settle NINST-by-1 vector of settlement or trade dates.

Maturity NINST-by-1 vector of maturity dates.

Strike NINST-by-1 vector of strike price values.

OptPrice NINST-by-1 vector of American call option
prices from which the implied volatility of the
underlying asset are derived.

Note All optional inputs are specified as matching parameter
name/parameter value pairs. The parameter name is specified as
a character string, followed by the corresponding parameter value.
You can specify parameter name/parameter value pairs in any order;
names are case-insensitive and partial string matches are allowed
provided no ambiguities exist.

Limit (Optional) Positive scalar representing the upper
bound of the implied volatility search interval.
Default is 10, or 1000% per annum.

Tolerance (Optional) Positive scalar implied volatility
termination tolerance. Default is 1e-6.

6-392

impvbyrgw

Description Volatility = impvbyrgw(RateSpec, StockSpec, Settle,
Maturity, Strike, OptPrice, 'Name1', Value1...) computes
implied volatility using the Roll-Geske-Whaley option pricing model.

Volatility is a NINST-by-1 vector of expected implied volatility values.
If no solution is found, a NaN is returned.

Note impvbyrgw computes implied volatility of American calls with a
single cash dividend using the Roll-Geske-Whaley option pricing model.

Examples Assume that on July 1, 2008 a stock is trading at $13 and pays a
single cash dividend of $0.25 on November 1, 2008. The American call
option with a strike price of $15 expires on July 1, 2009 and is trading
at $1.346. The annualized continuously compounded risk-free rate is
5% per annum. Calculate the implied volatility of the stock using the
Roll-Geske-Whaley option pricing model:

AssetPrice = 13;
Strike = 15;
Rates = 0.05;
Settle = 'July-01-08';
Maturity = 'July-01-09';

Define StockSpec and RateSpec:

RateSpec = intenvset('ValuationDate', Settle, 'StartDates', Settle,...

'EndDates', Maturity, 'Rates', Rates, 'Compounding', -1);

StockSpec = stockspec(NaN, AssetPrice, {'cash'}, 0.25, {'Nov 1,2008'});

Calculate the implied volatility of the option:

Price = [1.346];

Volatility = impvbyrgw(RateSpec, StockSpec, Settle, Maturity, Strike, Price)

Volatility =

6-393

impvbyrgw

0.3539

See Also optstockbyrgw | optstocksensbyrgw

6-394

instadd

Purpose Add types to instrument collection

Syntax Arbitrary cash flow instrument. (See also instcf.)
InstSet = instadd('CashFlow', CFlowAmounts, CFlowDates, Settle,
Basis)

Asian instrument. (See also instasian.)
InstSet = instadd('Asian', OptSpec, Strike, Settle,
ExerciseDates, AmericanOpt, AvgType, AvgPrice, AvgDate)

Barrier instrument. (See also instbarrier.)
InstSet = instadd('Barrier', OptSpec, Strike, Settle,
ExerciseDates, AmericanOpt, BarrierType, Barrier, Rebate)

Bond instrument. (See also instbond.)
InstSet = instadd('Bond', CouponRate, Settle, Maturity, Period,
Basis, EndMonthRule, IssueDate, FirstCouponDate, LastCouponDate,
StartDate, Face)

Bond with embedded option instrument. (See also instoptembnd.)
InstSet = instadd('OptEmBond', CouponRate, Settle, Maturity,
OptSpec, Strike, ExerciseDates, 'AmericanOpt', AmericanOpt, 'Period',
Period, 'Basis', Basis, 'EndMonthRule', EndMonthRule,'Face',Face,
'IssueDate', IssueDate, 'FirstCouponDate', FirstCouponDate,
'LastCouponDate', LastCouponDate, 'StartDate', StartDate)

Bond option. (See also instoptbnd.)
InstSet = instadd('OptBond', BondIndex, OptSpec, Strike,
ExerciseDates, AmericanOpt)

Cap instrument. (See also instcap.)
InstSet = instadd('Cap', Strike, Settle, Maturity, Reset, Basis,
Principal)

Compound instrument. (See also instcompound.)
InstSet = instadd('Compound', UOptSpec, UStrike, USettle,
UExerciseDates, UAmericanOpt,COptSpec, CStrike, CSettle,
CExerciseDates, CAmericanOpt)

Fixed-rate note instrument. (See also instfixed.)
InstSet = instadd('Fixed', CouponRate, Settle, Maturity, Reset,

6-395

instadd

Basis, Principal, EndMonthRule)

Floating-rate note instrument. (See also instfloat.)
InstSet = instadd('Float', Spread, Settle, Maturity, Reset, Basis,
Principal, EndMonthRule)

Floor instrument. (See also instfloor.)
InstSet = instadd('Floor', Strike, Settle, Maturity, Reset, Basis,
Principal)

Lookback instrument. (See also instlookback.)
InstSet = instadd('Lookback', OptSpec, Strike, Settle,
ExerciseDates, AmericanOpt)

Stock option instrument. (See also instoptstock.)
InstSet = instadd('OptStock', OptSpec, Strike, Settle, Maturity,
AmericanOpt)

Range floating note instrument. (See also instrangefloat.)
InstSet = instadd('RangeFloat', Spread, Settle, Maturity,
RateSched, Reset, Basis, Principal, EndMonthRule)

Swap instrument. (See also instswap.)
InstSet = instadd('Swap', LegRate, Settle, Maturity, LegReset,
Basis, Principal, LegType, EndMonthRule)

Swaption instrument. (See also instswaption.)
InstSet = instadd('Swaption', OptSpec, Strike, ExerciseDates,
Spread, Settle, Maturity, AmericanOpt, SwapReset, Basis, Principal)

To add instruments to an existing collection:
InstSet = instadd(InstSetOld, TypeString, Data1, Data2, ...)

Arguments

InstSetOld Variable containing a collection of instruments.
Instruments are classified by type; each type can
have different data fields. The stored data field is a
row vector or string for each instrument.

6-396

instadd

For more information on instrument data parameters, see the reference
entries for individual instrument types. For example, see instcap for
additional information on the cap instrument.

Description instadd stores instruments of types 'Asian', 'Barrier', 'Bond',
'Cap', 'CashFlow', 'Compound', 'Fixed', 'Float', 'Floor',
'Lookback', 'OptBond', 'OptStock', 'Swap', or 'Swaption'. This
toolbox provides pricing and sensitivity routines for these instruments.

InstSet is an instrument set variable containing the new input data.

Examples Create a portfolio with two cap instruments and a 4% bond.

Strike = [0.06; 0.07];

CouponRate = 0.04;

Settle = '06-Feb-2000';

Maturity = '15-Jan-2003';

InstSet = instadd('Cap', Strike, Settle, Maturity);

InstSet = instadd(InstSet, 'Bond', CouponRate, Settle, Maturity);

instdisp(InstSet)

%Table of instrument portfolio partially displayed:

Index Type Strike Settle Maturity CapReset Basis Principal

1 Cap 0.06 06-Feb-2000 15-Jan-2003 NaN NaN NaN

2 Cap 0.07 06-Feb-2000 15-Jan-2003 NaN NaN NaN

Index Type CouponRate Settle Maturity ...

3 Bond 0.04 06-Feb-2000 15-Jan-2003 ...

See Also instasian | instbarrier | instbond | instcap | instcf |
instcompound | instfixed | instfloat | instfloor | instlookback
| instoptbnd | instoptembnd | instoptstock | instswap |
instswaption

6-397

instaddfield

Purpose Add new instruments to instrument collection

Syntax InstSet = instaddfield('FieldName', FieldList, 'Data',
DataList, 'Type', TypeString)
InstSetNew = instaddfield(InstSet, 'FieldName', FieldList,
'Data', DataList,'Type',TypeString)

Arguments

FieldList String or number of fields (NFIELDS)-by-1 cell
array of strings listing the name of each data field.
FieldList cannot be named with the reserved
name Type or Index.

DataList Number of instruments (NINST)-by-M array or
NFIELDS-by-1 cell array of data contents for each
field. Each row in a data array corresponds to a
separate instrument. Single rows are copied to
apply to all instruments to be worked on. The
number of columns is arbitrary, and data is padded
along columns.

ClassList (Optional) String or NFIELDS-by-1 cell array of
strings listing the data class of each field. The
class determines how DataList is parsed. Valid
strings are 'dble', 'date', and 'char'. The
'FieldClass', ClassList pair is always optional.
ClassList is inferred from existing field names or
from the data if not entered.

TypeString String specifying the type of instrument added.
Instruments of different types can have different
Fieldname collections.

InstSet Variable containing a collection of instruments.
Instruments are classified by type; each type can
have different Data fields. The stored Data field is a
row vector or string for each instrument.

6-398

instaddfield

Description Use instaddfield to create your own types of instruments or to append
new instruments to an existing collection. Argument value pairs can be
entered in any order.

InstSet = instaddfield('FieldName', FieldList, 'Data',
DataList, 'Type', TypeString)

InstSet = instaddfield('FieldName', FieldList,
'FieldClass', ClassList, 'Data', DataList, 'Type',
TypeString) create an instrument variable.

InstSetNew = instaddfield(InstSet, 'FieldName', FieldList,
'Data', DataList,'Type',TypeString) adds instruments to an
existing instrument set, InstSet. The output InstSetNew is a new
instrument set containing the input data.

Examples Build a portfolio around July options.

Strike Call Put
95 12.2 2.9

100 9.2 4.9
105 6.8 7.4

Strike = (95:5:105)'
CallP = [12.2; 9.2; 6.8]

Enter three call options with data fields Strike, Price, and Opt.

InstSet = instaddfield('Type','Option','FieldName',...

{'Strike','Price','Opt'}, 'Data',{ Strike, CallP, 'Call'});

instdisp(InstSet)

Index Type Strike Price Opt

1 Option 95 12.2 Call

2 Option 100 9.2 Call

3 Option 105 6.8 Call

6-399

instaddfield

Add a futures contract and set the input parsing class.

InstSet = instaddfield(InstSet,'Type','Futures',...

'FieldName',{'Delivery','F'},'FieldClass',{'date','dble'},...

'Data' ,{'01-Jul-99',104.4 });

instdisp(InstSet)

Index Type Strike Price Opt

1 Option 95 12.2 Call

2 Option 100 9.2 Call

3 Option 105 6.8 Call

Index Type Delivery F

4 Futures 01-Jul-1999 104.4

Add a put option.

FN = instfields(InstSet,'Type','Option')
InstSet = instaddfield(InstSet,'Type','Option',...
'FieldName',FN, 'Data',{105, 7.4, 'Put'});
instdisp(InstSet)

Index Type Strike Price Opt
1 Option 95 12.2 Call
2 Option 100 9.2 Call
3 Option 105 6.8 Call

Index Type Delivery F
4 Futures 01-Jul-1999 104.4

Index Type Strike Price Opt
5 Option 105 7.4 Put

Make a placeholder for another put.

InstSet = instaddfield(InstSet,'Type','Option',...
'FieldName','Opt','Data','Put')
instdisp(InstSet)

6-400

instaddfield

Index Type Strike Price Opt
1 Option 95 12.2 Call
2 Option 100 9.2 Call
3 Option 105 6.8 Call

Index Type Delivery F
4 Futures 01-Jul-1999 104.4

Index Type Strike Price Opt
5 Option 105 7.4 Put
6 Option NaN NaN Put

Add a cash instrument.

InstSet = instaddfield(InstSet, 'Type', 'TBill',...
'FieldName','Price','Data',99)
instdisp(InstSet)

Index Type Strike Price Opt
1 Option 95 12.2 Call
2 Option 100 9.2 Call
3 Option 105 6.8 Call

Index Type Delivery F
4 Futures 01-Jul-1999 104.4

Index Type Strike Price Opt
5 Option 105 7.4 Put
6 Option NaN NaN Put

Index Type Price
7 TBill 99

See Also instdisp | instget | instgetcell | instsetfield | instadd

6-401

instasian

Purpose Construct Asian option

Syntax InstSet = instasian(InstSet, OptSpec, Strike, Settle,
ExerciseDates, AmericanOpt, AvgType, AvgPrice, AvgDate)
[FieldList, ClassList, TypeString] = instasian

Arguments

InstSet Variable containing a collection of instruments.
Instruments are classified by type; each type can
have different data fields. The stored data field is
a row vector or string for each instrument.

OptSpec NINST-by-1 list of string values 'Call' or 'Put'.

Strike NINST-by-1 vector of strike price values. Each
row is the schedule for one option.

Settle NINST-by-1 vector of Settle dates.

ExerciseDates For a European option (AmericanOpt = 0):

NINST-by-1 vector of exercise dates. Each row
is the schedule for one option. For a European
option, there is only one exercise date, the option
expiry date.

For an American option (AmericanOpt = 1):

NINST-by-2 vector of exercise date boundaries.
For each instrument, the option can be exercised
on any tree date between or including the pair
of dates on that row. If only one non-NaN date
is listed, or if ExerciseDates is NINST-by-1, the
option can be exercised between the valuation
date of the stock tree and the single listed
exercise date.

6-402

instasian

AmericanOpt (Optional) If AmericanOpt = 0, NaN, or is
unspecified, the option is a European option. If
AmericanOpt = 1, the option is an American
option.

AvgType (Optional) String = 'arithmetic' for arithmetic
average (default) or 'geometric' for geometric
average.

AvgPrice (Optional) Scalar representing the average price
of the underlying asset at Settle. This argument
is used when AvgDate < Settle. Default is the
current stock price.

AvgDate (Optional) Scalar representing the date on which
the averaging period begins. Default = Settle.

Data arguments are NINST-by-1 vectors, scalar, or empty. Fill
unspecified entries in vectors with NaN. Only one data argument is
required to create the instrument. The others may be omitted or passed
as empty matrices [].

Description InstSet = instasian(InstSet, OptSpec, Strike, Settle,
ExerciseDates, AmericanOpt, AvgType, AvgPrice, AvgDate)
specifies an Asian option.

[FieldList, ClassList, TypeString] = instasian displays the
classes.

FieldList is a number of fields (NFIELDS)-by-1 cell array of strings
listing the name of each data field for this instrument type.

ClassList is an NFIELDS-by-1 cell array of strings listing the data class
of each field. The class determines how arguments are parsed. Valid
strings are 'dble', 'date', and 'char'.

TypeString is a string specifying the type of instrument added. For an
Asian option instrument, TypeString = 'Asian'.

6-403

instasian

See Also instadd | instdisp | instget

6-404

instbarrier

Purpose Construct barrier option

Syntax InstSet = instbarrier(InstSet, OptSpec, Strike, Settle,
ExerciseDates, AmericanOpt, BarrierSpec, Barrier, Rebate)
[FieldList, ClassList, TypeString] = instbarrier

Arguments

InstSet Variable containing a collection of instruments.
Instruments are classified by type; each type can
have different data fields. The stored data field is
a row vector or string for each instrument.

OptSpec NINST-by-1 list of string values 'Call' or 'Put'.

Strike NINST-by-1 vector of strike price values. Each
row is the schedule for one option.

Settle NINST-by-1 vector of Settle dates.

ExerciseDates For a European option (AmericanOpt = 0):

NINST-by-1 vector of exercise dates. Each row
is the schedule for one option. For a European
option, there is only one exercise date, the option
expiry date.

For an American option (AmericanOpt = 1):

NINST-by-2 vector of exercise date boundaries.
For each instrument, the option can be exercised
on any tree date between or including the pair
of dates on that row. If only one non-NaN date
is listed, or if ExerciseDates is NINST-by-1, the
option can be exercised between the valuation
date of the stock tree and the single listed
exercise date.

6-405

instbarrier

AmericanOpt If AmericanOpt = 0, NaN, or is unspecified, the
option is a European option. If AmericanOpt = 1,
the option is an American option.

BarrierSpec List of string values:

'UI': Up Knock In

'UO': Up Knock Out

'DI': Down Knock In

'DO': Down Knock Out

Barrier Vector of barrier values.

Rebate (Optional) Vector of rebate values.

Data arguments are NINST-by-1 vectors, scalar, or empty. Fill
unspecified entries in vectors with NaN. Only one data argument is
required to create the instrument. The others may be omitted or passed
as empty matrices [].

Description InstSet = instbarrier(InstSet, OptSpec, Strike, Settle,
ExerciseDates, AmericanOpt, BarrierSpec, Barrier, Rebate)
specifies a barrier option.

[FieldList, ClassList, TypeString] = instbarrier displays the
classes.

FieldList is a number of fields (NFIELDS)-by-1 cell array of strings
listing the name of each data field for this instrument type.

ClassList is an NFIELDS-by-1 cell array of strings listing the data class
of each field. The class determines how arguments are parsed. Valid
strings are 'dble', 'date', and 'char'.

TypeString is a string specifying the type of instrument added. For a
barrier option instrument, TypeString = 'Barrier'.

See Also instadd | instdisp | instget

6-406

instbond

Purpose Construct bond instrument

Syntax InstSet = instbond(InstSet, CouponRate, Settle, Maturity,
Period, Basis, EndMonthRule, IssueDate, FirstCouponDate,
LastCouponDate, StartDate, Face)
[FieldList, ClassList, TypeString] = instbond

Arguments

InstSet Instrument variable. This argument is
specified only when adding bond instruments
to an existing instrument set. See instget
for more information on the InstSet variable.

CouponRate Decimal annual rate indicating the annual
percentage rate used to determine the
coupons payable on a bond. CouponRate is a
NINST-by-1 vector or NINST-by-1 cell array of
decimal annual rates, or decimal annual rate
schedules. For the latter case of a variable
coupon schedule, each element of the cell
array is a NumDates-by-2 cell array, where the
first column is dates and the second column
is its associated rate. The date indicates the
last day that the coupon rate is valid.

Settle Settlement date. A vector of serial date
numbers or date strings. Settle must be
earlier than Maturity.

Maturity Maturity date. A vector of serial date
numbers or date strings.

Period (Optional) Coupons per year of the bond. A
vector of integers. Allowed values are 1, 2, 3,
4, 6, and 12. Default = 2.

6-407

instbond

Basis (Optional) Day-count basis of the instrument.
A vector of integers.

• 0 = actual/actual (default)

• 1 = 30/360 (SIA)

• 2 = actual/360

• 3 = actual/365

• 4 = 30/360 (BMA)

• 5 = 30/360 (ISDA)

• 6 = 30/360 (European)

• 7 = actual/365 (Japanese)

• 8 = actual/actual (ICMA)

• 9 = actual/360 (ICMA)

• 10 = actual/365 (ICMA)

• 11 = 30/360E (ICMA)

• 12 = actual/actual (ISDA)

• 13 = BUS/252
For more information, see basis.

EndMonthRule (Optional) End-of-month rule. A vector.
This rule applies only when Maturity is an
end-of-month date for a month having 30 or
fewer days. 0 = ignore rule, meaning that a
bond’s coupon payment date is always the
same numerical day of the month. 1 = set rule
on (default), meaning that a bond’s coupon
payment date is always the last actual day
of the month.

IssueDate (Optional) Date when a bond was issued.

6-408

instbond

FirstCouponDate (Optional) Last coupon date of a bond before
the maturity date; used when bond has an
irregular last coupon period. In the absence
of a specified FirstCouponDate, a specified
LastCouponDate determines the coupon
structure of the bond. The coupon structure
of a bond is truncated at the LastCouponDate,
regardless of where it falls, and is followed
only by the bond’s maturity cash flow date.
If you do not specify a LastCouponDate, the
cash flow payment dates are determined from
other inputs.

LastCouponDate (Optional) Last coupon date of a bond before
the maturity date; used when bond has an
irregular last coupon period. In the absence
of a specified FirstCouponDate, a specified
LastCouponDate determines the coupon
structure of the bond. The coupon structure
of a bond is truncated at the LastCouponDate,
regardless of where it falls, and is followed
only by the bond’s maturity cash flow date.
If you do not specify a LastCouponDate, the
cash flow payment dates are determined from
other inputs.

StartDate (Optional) Date when a bond actually starts
(i.e. the date when a bond’s cash flows can be
considered). To make an instrument forward
starting, specify this date as a future date.
If StartDate is not explicitly specified, the
effective start date is the Settle date.

Face (Optional) Face or par value. Face is a
NINST-by-1 vector or NINST-by-1 cell array of
face values, or face value schedules. For the
latter case, each element of the cell array is
a NumDates-by-2 cell array, where the first

6-409

instbond

column is dates and the second column is its
associated face value. The date indicates the
last day that the face value is valid. Default =
100.

Data arguments are number of instruments (NINST)-by-1 vectors,
scalar, or empty. Fill unspecified entries in vectors with NaN. Only one
data argument is required to create the instrument. The others may be
omitted or passed as empty matrices [].

Description InstSet = instbond(InstSet, CouponRate, Settle, Maturity,
Period, Basis, EndMonthRule, IssueDate, FirstCouponDate,
LastCouponDate, StartDate, Face) creates a new instrument set
containing bond instruments or adds bond instruments to a existing
instrument set.

[FieldList, ClassList, TypeString] = instbond displays the
classes.

FieldList is a number of fields (NFIELDS)-by-1 cell array of strings
listing the name of each data field for this instrument type.

ClassList is an NFIELDS-by-1 cell array of strings listing the data class
of each field. The class determines how arguments are parsed. Valid
strings are 'dble', 'date', and 'char'.

TypeString is a string specifying the type of instrument added. For a
bond instrument, TypeString = 'Bond'.

See Also hjmprice | instaddfield | instdisp | instget | intenvprice

6-410

instcap

Purpose Construct cap instrument

Syntax InstSet = instcap(InstSet, Strike, Settle, Maturity, Reset,
Basis, Principal)
[FieldList, ClassList, TypeString] = instcap

Arguments

InstSet Instrument variable. This argument is specified
only when adding cap instruments to an existing
instrument set. See instget for more information
on the InstSet variable.

Strike Rate at which the cap is exercised, as a decimal
number.

Settle Settlement date. Serial date number representing
the settlement date of the cap.

Maturity Serial date number representing the maturity date of
the cap.

Reset (Optional) NINST-by-1 vector representing the
frequency of payments per year. Default = 1.

Basis (Optional) Day-count basis of the instrument. A
vector of integers.

• 0 = actual/actual (default)

• 1 = 30/360 (SIA)

• 2 = actual/360

• 3 = actual/365

• 4 = 30/360 (BMA)

• 5 = 30/360 (ISDA)

• 6 = 30/360 (European)

• 7 = actual/365 (Japanese)

6-411

instcap

• 8 = actual/actual (ICMA)

• 9 = actual/360 (ICMA)

• 10 = actual/365 (ICMA)

• 11 = 30/360E (ICMA)

• 12 = actual/actual (ISDA)

• 13 = BUS/252
For more information, see basis.

Principal (Optional) The notional principal amount. Default
= 100.

Description InstSet = instcap(InstSet, Strike, Settle, Maturity, Reset,
Basis, Principal) creates a new instrument set containing cap
instruments or adds cap instruments to an existing instrument set.

[FieldList, ClassList, TypeString] = instcap displays the
classes.

FieldList is a number of fields (NFIELDS)-by-1 cell array of strings
listing the name of each data field for this instrument type.

ClassList is an NFIELDS-by-1 cell array of strings listing the data class
of each field. The class determines how arguments are parsed. Valid
strings are 'dble', 'date', and 'char'.

TypeString is a string specifying the type of instrument added. For a
cap instrument, TypeString = 'Cap'.

See Also hjmprice | instaddfield | instbond | instdisp | instfloor |
instswap | intenvprice

6-412

instcf

Purpose Construct cash flow instrument

Syntax InstSet = instcf(InstSet, CFlowAmounts, CFlowDates, Settle,
Basis)
[FieldList, ClassList, TypeString] = instcf

Arguments

InstSet Instrument variable. This argument is specified
only when adding cash flow instruments to an
existing instrument set. See instget for more
information on the InstSet variable.

CFlowAmounts Number of instruments (NINST) by maximum
number of cash flows (MOSTCFS) matrix of cash
flow amounts. Each row is a list of cash flow
values for one instrument. If an instrument has
fewer than MOSTCFS cash flows, the end of the row
is padded with NaNs.

CFlowDates NINST-by-MOSTCFS matrix of cash flow dates.
Each entry contains the date of the corresponding
cash flow in CFlowAmounts.

Settle Settlement date on which the cash flows are
priced.

Basis (Optional) Day-count basis of the instrument. A
vector of integers.

• 0 = actual/actual (default)

• 1 = 30/360 (SIA)

• 2 = actual/360

• 3 = actual/365

• 4 = 30/360 (BMA)

• 5 = 30/360 (ISDA)

6-413

instcf

• 6 = 30/360 (European)

• 7 = actual/365 (Japanese)

• 8 = actual/actual (ICMA)

• 9 = actual/360 (ICMA)

• 10 = actual/365 (ICMA)

• 11 = 30/360E (ICMA)

• 12 = actual/actual (ISDA)

• 13 = BUS/252
For more information, see basis.

Only one data argument is required to create an instrument. Other
arguments can be omitted or passed as empty matrices []. Dates can be
input as serial date numbers or date strings.

Description InstSet = instcf(InstSet, CFlowAmounts, CFlowDates, Settle,
Basis) creates a new instrument set from data arrays or adds
instruments of type CashFlow to an instrument set.

[FieldList, ClassList, TypeString] = instcf lists field
metadata for an instrument of type CashFlow.

FieldList is a number of fields (NFIELDS)-by-1 cell array of strings
listing the name of each data field for this instrument type.

ClassList is an NFIELDS-by-1 cell array of strings listing the data class
of each field. The class determines how arguments are parsed. Valid
strings are 'dble', 'date', and 'char'.

TypeString specifies the type of instrument added; for example,
TypeString = 'CashFlow'.

See Also instadd | instdisp | instget | intenvprice

6-414

instcompound

Purpose Construct compound option

Syntax InstSet = instcompound(InstSet, UOptSpec, UStrike, USettle,
UExerciseDates, UAmericanOpt, COptSpec, CStrike, CSettle,
CExerciseDates, CAmericanOpt)
[FieldList, ClassList, TypeString] = instcompound

Arguments

InstSet Variable containing a collection of instruments.
Instruments are classified by type; each type
can have different data fields. The stored
data field is a row vector or string for each
instrument.

UOptSpec String = 'Call' or 'Put'.

UStrike 1-by-1 vector of strike price values.

USettle 1-by-1 vector of Settle dates.

UExerciseDates For a European option (UAmericanOpt = 0):

1-by-1 vector of exercise dates. For a European
option, there is only one exercise date, the
option expiry date.

For an American option (UAmericanOpt = 1):

1-by-2 vector of exercise date boundaries. The
option can be exercised on any tree date. If only
one non-NaN date is listed, or if ExerciseDates
is 1-by-1, the option can be exercised between
the valuation date of the stock tree and the
single listed exercise date.

UAmericanOpt If UAmericanOpt = 0, NaN, or is unspecified, the
option is a European option. If UAmericanOpt
= 1, the option is an American option.

6-415

instcompound

COptSpec NINST-by-1 list of string values 'Call' or 'Put'
of the compound option.

CStrike NINST-by-1 vector of strike price values. Each
row is the schedule for one option.

CSettle 1-by-1 vector containing the settlement or trade
date.

CExerciseDates For a European option (CAmericanOpt = 0):

NINST-by-1 vector of exercise dates. Each row
is the schedule for one option. For a European
option, there is only one exercise date, the
option expiry date.

For an American option (CAmericanOpt = 1):

NINST-by-2 vector of exercise date boundaries.
For each instrument, the option can be
exercised on any tree date between or including
the pair of dates on that row. If only one
non-NaN date is listed, or if ExerciseDates
is NINST-by-1, the option can be exercised
between the valuation date of the stock tree
and the single listed exercise date.

CAmericanOpt If CAmericanOpt = 0, NaN, or is unspecified, the
option is a European option. If CAmericanOpt
= 1, the option is an American option.

Description InstSet = instcompound(InstSet, UOptSpec, UStrike, USettle,
UExerciseDates, UAmericanOpt, COptSpec, CStrike, CSettle,
CExerciseDates, CAmericanOpt) specifies a compound option.

[FieldList, ClassList, TypeString] = instcompound displays
the classes.

FieldList is a number of fields (NFIELDS)-by-1 cell array of strings
listing the name of each data field for this instrument type.

6-416

instcompound

ClassList is an NFIELDS-by-1 cell array of strings listing the data class
of each field. The class determines how arguments are parsed. Valid
strings are 'dble', 'date', and 'char'.

TypeString is a string specifying the type of instrument added. For a
compound option instrument, TypeString = 'Compound'.

See Also instadd | instdisp | instget

6-417

instdelete

Purpose Complement of instrument set by matching conditions

Syntax ISubSet = instdelete(InstSet, 'FieldName', FieldList, 'Data',
DataList, 'Index', IndexSet, 'Type', TypeList)

Arguments

InstSet Variable containing a collection of instruments.
Instruments are classified by type; each type can have
different data fields. The stored data field is a row
vector or string for each instrument.

FieldList String or number of fields (NFIELDS)-by-1 cell array
of strings listing the name of each data field to match
with data values.

DataList Number of values (NVALUES)-by-M array or
NFIELDS-by-1 cell array of acceptable data values for
each field. Each row lists a data row value to search
for in the corresponding FieldList. The number of
columns is arbitrary and matching will ignore trailing
NaNs or spaces.

IndexSet (Optional) Number of instruments (NINST)-by-1 vector
restricting positions of instruments to check for
matches. The default is all indices available in the
instrument variable.

TypeList (Optional) String or number of types (NTYPES)-by-1
cell array of strings restricting instruments to match
one of TypeList types. The default is all types in the
instrument variable.

6-418

instdelete

Note Argument value pairs can be entered in any order. The InstSet
variable must be the first argument. 'FieldName' and 'Data'
arguments must appear together or not at all.

Description The output argument ISubSet contains instruments not matching the
input criteria. Instruments are deleted from ISubSet if all the Field,
Index, and Type conditions are met. An instrument meets an individual
Field condition if the stored FieldName data matches any of the rows
listed in the DataList for that FieldName. See instfind for more
examples on matching criteria.

Examples Retrieve the instrument set variable ExampleInst from the data
file InstSetExamples.mat. The variable contains three types of
instruments: Option, Futures, and TBill.

load InstSetExamples;
instdisp(ExampleInst)

Index Type Strike Price Opt Contracts
1 Option 95 12.2 Call 0
2 Option 100 9.2 Call 0
3 Option 105 6.8 Call 1000

Index Type Delivery F Contracts
4 Futures 01-Jul-1999 104.4 -1000

Index Type Strike Price Opt Contracts
5 Option 105 7.4 Put -1000
6 Option 95 2.9 Put 0

Index Type Price Maturity Contracts
7 TBill 99 01-Jul-1999 6

Create a new variable, ISet, with all options deleted.

6-419

instdelete

ISet = instdelete(ExampleInst, 'Type','Option');
instdisp(ISet)

Index Type Delivery F Contracts
1 Futures 01-Jul-1999 104.4 -1000

Index Type Price Maturity Contracts
2 TBill 99 01-Jul-1999 6

See Also instaddfield | instfind | instget | instselect

6-420

instdisp

Purpose Display instruments

Syntax CharTable = instdisp(InstSet)

Arguments

InstSet Variable containing a collection of instruments. See
instaddfield for examples on constructing the
variable.

Description CharTable = instdisp(InstSet) creates a character array displaying
the contents of an instrument collection, InstSet. If instdisp is called
without output arguments, the table is displayed in the Command
Window.

Note When using instdisp, a value of NaN in one of the columns for
an instrument indicates that the default value for that parameter will
be used in the instrument’s pricing function.

CharTable is a character array with a table of instruments in InstSet.
For each instrument row, the Index and Type are printed along with
the field contents. Field headers are printed at the tops of the columns.

Examples Retrieve the instrument set ExampleInst from the data file
InstSetExamples.mat. ExampleInst contains three types of
instruments: Option, Futures, and TBill.

load InstSetExamples;
instdisp(ExampleInst)

Index Type Strike Price Opt Contracts
1 Option 95 12.2 Call 0
2 Option 100 9.2 Call 0

6-421

instdisp

3 Option 105 6.8 Call 1000

Index Type Delivery F Contracts
4 Futures 01-Jul-1999 104.4 -1000

Index Type Strike Price Opt Contracts
5 Option 105 7.4 Put -1000
6 Option 95 2.9 Put 0

Index Type Price Maturity Contracts
7 TBill 99 01-Jul-1999 6

Create a swap instrument and use instdisp to display the instrument.
Notice that value of NaN in two columns for this instrument indicates
that the default values for LegReset and LegType parameters will be
used in the swap instrument’s pricing function.

LegRate1 = [0.065, 0];

Settle1 = datenum('jan-1-2007');

Maturity1 = datenum('jan-1-2012');

ISet = instswap(LegRate1, Settle1, Maturity1);

instdisp(ISet)

Index Type LegRate Settle Maturity LegReset Basis Principal LegType EndMonthRule

1 Swap [0.065 0] 01-Jan-2007 01-Jan-2012 [NaN] 0 100 [NaN] 1

See Also datestr | num2str | instaddfield | instget

6-422

instfields

Purpose List field names

Syntax FieldList = instfields(InstSet, 'Type', TypeList)

Arguments

InstSet Variable containing a collection of instruments.
Instruments are classified by type; each type can have
different data fields. The stored data field is a row
vector or string for each instrument.

TypeList (Optional) String or number of types (NTYPES)-by-1
cell array of strings listing the instrument types to
query.

Description FieldList = instfields(InstSet, 'Type', TypeList) retrieves
the list of fields stored in an instrument variable.

FieldList is a number of fields (NFIELDS)-by-1 cell array of strings
listing the name of each data field corresponding to the listed types.

Examples Retrieve the instrument set ExampleInst from the data file
InstSetExamples.mat. ExampleInst contains three types of
instruments: Option, Futures, and TBill.

load InstSetExamples;
instdisp(ExampleInst)

Index Type Strike Price Opt Contracts
1 Option 95 12.2 Call 0
2 Option 100 9.2 Call 0
3 Option 105 6.8 Call 1000

Index Type Delivery F Contracts
4 Futures 01-Jul-1999 104.4 -1000

6-423

instfields

Index Type Strike Price Opt Contracts
5 Option 105 7.4 Put -1000
6 Option 95 2.9 Put 0

Index Type Price Maturity Contracts
7 TBill 99 01-Jul-1999 6

Get the fields listed for type 'Option'.

[FieldList, ClassList] = instfields(ExampleInst, 'Type',...

'Option')

FieldList =

'Strike'

'Price'

'Opt'

'Contracts'

ClassList =

'dble'

'dble'

'char'

'dble'

Get the fields listed for types 'Option' and 'TBill'.

FieldList = instfields(ExampleInst, 'Type', {'Option', 'TBill'})

FieldList =

'Strike'

'Opt'

'Price'

'Maturity'

'Contracts'

6-424

instfields

Get all the fields listed in any type in the variable.

FieldList = instfields(ExampleInst)
FieldList =

'Delivery'
'F'
'Strike'
'Opt'
'Price'
'Maturity'
'Contracts'

See Also instdisp | instlength | insttypes

6-425

instfind

Purpose Search instruments for matching conditions

Syntax IndexMatch = instfind(InstSet, 'FieldName', FieldList, 'Data',
DataList,'Index', IndexSet, 'Type', TypeList)

Arguments

InstSet Variable containing a collection of instruments.
Instruments are classified by type; each type can
have different data fields. The stored data field is a
row vector or string for each instrument.

FieldList String or number of fields (NFIELDS)-by-1 cell array
of strings listing the name of each data field to
match with data values.

DataList Number of values (NVALUES)-by-M array or
NFIELDS-by-1 cell array of acceptable data values
for each field. Each row lists a data row value to
search for in the corresponding FieldList. The
number of columns is arbitrary, and matching will
ignore trailing NaNs or spaces.

IndexSet (Optional) Number of instruments (NINST)-by-1
vector restricting positions of instruments to check
for matches. The default is all indices available in
the instrument variable.

TypeList (Optional) String or number of types (NTYPES)-by-1
cell array of strings restricting instruments to
match one of TypeList types. The default is all
types in the instrument variable.

Argument value pairs can be entered in any order. The InstSet
variable must be the first argument. 'FieldName' and 'Data'
arguments must appear together or not at all.

6-426

instfind

Description IndexMatch = instfind(InstSet, 'FieldName', FieldList,
'Data', DataList,'Index', IndexSet, 'Type', TypeList)
returns indices of instruments matching Type, Field, or Index values.

IndexMatch is an NINST-by-1 vector of positions of instruments
matching the input criteria. Instruments are returned in IndexMatch if
all the Field, Index, and Type conditions are met. An instrument meets
an individual Field condition if the stored FieldName data matches any
of the rows listed in the DataList for that FieldName.

Examples Retrieve the instrument set ExampleInst from the data file
InstSetExamples.mat. ExampleInst contains three types of
instruments: Option, Futures, and TBill.

load InstSetExamples;
instdisp(ExampleInst)

Index Type Strike Price Opt Contracts
1 Option 95 12.2 Call 0
2 Option 100 9.2 Call 0
3 Option 105 6.8 Call 1000

Index Type Delivery F Contracts
4 Futures 01-Jul-1999 104.4 -1000

Index Type Strike Price Opt Contracts
5 Option 105 7.4 Put -1000
6 Option 95 2.9 Put 0

Index Type Price Maturity Contracts
7 TBill 99 01-Jul-1999 6

Make a vector, Opt95, containing the indexes within ExampleInst of
the options struck at 95.

Opt95 = instfind(ExampleInst, 'FieldName','Strike','Data','95')

Opt95 =

6-427

instfind

1

6

Locate the futures and Treasury bill instruments within ExampleInst.

Types = instfind(ExampleInst,'Type',{'Futures';'TBill'})

Types =

4
7

See Also instaddfield | instget | instgetcell | instselect

6-428

instfixed

Purpose Construct fixed-rate instrument

Syntax InstSet = instfixed(InstSet, CouponRate, Settle, Maturity,
Reset, Basis, Principal, EndMonthRule)
[FieldList, ClassList, TypeString] = instfixed

Arguments

InstSet Instrument variable. This argument is specified
only when adding fixed-rate note instruments to
an existing instrument set. See instget for more
information on the InstSet variable.

CouponRate Decimal annual rate.

Settle Settlement date. Date string or serial date number
representing the settlement date of the fixed-rate
note.

Maturity Date string or serial date number representing the
maturity date of the fixed-rate note.

Reset (Optional) NINST-by-1 vector representing the
frequency of payments per year. Default = 1.

Basis (Optional) Day-count basis of the instrument. A
vector of integers.

• 0 = actual/actual (default)

• 1 = 30/360 (SIA)

• 2 = actual/360

• 3 = actual/365

• 4 = 30/360 (BMA)

• 5 = 30/360 (ISDA)

• 6 = 30/360 (European)

• 7 = actual/365 (Japanese)

6-429

instfixed

• 8 = actual/actual (ICMA)

• 9 = actual/360 (ICMA)

• 10 = actual/365 (ICMA)

• 11 = 30/360E (ICMA)

• 12 = actual/actual (ISDA)

• 13 = BUS/252
For more information, see basis.

Principal (Optional) The notional principal amount. Default
= 100.

EndMonthRule (Optional) NINST-by-1 vector representing the
End-of-month rule. Default = 1.

Data arguments are number of instruments (NINST)-by-1 vectors,
scalar, or empty. Fill unspecified entries in vectors with NaN. Only one
data argument is required to create the instrument. The others may be
omitted or passed as empty matrices [].

Description InstSet = instfixed(InstSet, CouponRate, Settle, Maturity,
Reset, Basis, Principal, EndMonthRule) creates a new instrument
set containing fixed-rate instruments or adds fixed-rate instruments to
an existing instrument set.

[FieldList, ClassList, TypeString] = instfixed displays the
classes.

FieldList is a number of fields (NFIELDS)-by-1 cell array of strings
listing the name of each data field for this instrument type.

ClassList is an NFIELDS-by-1 cell array of strings listing the data class
of each field. The class determines how arguments are parsed. Valid
strings are 'dble', 'date', and 'char'.

TypeString is a string specifying the type of instrument added. For a
fixed-rate instrument, TypeString = 'Fixed'.

6-430

instfixed

See Also hjmprice | instaddfield | instbond | instcap | instdisp |
instswap | intenvprice

6-431

instfloat

Purpose Construct floating-rate instrument

Syntax InstSet = instfloat(InstSet, Spread, Settle, Maturity, Reset,
Basis, Principal, EndMonthRule)
[FieldList, ClassList, TypeString] = instfloat

Arguments

InstSet Instrument variable. This argument is specified
only when adding floating-rate note instruments to
an existing instrument set. See instget for more
information on the InstSet variable.

Spread Number of basis points over the reference rate.

Settle Settlement date. Date string or serial date number
representing the settlement date of the floating-rate
note.

Maturity Date string or serial date number representing the
maturity date of the floating-rate note.

Reset (Optional) NINST-by-1 vector representing the
frequency of payments per year. Default = 1.

Basis (Optional) Day-count basis of the instrument. A
vector of integers.

• 0 = actual/actual (default)

• 1 = 30/360 (SIA)

• 2 = actual/360

• 3 = actual/365

• 4 = 30/360 (BMA)

• 5 = 30/360 (ISDA)

• 6 = 30/360 (European)

• 7 = actual/365 (Japanese)

6-432

instfloat

• 8 = actual/actual (ICMA)

• 9 = actual/360 (ICMA)

• 10 = actual/365 (ICMA)

• 11 = 30/360E (ICMA)

• 12 = actual/actual (ISDA)

• 13 = BUS/252
For more information, see basis.

Principal (Optional) The notional principal amount. Default
= 100.

EndMonthRule (Optional) NINST-by-1 vector representing the
End-of-month rule. Default = 1.

Data arguments are number of instruments (NINST)-by-1 vectors,
scalar, or empty. Fill unspecified entries in vectors with NaN. Only one
data argument is required to create the instrument. The others may be
omitted or passed as empty matrices [].

Description InstSet = instfloat(InstSet, Spread, Settle, Maturity,
Reset, Basis, Principal, EndMonthRule) creates a new instrument
set containing floating-rate instruments or adds floating-rate
instruments to an existing instrument set.

[FieldList, ClassList, TypeString] = instfloat displays the
classes.

FieldList is a number of fields (NFIELDS)-by-1 cell array of strings
listing the name of each data field for this instrument type.

ClassList is an NFIELDS-by-1 cell array of strings listing the data class
of each field. The class determines how arguments are parsed. Valid
strings are 'dble', 'date', and 'char'.

TypeString is a string specifying the type of instrument added. For a
floating-rate instrument, TypeString = 'Float'.

6-433

instfloat

See Also hjmprice | instaddfield | instbond | instcap | instdisp |
instswap | intenvprice

6-434

instfloor

Purpose Construct floor instrument

Syntax InstSet = instfloor(InstSet, Strike, Settle, Maturity, Reset,
Basis, Principal)
[FieldList, ClassList, TypeString] = instfloor

Arguments

InstSet Instrument variable. This argument is specified
only when adding floor instruments to an existing
instrument set. See instget for more information
on the InstSet variable.

Strike Rate at which the floor is exercised, as a decimal
number.

Settle Settlement date. A vector of serial date numbers or
date strings. Settle must be earlier than Maturity.

Maturity Maturity date. A vector of serial date numbers or
date strings.

Reset (Optional) NINST-by-1 vector representing the
frequency of payments per year. Default = 1.

Basis (Optional) Day-count basis of the instrument. A
vector of integers.

• 0 = actual/actual (default)

• 1 = 30/360 (SIA)

• 2 = actual/360

• 3 = actual/365

• 4 = 30/360 (BMA)

• 5 = 30/360 (ISDA)

• 6 = 30/360 (European)

• 7 = actual/365 (Japanese)

6-435

instfloor

• 8 = actual/actual (ICMA)

• 9 = actual/360 (ICMA)

• 10 = actual/365 (ICMA)

• 11 = 30/360E (ICMA)

• 12 = actual/actual (ISDA)

• 13 = BUS/252
For more information, see basis.

Principal (Optional) The notional principal amount. Default
= 100.

Description InstSet = instfloor(InstSet, Strike, Settle, Maturity,
Reset, Basis, Principal) creates a new instrument set containing
floor instruments or adds floor instruments to an existing instrument
set.

[FieldList, ClassList, TypeString] = instfloor displays the
classes.

FieldList is a number of fields (NFIELDS)-by-1 cell array of strings
listing the name of each data field for this instrument type.

ClassList is an NFIELDS-by-1 cell array of strings listing the data class
of each field. The class determines how arguments are parsed. Valid
strings are 'dble', 'date', and 'char'.

TypeString is a string specifying the type of instrument added. For a
floor instrument, TypeString = 'Floor'.

See Also hjmprice | instaddfield | instbond | instcap | instdisp |
instswap | intenvprice

6-436

instget

Purpose Data from instrument variable

Syntax [Data_1, Data_2,...,Data_n] = instget(InstSet, 'FieldName',
FieldList, 'Index', IndexSet, 'Type', TypeList)

Arguments

InstSet Variable containing a collection of instruments.
Instruments are classified by type; each type can
have different data fields. The stored data field is a
row vector or string for each instrument.

FieldList (Optional) String or number of fields (NFIELDS)-by-1
cell array of strings listing the name of each data
field to match with data values. FieldList entries
can also be either 'Type' or 'Index'; these return
type strings and index numbers respectively. The
default is all fields available for the returned set of
instruments.

IndexSet (Optional) Number of instruments (NINST)-by-1
vector of positions of instruments to work on. If
TypeList is also entered, instruments referenced
must be one of TypeList types and contained in
IndexSet. The default is all indices available in the
instrument variable.

TypeList (Optional) String or number of types (NTYPES)-by-1
cell array of strings restricting instruments to match
one of TypeList types. The default is all types in the
instrument variable.

Argument value pairs can be entered in any order. The InstSet
variable must be the first argument.

6-437

instget

Description [Data_1, Data_2,...,Data_n] = instget(InstSet, 'FieldName',
FieldList, 'Index', IndexSet, 'Type', TypeList) retrieves data
arrays from an instrument variable.

Data_1 is an NINST-by-M array of data contents for the first field
in FieldList. Each row corresponds to a separate instrument in
IndexSet. Unavailable data is returned as NaN or as spaces.

Data_n is an NINST-by-M array of data contents for the last field in
FieldList.

Examples Retrieve the instrument set ExampleInst from the data file.
InstSetExamples.mat. ExampleInst contains three types of
instruments: Option, Futures, and TBill.

load InstSetExamples;
instdisp(ExampleInst)

Index Type Strike Price Opt Contracts
1 Option 95 12.2 Call 0
2 Option 100 9.2 Call 0
3 Option 105 6.8 Call 1000

Index Type Delivery F Contracts
4 Futures 01-Jul-1999 104.4 -1000

Index Type Strike Price Opt Contracts
5 Option 105 7.4 Put -1000
6 Option 95 2.9 Put 0

Index Type Price Maturity Contracts
7 TBill 99 01-Jul-1999 6

Extract the price from all instruments.

P = instget(ExampleInst,'FieldName','Price')

P =

6-438

instget

12.2000
9.2000
6.8000

NaN
7.4000
2.9000

99.0000

Get all the prices and the number of contracts held.

[P,C] = instget(ExampleInst, 'FieldName', {'Price', 'Contracts'})

P =

12.2000

9.2000

6.8000

Nan

7.4000

2.9000

99.0000

C =

0

0

1000

-1000

-1000

0

6

Compute a value V. Create a new variable ISet that appends V to
ExampleInst.

V = P.*C

6-439

instget

ISet = instsetfield(ExampleInst, 'FieldName', 'Value', 'Data',...

V);

instdisp(ISet)

Index Type Strike Price Opt Contracts Value

1 Option 95 12.2 Call 0 0

2 Option 100 9.2 Call 0 0

3 Option 105 6.8 Call 1000 6800

Index Type Delivery F Contracts Value

4 Futures 01-Jul-1999 104.4 -1000 NaN

Index Type Strike Price Opt Contracts Value

5 Option 105 7.4 Put -1000 -7400

6 Option 95 2.9 Put 0 0

Index Type Price Maturity Contracts Value

7 TBill 99 01-Jul-1999 6 594

Look at only the instruments that have nonzero Contracts.

Ind = find(C ~= 0)

Ind =

3
4
5
7

Get the Type and Opt parameters from those instruments. (Only
options have a stored 'Opt' field.)

[T,O] = instget(ExampleInst, 'Index', Ind, 'FieldName',...
{'Type', 'Opt'})

T =

6-440

instget

Option
Futures
Option
TBill

O =

Call

Put

Create a string report of holdings Type, Opt, and Value.

rstring = [T, O, num2str(V(Ind))]

rstring =

Option Call 6800
Futures NaN
Option Put -7400
TBill 594

See Also instaddfield | instdisp | instgetcell

6-441

instgetcell

Purpose Data and context from instrument variable

Syntax [DataList, FieldList, ClassList] =
instgetcell(InstSet, 'FieldName', FieldList, 'Index',
IndexSet, 'Type', TypeList)

Arguments

InstSet Variable containing a collection of instruments.
Instruments are classified by type; each type can have
different data fields. The stored data field is a row
vector or string for each instrument.

FieldList (Optional) String or number of fields (NFIELDS)-by-1
cell array of strings listing the name of each data field
to match with data values. FieldList should not be
either Type or Index; these field names are reserved.
The default is all fields available for the returned set
of instruments.

IndexSet (Optional) Number of instruments (NINST)-by-1 vector
of positions of instruments to work on. If TypeList
is also entered, instruments referenced must be one
of TypeList types and contained in IndexSet. The
default is all indices available in the instrument
variable.

TypeList (Optional) String or number of types (NTYPES)-by-1
cell array of strings restricting instruments to match
one of TypeList types. The default is all types in the
instrument variable.

Argument value pairs can be entered in any order. The InstSet
variable must be the first argument.

6-442

instgetcell

Description [DataList, FieldList, ClassList] = instgetcell(InstSet,
'FieldName', FieldList, 'Index', IndexSet, 'Type',
TypeList) retrieves data and context from an instrument variable.

DataList is an NFIELDS-by-1 cell array of data contents for each field.
Each cell is an NINST-by-M array, where each row corresponds to a
separate instrument in IndexSet. Any data which is not available is
returned as NaN or as spaces.

FieldList is an NFIELDS-by-1 cell array of strings listing the name
of each field in DataList.

ClassList is an NFIELDS-by-1 cell array of strings listing the data class
of each field. The class determines how arguments are parsed. Valid
strings are 'dble', 'date', and 'char'.

IndexSet is an NINST-by-1 vector of positions of instruments returned
in DataList.

TypeSet is an NINST-by-1 cell array of strings listing the type of each
instrument row returned in DataList.

Examples Retrieve the instrument set ExampleInst from the data file
InstSetExamples.mat. ExampleInst contains three types of
instruments: Option, Futures, and TBill.

load InstSetExamples;
instdisp(ExampleInst)

Index Type Strike Price Opt Contracts
1 Option 95 12.2 Call 0
2 Option 100 9.2 Call 0
3 Option 105 6.8 Call 1000

Index Type Delivery F Contracts
4 Futures 01-Jul-1999 104.4 -1000

Index Type Strike Price Opt Contracts
5 Option 105 7.4 Put -1000

6-443

instgetcell

6 Option 95 2.9 Put 0

Index Type Price Maturity Contracts
7 TBill 99 01-Jul-1999 6

Get the prices and contracts from all instruments.

FieldList = {'Price'; 'Contracts'}

DataList = instgetcell(ExampleInst, 'FieldName', FieldList)

P = DataList{1}

C = DataList{2}

P =

12.2000

9.2000

6.8000

NaN

7.4000

2.9000

99.0000

C =

0

0

1000

-1000

-1000

0

6

Get all the option data: Strike, Price, Opt, Contracts.

[DataList, FieldList, ClassList] = instgetcell(ExampleInst,...

'Type','Option')

6-444

instgetcell

DataList =

[5x1 double]

[5x1 double]

[5x4 char]

[5x1 double]

FieldList =

'Strike'

'Price'

'Opt'

'Contracts'

ClassList =

'dble'

'dble'

'char'

'dble'

Look at the data as a comma-separated list. Type help lists for more
information on cell array lists.

DataList{:}

ans =

95
100
105
105
95

ans =

12.2100

6-445

instgetcell

9.2000
6.8000
7.3900
2.9000

ans =

Call
Call
Call
Put
Put

ans =

0
0

100
-100

0

See Also instaddfield | instdisp | instget

6-446

instlength

Purpose Count instruments

Syntax NInst = instlength(InstSet)

Arguments

InstSet Variable containing a collection of instruments.
Instruments are classified by type; each type can have
different data fields. The stored data field is a row
vector or string for each instrument.

Description NInst = instlength(InstSet) computes NInst, the number of
instruments contained in the variable, InstSet.

See Also instdisp | instfields | insttypes

6-447

instlookback

Purpose Construct lookback option

Syntax InstSet = instlookback(InstSet, OptSpec, Strike, Settle,
ExerciseDates, AmericanOpt)
[FieldList, ClassList, TypeString] = instlookback

Arguments

InstSet Variable containing a collection of instruments.
Instruments are classified by type; each type can
have different data fields. The stored data field
is a row vector or string for each instrument.

OptSpec NINST-by-1 list of string values 'Call' or 'Put'.

Strike NINST-by-1 vector of strike price values. Each
row is the schedule for one option.

Settle NINST-by-1 vector of Settle dates.

ExerciseDates For a European option (AmericanOpt = 0):

NINST-by-1 vector of exercise dates. Each row
is the schedule for one option. For a European
option, there is only one exercise date, the option
expiry date.

For an American option (AmericanOpt = 1):

NINST-by-2 vector of exercise date boundaries.
For each instrument, the option can be exercised
on any tree date between or including the pair
of dates on that row. If only one non-NaN date
is listed, or if ExerciseDates is NINST-by-1, the
option can be exercised between the valuation
date of the stock tree and the single listed
exercise date.

AmericanOpt (Optional) If AmericanOpt = 0, NaN, or is
unspecified, the option is a European option. If

6-448

instlookback

AmericanOpt = 1, the option is an American
option.

Data arguments are number of instruments (NINST)-by-1 vectors,
scalar, or empty. Fill unspecified entries in vectors with NaN. Only one
data argument is required to create the instrument. The others may be
omitted or passed as empty matrices [].

Description InstSet = instlookback(InstSet, OptSpec, Strike, Settle,
ExerciseDates, AmericanOpt) specifies a lookback option.

[FieldList, ClassList, TypeString] = instlookback displays
the classes.

FieldList is a number of fields (NFIELDS)-by-1 cell array of strings
listing the name of each data field for this instrument type.

ClassList is an NFIELDS-by-1 cell array of strings listing the data class
of each field. The class determines how arguments are parsed. Valid
strings are 'dble', 'date', and 'char'.

TypeString is a string specifying the type of instrument added. For a
lookback option instrument, TypeString = 'Lookback'.

See Also instadd | instdisp | instget

6-449

instoptbnd

Purpose Construct bond option

Syntax InstSet = instoptbnd(InstSet, BondIndex, OptSpec, Strike,
ExerciseDates)
InstSet = instoptbnd(InstSet, BondIndex, OptSpec, Strike,
ExerciseDates, AmericanOpt)
[FieldList, ClassList, TypeString] = instoptbnd

Arguments

InstSet Variable containing a collection of instruments.
Instruments are classified by type; each type can
have different data fields. The stored data field
is a row vector or string for each instrument.

BondIndex Number of instruments (NINST)-by-1 vector of
indices pointing to underlying instruments of
Type 'Bond' which are also stored in InstSet.
See instbond for information on specifying the
bond data.

OptSpec NINST-by-1 list of string values 'Call' or 'Put'.

Note The interpretation of the Strike and ExerciseDates
arguments depends upon the setting of the AmericanOpt argument.
If AmericanOpt = 0, NaN, or is unspecified, the option is a European
or Bermuda option. If AmericanOpt = 1, the option is an American
option.

6-450

instoptbnd

Strike European option: NINST-by-1 vector of strike
price values.

Bermuda option: NINST by number of strikes
(NSTRIKES) matrix of strike price values.

Each row is the schedule for one option. If
an option has fewer than NSTRIKES exercise
opportunities, the end of the row is padded with
NaNs.

For an American option:

NINST-by-1 vector of strike price values for each
option.

ExerciseDates NINST-by-1 (European option) or
NINST-by-NSTRIKES (Bermuda option)
matrix of exercise dates. Each row is the
schedule for one option. For a European option,
there is only one exercise date, the option expiry
date.

For an American option:

NINST-by-2 vector of exercise date boundaries.
For each instrument, the option can be exercised
on any coupon date between or including the pair
of dates on that row. If only one non-NaN date
is listed, or if ExerciseDates is NINST-by-1, the
option can be exercised between the underlying
bond Settle and the single listed exercise date.

Data arguments are NINST-by-1 vectors, scalar, or empty. Fill
unspecified entries in vectors with NaN. Only one data argument is
required to create the instrument. The others may be omitted or passed
as empty matrices [].

6-451

instoptbnd

Description InstSet = instoptbnd(InstSet, BondIndex, OptSpec, Strike,
ExerciseDates) specifies a European or Bermuda option.

InstSet = instoptbnd(InstSet, BondIndex, OptSpec, Strike,
ExerciseDates, AmericanOpt) specifies an American option if
AmericanOpt is set to 1. If AmericanOpt is not set to 1, the function
specifies a European or Bermuda option.

[FieldList, ClassList, TypeString] = instoptbnd displays the
classes.

FieldList is a number of fields (NFIELDS)-by-1 cell array of strings
listing the name of each data field for this instrument type.

ClassList is an NFIELDS-by-1 cell array of strings listing the data class
of each field. The class determines how arguments are parsed. Valid
strings are 'dble', 'date', and 'char'.

TypeString is a string specifying the type of instrument added. For a
bond option instrument, TypeString = 'OptBond'.

See Also hjmprice | instadd | instdisp | instget

6-452

instoptembnd

Purpose Construct bond with embedded option

Syntax InstSet = instoptembnd (CouponRate, Settle, Maturity,...
OptSpec, Strike, ExerciseDates, 'AmericanOpt',...
AmericanOpt, 'Period', Period, 'Basis', Basis,...
'EndMonthRule', EndMonthRule,'Face', Face, 'IssueDate',...
IssueDate, 'FirstCouponDate', FirstCouponDate,...
'LastCouponDate', LastCouponDate,'StartDate',StartDate)
InstSet = instoptembnd(InstSetOld, CouponRate,...)
[FieldList, ClassList, TypeString] = instoptembnd

Arguments

CouponRate Decimal annual rate indicating the annual
percentage rate used to determine the coupons
payable on a bond. CouponRate is a NINST-by-1
vector or NINST-by-1 cell array of decimal annual
rates, or decimal annual rate schedules. For the
latter case of a variable coupon schedule, each
element of the cell array is a NumDates-by-2 cell
array, where the first column is dates and the
second column is its associated rate. The date
indicates the last day that the coupon rate is
valid.

Settle NINST-by-1 vector of settlement dates.

Maturity NINST-by-1 vector of maturity dates.

OptSpec NINST-by-1 vector of string values 'Call' or
'Put'.

For a European or Bermuda option

Strike NINST-by-NSTRIKES matrix of strike price values.
Each row is the schedule for one option. If
an option has fewer than NSTRIKES exercise
opportunities, the end of the row is padded with
NaN’s.

6-453

instoptembnd

ExerciseDates NINST-by-NSTRIKES matrix of exercise dates.
Each row is the schedule for one option. For a
European option, there is only one ExerciseDate
on the option expiry date.

AmericanOpt (Optional) NINST-by-1 vector of flags.
AmericanOpt is 0 for each European or Bermuda
option. The default is 0 if AmericanOpt is NaN
or not entered.

For an American option

Strike NINST-by-1 vector of strike price values for each
option.

ExerciseDates NINST-by-2 vector of exercise date boundaries.
For each instrument, the option can be exercised
on any coupon date between or including the pair
of dates on that row. If only one non-NaN date
is listed, or if ExerciseDates is NINST-by-1, the
option can be exercised between the underlying
bond Settle and the single listed ExerciseDate.

AmericanOpt NINST-by-1 vector of flags. AmericanOpt is 1
for each American option. The AmericanOpt
argument is required to invoke American
exercise rules.

Period (Optional) NINST-by-1 matrix for coupons per
year. The default value is 2.

6-454

instoptembnd

Basis (Optional) Day-count basis of the instrument.
Basis is a vector of integers with the following
possible values:

• 0 = actual/actual (default)

• 1 = 30/360 (SIA)

• 2 = actual/360

• 3 = actual/365

• 4 = 30/360 (BMA)

• 5 = 30/360 (ISDA)

• 6 = 30/360 (European)

• 7 = actual/365 (Japanese)

• 8 = actual/actual (ICMA)

• 9 = actual/360 (ICMA)

• 10 = actual/365 (ICMA)

• 11 = 30/360E (ICMA)

• 12 = actual/actual (ISDA)

• 13 = BUS/252
For more information, see basis.

EndMonthRule (Optional) NINST-by-1 matrix for the
end-of-month rule. This rule applies only when
Maturity is an end-of-month date for a month
having 30 or fewer days. When the value is 0,
the end-of-month rule is ignored, meaning that a
bond’s coupon payment date is always the same
numerical day of the month. When the value is
1, the end-of-month rule is set rule on (default),
meaning that a bond’s coupon payment date is
always the last actual day of the month.

6-455

instoptembnd

IssueDate (Optional) NINST-by-1 matrix for the bond issue
date.

FirstCouponDate (Optional) Date when a bond makes its
first coupon payment; used when bond has
an irregular first coupon period. When
FirstCouponDate and LastCouponDate are both
specified, FirstCouponDate takes precedence in
determining the coupon payment structure. If
you do not specify a FirstCouponDate, the cash
flow payment dates are determined from other
inputs.

LastCouponDate (Optional) Last coupon date of a bond before the
maturity date; used when bond has an irregular
last coupon period. In the absence of a specified
FirstCouponDate, a specified LastCouponDate
determines the coupon structure of the bond.
The coupon structure of a bond is truncated
at the LastCouponDate, regardless of where
it falls, and is followed only by the bond’s
maturity cash flow date. If you do not specify a
LastCouponDate, the cash flow payment dates
are determined from other inputs.

StartDate (Optional) NINST-by-1 matrix for date when a
bond actually starts (i.e. the date from which a
bond’s cash flows can be considered). To make
an instrument forward starting, specify this date
as a future date. If StartDate is not explicitly
specified, the effective start date is the Settle
date.

Face (Optional) Face value. Face is a NINST-by-1
vector or NINST-by-1 cell array of face values, or
face value schedules. For the latter case, each
element of the cell array is a NumDates-by-2 cell
array, where the first column is dates and the
second column is its associated face value. The

6-456

instoptembnd

date indicates the last day that the face value
is valid. Default is 100.

Note Data arguments are NINST-by-1 vectors, scalar, or empty. Fill
unspecified entries in vectors with NaN. Only one data argument is
required to create the instrument. The others may be omitted or passed
as empty matrices [].

Description InstSet = instoptembnd (CouponRate, Settle,
Maturity,...OptSpec, Strike, ExerciseDates,
'AmericanOpt',... AmericanOpt, 'Period',
Period, 'Basis', Basis,... 'EndMonthRule',
EndMonthRule,'Face', Face, 'IssueDate',...IssueDate,
'FirstCouponDate', FirstCouponDate,... 'LastCouponDate',
LastCouponDate,'StartDate',StartDate) creates InstSet, a
variable containing a collection of instruments.

Note instopembnd uses optional parameter name/value pairs such
that, 'Name1', Value1, 'Name2', Value2, and so on, are a variable
length list of name/value pairs.

Instruments are broken down by type and each type can have different
data fields. Each stored data field has a row vector or string for each
instrument. See instget for more information on the InstSet variable.

InstSet = instoptembnd(InstSetOld, CouponRate,...) adds
'OptEmBond' instruments to an instrument variable.

[FieldList, ClassList, TypeString] = instoptembnd lists field
metadata for the 'OptEmBond' instrument.

FieldList is a number of fields (NFIELDS)-by-1 cell array of strings
listing the name of each data field for this instrument type.

6-457

instoptembnd

ClassList is an NFIELDS-by-1 cell array of strings listing the data class
of each field. The class determines how arguments are parsed. Valid
strings are 'dble', 'date', and 'char'.

TypeString is a string specifying the type of instrument added. For a
bond option instrument, TypeString = 'OptEmBond'.

Examples To create a bond with embedded options with the following data:

Settle = 'jan-1-2007';

Maturity = 'jan-1-2010';

CouponRate = 0.07;

OptSpec = 'call';

Strike= 100;

ExerciseDates= {'jan-1-2008' '01-Jan-2010'};

AmericanOpt=1;

Period = 1;

InstSet = instoptembnd(CouponRate, ...

Settle, Maturity, OptSpec, Strike, ExerciseDates,'AmericanOpt', AmericanOpt, ...

'Period', Period);

To display the instrument:

instdisp(InstSet)

See Also instadd | instdisp | instget

6-458

instoptstock

Purpose Construct stock option

Syntax InstSet = instoptstock(InstSet, OptSpec, Strike,
Settle, ExerciseDates)
InstSet = instoptstock(InstSet, OptSpec, Strike,
Settle, ExerciseDates, AmericanOpt)
[FieldList, ClassList, TypeString] = instoptstock

Arguments

InstSet Variable containing a collection of instruments.
Instruments are classified by type; each type can
have different data fields. The stored data field
is a row vector or string for each instrument.
This argument is specified only when adding
stock instruments to an existing instrument set.
Seeinstget for more information on the InstSet
variable.

OptSpec NINST-by-1 list of string values 'Call' or 'Put'.

Note The interpretation of the Strike and ExerciseDates
arguments depends upon the setting of the AmericanOpt argument.
If AmericanOpt = 0, NaN, or is unspecified, the option is a European
or Bermuda option. If AmericanOpt = 1, the option is an American
option.

6-459

instoptstock

Strike European option: NINST-by-1 vector of strike
price values.

Bermuda option: NINST by number of strikes
(NSTRIKES) matrix of strike price values.

Each row is the schedule for one option. If
an option has fewer than NSTRIKES exercise
opportunities, the end of the row is padded with
NaNs.

American option: NINST-by-1 vector of strike
price values for each option.

Settle NINST-by-1 vector of settlement dates.

ExerciseDates NINST-by-1 (European option) or
NINST-by-NSTRIKES (Bermuda option)
matrix of exercise dates. Each row is the schedule
for one option. For a European option, there is
only one exercise date, the option expiry date.

For an American option:

NINST-by-2 vector of exercise date boundaries.
For each instrument, the option can be exercised
on any coupon date between or including the pair
of dates on that row. If only one non-NaN date
is listed, or if ExerciseDates is NINST-by-1, the
option can be exercised between the underlying
bond Settle and the single listed exercise date.

Data arguments are NINST-by-1 vectors, scalar, or empty. Fill
unspecified entries in vectors with NaN. Only one data argument is
required to create the instrument. The others may be omitted or passed
as empty matrices [].

Description InstSet = instoptstock(InstSet, OptSpec, Strike, Settle,
ExerciseDates) specifies a European or Bermuda option.

6-460

instoptstock

InstSet = instoptstock(InstSet, OptSpec, Strike, Settle,
ExerciseDates, AmericanOpt) specifies an American option if
AmericanOpt is set to 1. If AmericanOpt is not set to 1, the function
specifies a European or Bermuda option.

[FieldList, ClassList, TypeString] = instoptstock displays
the classes.

FieldList is a number of fields (NFIELDS)-by-1 cell array of strings
listing the name of each data field for this instrument type.

ClassList is an NFIELDS-by-1 cell array of strings listing the data class
of each field. The class determines how arguments are parsed. Valid
strings are 'dble', 'date', and 'char'.

TypeString is a string specifying the type of instrument added. For a
stock option instrument, TypeString = 'OptStock'.

See Also instadd | instdisp | instget

6-461

instrangefloat

Purpose Construct range note instrument

Syntax ISet = instrangefloat(Spread,Settle,Maturity,RateSched,
Reset,Basis,Principal,EndMonthRule)

Description ISet =
instrangefloat(Spread,Settle,Maturity,RateSched,Reset,Basis,Principal,End
creates a new range instrument from data arrays.

Input
Arguments

Spread

Number of basis points over the reference rate.

Settle

NINST-by-1 vector of dates representing the settle date of the
floating-rate note.

Maturity

NINST-by-1 vector of dates representing the maturity date of the
floating-rate note.

RateSched

NINST-by-1 vector of structures representing the range of rates within
which cash flows are nonzero. Each element of the structure array
contains two fields:

• RateSched.Dates— NDates-by-1 cell array of dates corresponding to
the range schedule.

• RateSched.Rates —NDates-by-2 array with the first column
containing the lower bound of the range and the second
column containing the upper bound of the range. Cash flow
for date RateSched.Dates(n) is nonzero for rates in the range
RateSched.Rates(n,1) < Rate < RateSched.Rate (n,2).

Reset

6-462

instrangefloat

(Optional) NINST-by-1 vector representing the frequency of payments
per year.

Default: 1

Basis

(Optional) Day-count basis of the instrument. A vector of integers.

• 0 = actual/actual

• 1 = 30/360 (SIA)

• 2 = actual/360

• 3 = actual/365

• 4 = 30/360 (BMA)

• 5 = 30/360 (ISDA)

• 6 = 30/360 (European)

• 7 = actual/365 (Japanese)

• 8 = actual/actual (ICMA)

• 9 = actual/360 (ICMA)

• 10 = actual/365 (ICMA)

• 11 = 30/360E (ICMA)

• 12 = actual/actual (ISDA)

• 13 = BUS/252
For more information, see basis.

Default: 0 (actual/actual)

Principal

(Optional) NINST-by-1 vector of the notional principal amount.

Default: 100

6-463

instrangefloat

EndMonthRule

(Optional) NINST-by-1 vector for end-of-month rule. Values are 1 (in
effect) and 0 (not in effect).

Default: 1 (in effect)

Note Data arguments are number of instruments NINST-by-1 vectors,
scalar, or empty. Fill unspecified entries in vectors with NaN. Only
one data argument is required to create the instrument. You can omit
or pass the others as empty matrices []. However, you cannot price
the instrument when using the range note pricing function if you are
missing any of the required input arguments.

Output
Arguments

ISet

Variable containing a collection of instruments. Instruments are divided
by type and each type can have different data fields. Each stored data
field has a row vector or string for each instrument. Values are:

• FieldList— NFIELDS-by-1 cell array of strings listing the name of
each data field for this instrument type.

• ClassList— NFIELDS-by-1 cell array of strings listing the data class
of each field. The class determines how arguments are parsed. Valid
strings are'dble', 'date', and 'char'.

• TypeString — String specifying the type of instrument added.
TypeString = 'RangeFloat'.

For more information, on ISet see instget.

Definitions Range Note Instrument

A range note is a structured (market-linked) security whose coupon rate
is equal to the reference rate as long as the reference rate is within a
certain range. If the reference rate is outside of the range, the coupon
rate is 0 for that period. This type of instrument entitles the holder

6-464

instrangefloat

to cash flows that depend on the level of some reference interest rate
and are floored to be positive. The note holder gets directs exposure to
the reference rate. In return for the drawback that no interest will be
paid for the time the range is left, they offer higher coupon rates than
comparable standard products, like vanilla floating notes.

Examples Create a range note instrument:

% Create an instrument portfolio with a range note:

Spread = 100;

Settle = 'Jan-1-2011';

Maturity = 'Jan-1-2014';

RateSched.Dates = {'Jan-1-2012'; 'Jan-1-2013' ; 'Jan-1-2014'};

RateSched.Rates = [0.045 0.055; 0.0525 0.0675; 0.06 0.08];

% Create InstSet

InstSet = instrangefloat(Spread, Settle, Maturity, RateSched);

% Display the portfolio instrument

instdisp(InstSet)

Index Type Spread Settle Maturity RateSched FloatReset Basis Principal EndMonthRule

1 RangeFloat 100 01-Jan-2011 01-Jan-2014 [Struct] 1 0 100 1

% Add another range note

% Second Range Note:

Spread2 = 200;

Settle2 = 'Jan-1-2011';

Maturity2 = 'Jan-1-2013';

RateSched2.Dates = {'Jan-1-2012'; 'Jan-1-2013'};

RateSched2.Rates = [0.048 0.059; 0.055 0.068];

InstSet = instrangefloat(InstSet, Spread2, Settle2, Maturity2, RateSched2);

% Display the portfolio instrument

instdisp(InstSet)

6-465

instrangefloat

Index Type Spread Settle Maturity RateSched FloatReset Basis Principal EndMonthRule

1 RangeFloat 100 01-Jan-2011 01-Jan-2014 [Struct] 1 0 100 1

2 RangeFloat 200 01-Jan-2011 01-Jan-2013 [Struct] 1 0 100 1

References Jarrow, Robert, Modelling Fixed Income Securities and Interest Rate
Options, Stanford Economics and Finance, 2nd edition, 2002.

See Also | instbond | instcap | instswap | instaddfield | instdisp |
intenvprice | rangefloatbybk | rangefloatbybdt | rangefloatbyhw
| rangefloatbyhjm |

6-466

instselect

Purpose Create instrument subset by matching conditions

Syntax InstSubSet = instselect(InstSet, 'FieldName', FieldList,
'Data', DataList, 'Index', IndexSet,'Type', TypeList)

Arguments

InstSet Variable containing a collection of instruments.
Instruments are classified by type; each type can
have different data fields. The stored data field is a
row vector or string for each instrument.

FieldList String or number of fields (NFIELDS)-by-1 cell array
of strings listing the name of each data field to match
with data values.

DataList Number of values (NVALUES)-by-M array or
NFIELDS-by-1 cell array of acceptable data values for
each field. Each row lists a data row value to search
for in the corresponding FieldList. The number
of columns is arbitrary and matching will ignore
trailing NaNs or spaces.

IndexSet (Optional) Number of instruments (NINST)-by-1
vector restricting positions of instruments to check
for matches. The default is all indices available in
the instrument variable.

TypeList (Optional) String or number of types (NTYPES)-by-1
cell array of strings restricting instruments to match
one of TypeList types. The default is all types in the
instrument variable.

Argument value pairs can be entered in any order. The InstSet
variable must be the first argument. 'FieldName' and 'Data'
arguments must appear together or not at all. 'Index' and 'Type'
arguments are each optional.

6-467

instselect

Description InstSubSet = instselect(InstSet, 'FieldName', FieldList,
'Data', DataList, 'Index', IndexSet,'Type', TypeList)
creates an instrument subset (InstSubSet) from an existing set of
instruments (InstSet).

InstSubSet is a variable containing instruments matching the input
criteria. Instruments are returned in InstSubSet if all the Field,
Index, and Type conditions are met. An instrument meets an individual
Field condition if the stored FieldName data matches any of the rows
listed in the DataList for that FieldName. See instfind for examples
on matching criteria.

Examples Retrieve the instrument set ExampleInst from the data file
InstSetExamples.mat. The variable contains three types of
instruments: Option, Futures, and TBill.

load InstSetExamples
instdisp(ExampleInst)

Index Type Strike Price Opt Contracts
1 Option 95 12.2 Call 0
2 Option 100 9.2 Call 0
3 Option 105 6.8 Call 1000

Index Type Delivery F Contracts
4 Futures 01-Jul-1999 104.4 -1000

Index Type Strike Price Opt Contracts
5 Option 105 7.4 Put -1000
6 Option 95 2.9 Put 0

Index Type Price Maturity Contracts
7 TBill 99 01-Jul-1999 6

Make a new portfolio containing only options struck at 95.

Opt95 = instselect(ExampleInst, 'FieldName', 'Strike',...
'Data', '95')

6-468

instselect

instdisp(Opt95)

Opt95 =

Index Type Strike Price Opt Contracts
1 Option 95 12.2 Call 0
2 Option 95 2.9 Put 0

Make a new portfolio containing only futures and Treasury bills.

FutTBill = instselect(ExampleInst,'Type',{'Futures';'TBill'})

instdisp(FutTBill) =

Index Type Delivery F Contracts

1 Futures 01-Jul-1999 104.4 -1000

Index Type Price Maturity Contracts

2 TBill 99 01-Jul-1999 6

See Also instaddfield | instdelete | instfind | instget | instgetcell

6-469

instsetfield

Purpose Add or reset data for existing instruments

Syntax InstSet = instsetfield(InstSet, 'FieldName', FieldList,
'Data', DataList)
InstSet = instsetfield(InstSet, 'FieldName', FieldList,
'Data', DataList, 'Index', IndexSet, 'Type', TypeList)

Arguments

InstSet Variable containing a collection of instruments.
Instruments are classified by type; each type can
have different data fields. The stored data field is a
row vector or string for each instrument. InstSet
must be the first argument in the list.

FieldList String or number of fields (NFIELDS)-by-1 cell array of
strings listing the name of each data field. FieldList
cannot be named with the reserved names Type or
Index.

DataList Number of instruments (NINST)-by-M array or
NFIELDS-by-1 cell array of data contents for each field.
Each row in a data array corresponds to a separate
instrument. Single rows are copied to apply to all
instruments to be worked on. The number of columns
is arbitrary, and data is padded along columns.

IndexSet NINST-by-1 vector of positions of instruments to
work on. If TypeList is also entered, instruments
referenced must be one of TypeList types and
contained in IndexSet.

TypeList String or number of types (NTYPES)-by-1 cell array of
strings restricting instruments worked on to match
one of TypeList types.

Argument value pairs can be entered in any order.

6-470

instsetfield

Description instsetfield sets data for existing instruments in a collection variable.

InstSet = instsetfield(InstSet, 'FieldName', FieldList,
'Data', DataList) resets or adds fields to every instrument.

InstSet = instsetfield(InstSet, 'FieldName', FieldList,
'Data', DataList, 'Index', IndexSet, 'Type', TypeList) resets
or adds fields to a subset of instruments.

The output InstSet is a new instrument set variable containing the
input data.

Examples Retrieve the instrument set ExampleInstSF from the data file
InstSetExamples.mat. ExampleInstSF contains three types of
instruments: Option, Futures, and TBill.

load InstSetExamples;
ISet = ExampleInstSF;
instdisp(ISet)

Index Type Strike Price Opt
1 Option 95 12.2 Call
2 Option 100 9.2 Call
3 Option 105 6.8 Call

Index Type Delivery F
4 Futures 01-Jul-1999 104.4

Index Type Strike Price Opt
5 Option 105 7.4 Put
6 Option NaN NaN Put

Index Type Price
7 TBill 99

Enter data for the option in Index 6: Price 2.9 for a Strike of 95.

ISet = instsetfield(ISet, 'Index',6,...
'FieldName',{'Strike','Price'}, 'Data',{ 95 , 2.9 });

6-471

instsetfield

instdisp(ISet)

Index Type Strike Price Opt
1 Option 95 12.2 Call
2 Option 100 9.2 Call
3 Option 105 6.8 Call
Index Type Delivery F
4 Futures 01-Jul-1999 104.4
Index Type Strike Price Opt
5 Option 105 7.4 Put
6 Option 95 2.9 Put

Index Type Price
7 TBill 99

Create a new field Maturity for the cash instrument.

MDate = datenum('7/1/99');
ISet = instsetfield(ISet, 'Type', 'TBill', 'FieldName',...
'Maturity','FieldClass', 'date', 'Data', MDate);
instdisp(ISet)
Index Type Price Maturity
7 TBill 99 01-Jul-1999

Create a new field Contracts for all instruments.

ISet = instsetfield(ISet, 'FieldName', 'Contracts', 'Data', 0);

instdisp(ISet)

Index Type Strike Price Opt Contracts

1 Option 95 12.2 Call 0

2 Option 100 9.2 Call 0

3 Option 105 6.8 Call 0

Index Type Delivery F Contracts

4 Futures 01-Jul-1999 104.4 0

Index Type Strike Price Opt Contracts

6-472

instsetfield

5 Option 105 7.4 Put 0

6 Option 95 2.9 Put 0

Index Type Price Maturity Contracts

7 TBill 99 01-Jul-1999 0

Set the Contracts fields for some instruments.

ISet = instsetfield(ISet,'Index',[3; 5; 4; 7],...

'FieldName','Contracts', 'Data', [1000; -1000; -1000; 6]);

instdisp(ISet)

Index Type Strike Price Opt Contracts

1 Option 95 12.2 Call 0

2 Option 100 9.2 Call 0

3 Option 105 6.8 Call 1000

Index Type Delivery F Contracts

4 Futures 01-Jul-1999 104.4 -1000

Index Type Strike Price Opt Contracts

5 Option 105 7.4 Put -1000

6 Option 95 2.9 Put 0

Index Type Price Maturity Contracts

7 TBill 99 01-Jul-1999 6

See Also instaddfield | instdisp | instget | instgetcell

6-473

instswap

Purpose Construct swap instrument

Syntax InstSet = instswap(InstSet, LegRate, Settle, Maturity)
InstSet = instswap(InstSet, LegRate, Settle, Maturity,
InstSet, LegReset, Basis, Principal, LegType,
EndMonthRule)
[FieldList, ClassList, TypeString] = instswap

Arguments

InstSet Instrument variable. This argument is specified only
when adding a swap to an existing instrument set.
See instget for more information on the InstSet
variable.

LegRate Number of instruments (NINST)-by-2 matrix, with
each row defined as:

[CouponRate Spread] or [Spread CouponRate]

CouponRate is the decimal annual rate. Spread is the
number of basis points over the reference rate. The
first column represents the receiving leg, while the
second column represents the paying leg.

Settle Settlement date. NINST-by-1 vector of serial date
numbers or date strings. Settle must be earlier than
Maturity.

Maturity Maturity date. NINST-by-1 vector of dates
representing the maturity date for each swap.

LegReset (Optional) NINST-by-2 matrix representing the reset
frequency per year for each swap. Default = [1 1].

6-474

instswap

Basis (Optional) Day-count basis of the instrument. A
vector of integers.

• 0 = actual/actual (default)

• 1 = 30/360 (SIA)

• 2 = actual/360

• 3 = actual/365

• 4 = 30/360 (BMA)

• 5 = 30/360 (ISDA)

• 6 = 30/360 (European)

• 7 = actual/365 (Japanese)

• 8 = actual/actual (ICMA)

• 9 = actual/360 (ICMA)

• 10 = actual/365 (ICMA)

• 11 = 30/360E (ICMA)

• 12 = actual/actual (ISDA)

• 13 = BUS/252
For more information, see basis.

Principal (Optional) NINST-by-1 vector or NINST-by-1 cell
array of the notional principal amounts or principal
value schedules. For the latter case, each element
of the cell array is a NumDates-by-2 matrix where
the first column is dates and the second column is
its associated notional principal value. The date
indicates the last day that the principal value is
valid.. Default = 100.

6-475

instswap

LegType (Optional) NINST-by-2 matrix. Each row represents
an instrument. Each column indicates if the
corresponding leg is fixed (1) or floating (0). This
matrix defines the interpretation of the values
entered in LegRate. Default is [1,0] for each
instrument.

EndMonthRule (Optional) NINST-by-1 vector representing the
End-of-month rule. Default = 1.

Data arguments are number of instruments (NINST)-by-1 vectors,
scalar, or empty. Fill unspecified entries in vectors with NaN. Only one
data argument is required to create the instrument; the others may be
omitted or passed as empty matrices [].

Description InstSet = instswap(InstSet, LegRate, Settle, Maturity)
creates a new instrument set containing swap instruments or adds
swap instruments to an existing instrument set.

InstSet = instswap(InstSet, LegRate, Settle,
Maturity,InstSet, LegReset, Basis, Principal, LegType,
EndMonthRule) uses optional input arguments to create a new
instrument set containing swap instruments or adds swap instruments
to an existing instrument set.

[FieldList, ClassList, TypeString] = instswap displays the
classes.

FieldList is a number of fields (NFIELDS)-by-1 cell array of strings
listing the name of each data field for this instrument type.

ClassList is an NFIELDS-by-1 cell array of strings listing the data class
of each field. The class determines how arguments are parsed. Valid
strings are 'dble', 'date', and 'char'.

TypeString is a string specifying the type of instrument added. For a
swap instrument, TypeString = 'Swap'.

6-476

instswap

Definitions Amortizing Swap

In an amortizing swap, the notional principal decreases periodically
because it is tied to an underlying financial instrument with a declining
(amortizing) principal balance, such as a mortgage.

Examples Create a Vanilla Swap Instrument

Create a vanilla swap using market data.

Use the following market data to create a swap instrument.

LegRate = [0.065, 0]

Settle = 'jan-1-2007';

Maturity = 'jan-1-2012';

LegReset = [1, 1];

Basis = 0

Principal = 100

LegType = [1, 0]

InstSet = instswap(LegRate, Settle, Maturity, LegReset, Basis, Principal, LegType);

View the swap instrument using instdisp.

instdisp(InstSet)

Index Type LegRate Settle Maturity LegReset Basis Principal LegType

1 Swap [0.065 0] 01-Jan-2007 01-Jan-2012 1 1 0 100 [1 0]

*Create an Amortizing Swap Instrument

Create an amortizing swap from market data.

TBD

6-477

instswap

See Also hjmprice | instaddfield | instbond | instcap | instdisp |
instfloor | intenvprice

6-478

instswaption

Purpose Construct swaption instrument

Syntax InstSet = instswaption(OptSpec, Strike, ExerciseDates, ...
Spread, Settle, Maturity)
InstSet = instswaption(OptSpec, Strike, ExerciseDates, ...
Spread, Settle, Maturity, AmericanOpt, ...
SwapReset, Basis, Principal)
InstSet = instswaption(InstSetOld, OptSpec, Strike, ...
ExerciseDates, Spread, ...)
[FieldList, ClassList, TypeString] = instswaption;

Arguments Fill unspecified entries in vectors with the value NaN. Only one data
argument is required to create the instruments; the others may be
omitted or passed as empty matrices []. Type [FieldList, ClassList]
= instswaption to see the classes. Dates can be input as serial date
numbers or date strings.

OptSpec NINST-by-1 cell array of strings 'call' or 'put'.
A 'call' swaption entitles the buyer to pay the
fixed rate. A 'put' swaption entitles the buyer
to receive the fixed rate.

Strike NINST-by-1 vector of strike swap rate values.

For a European option:

ExerciseDates NINST-by-1 vector of exercise dates. Each row
is the schedule for one option. For a European
option, there is only one ExerciseDate on the
option expiry date.

AmericanOpt NINST-by-1 vector of flags. AmericanOpt is 0
for each European option. The default is 0 if
AmericanOpt is NaN or not entered.

For an American option:

6-479

instswaption

ExerciseDates NINST-by-2 vector of exercise date boundaries. For
each instrument, the option can be exercised on
any coupon date between or including the pair
of dates on that row. If only one non-NaN date
is listed, or if ExerciseDates is NINST-by-1, the
option can be exercised between the underlying
swap Settle and the single listed ExerciseDate.

AmericanOpt NINST-by-1 vector of flags. AmericanOpt is 1
for each American option. The AmericanOpt
argument is required to invoke American exercise
rules.

For an American or a European option:

Spread NINST-by-1 vector representing the number of
basis points over the reference rate.

Settle NINST-by-1 vector of dates representing the settle
date for each swap.

Maturity NINST-by-1 vector of dates representing the
maturity date for each swap.

SwapReset (Optional) NINST-by-1 vector representing the
reset frequency per year for the underlying swap.
Default is 1.

Basis (Optional) Day-count basis of the instrument. A
vector of integers.

• 0 = actual/actual (default)

• 1 = 30/360 (SIA)

• 2 = actual/360

• 3 = actual/365

• 4 = 30/360 (BMA)

• 5 = 30/360 (ISDA)

• 6 = 30/360 (European)

6-480

instswaption

• 7 = actual/365 (Japanese)

• 8 = actual/actual (ICMA)

• 9 = actual/360 (ICMA)

• 10 = actual/365 (ICMA)

• 11 = 30/360E (ICMA)

• 12 = actual/actual (ISDA)

• 13 = BUS/252
For more information, see basis.

Principal (Optional) NINST-by-1 vector of the notional
principal amounts. Default is 100.

Description To specify a European option: InstSet = instswaption(OptSpec,
Strike, ExerciseDates, ...Spread, Settle, Maturity)

To specify an American option: InstSet = instswaption(OptSpec,
Strike, ExerciseDates, ...Spread, Settle, Maturity,
AmericanOpt, ...SwapReset, Basis, Principal)

To add swaption instruments to an instrument variable: InstSet =
instswaption(InstSetOld, OptSpec, Strike, ...ExerciseDates,
Spread, ...)

To list field metadata for the swaption instrument: [FieldList,
ClassList, TypeString] = instswaption;

Outputs:

6-481

instswaption

InstSet Variable containing a collection of instruments.
Instruments are broken down by type and each type
can have different data fields. Each stored data field
has a row vector or string for each instrument. For
more information on the ISet variable, see instget.

FieldList NFIELDS-by-1 cell array of strings listing the name of
each data field for this instrument type.

ClassList NFIELDS-by-1 cell array of strings listing the data
class of each field. The class determines how
arguments will be parsed. Valid strings are 'dble',
'date', and 'char'.

TypeString String specifying the type of instrument added.
TypeString = 'Swaption'.

Examples Create two European swaption instruments with the following data:

OptSpec = {'Call'; 'Put'}

Strike = .05;

ExerciseDates = 'jan-1-2011';

Spread=0;

Settle = 'jan-1-2007';

Maturity = 'jan-1-2012';

AmericanOpt = 0;

OptSpec =

'Call'

'Put'

InstSet = instswaption(OptSpec, Strike, ExerciseDates, Spread, Settle, Maturity, ...

AmericanOpt);

View the two European swaption instruments by using instdisp:

6-482

instswaption

instdisp(InstSet)

Indx Type OptSpec Stke ExerDates Spread Settle Maturity AmerOpt SwpReset Basis Prinpal

1 Swaption Call 0.05 01-Jan-2011 0 01-Jan-2007 01-Jan-2012 0 1 0 100

2 Swaption Put 0.05 01-Jan-2011 0 01-Jan-2007 01-Jan-2012 0 1 0 100

See Also instadd | instget | instdisp

6-483

insttypes

Purpose List types

Syntax TypeList = insttypes(InstSet)

Arguments

InstSet Variable containing a collection of instruments.
Instruments are classified by type; each type can
have different data fields. The stored data field is a
row vector or string for each instrument.

Description TypeList = insttypes(InstSet) retrieves a list of types stored in an
instrument variable.

TypeList is a number of types (NTYPES)-by-1 cell array of strings listing
the Type of instruments contained in the variable.

Examples Retrieve the instrument set variable ExampleInst from the data
file InstSetExamples.mat. ExampleInst contains three types of
instruments: Option, Futures, and TBill.

load InstSetExamples;
instdisp(ExampleInst)

Index Type Strike Price Opt Contracts
1 Option 95 12.2 Call 0
2 Option 100 9.2 Call 0
3 Option 105 6.8 Call 1000

Index Type Delivery F Contracts
4 Futures 01-Jul-1999 104.4 -1000

Index Type Strike Price Opt Contracts
5 Option 105 7.4 Put -1000
6 Option 95 2.9 Put 0

6-484

insttypes

Index Type Price Maturity Contracts
7 TBill 99 01-Jul-1999 6

List all of the types included in ExampleInst.

TypeList = insttypes(ExampleInst)
TypeList =

'Futures'
'Option'
'TBill'

See Also instdisp | instfields | instlength

6-485

intenvget

Purpose Properties of interest-rate structure

Syntax ParameterValue = intenvget(RateSpec,'ParameterName')

Arguments

RateSpec A structure containing the properties of an
interest-rate structure. See intenvset for
information on creating RateSpec.

ParameterName String indicating the parameter name to be
accessed. The value of the named parameter is
extracted from the structure RateSpec. It is
sufficient to type only the leading characters
that uniquely identify the parameter. Case is
ignored for parameter names.

Description ParameterValue = intenvget(RateSpec,'ParameterName') obtains
the value of the named parameter ParameterName extracted from
RateSpec.

Examples Use intenvset to set the interest-rate structure.

RateSpec = intenvset('Rates', 0.05, 'StartDates',...
'20-Jan-2000', 'EndDates', '20-Jan-2001')

Now use intenvget to extract the values from RateSpec.

[R, RateSpec] = intenvget(RateSpec, 'Rates')

R =

0.0500
RateSpec =

FinObj: 'RateSpec'

6-486

intenvget

Compounding: 2
Disc: 0.9518
Rates: 0.0500
EndTimes: 2
StartTimes: 0
EndDates: 730871
StartDates: 730505
ValuationDate: 730505
Basis: 0
EndMonthRule: 1

See Also intenvset

6-487

intenvprice

Purpose Price instruments from set of zero curves

Syntax Price = intenvprice(RateSpec, InstSet)

Arguments

RateSpec A structure containing the properties of an
interest-rate structure. See intenvset for
information on creating RateSpec.

InstSet Variable containing a collection of instruments.
Instruments are categorized by type; each type can
have different data fields. The stored data field is a
row vector or string for each instrument.

Description Price = intenvprice(RateSpec, InstSet) computes arbitrage-free
prices for instruments against a set of zero coupon bond rate curves.

Price is a number of instruments (NINST) by number of curves
(NUMCURVES) matrix of prices of each instrument. If an instrument
cannot be priced, a NaN is returned in that entry.

intenvprice handles the following instrument types: 'Bond',
'CashFlow', 'Fixed', 'Float', 'Swap'. See instadd for information
about constructing defined types.

See single-type pricing functions to retrieve pricing information.

bondbyzero Price bonds from a set of zero curves.

cfbyzero Price arbitrary cash flow instrument from a set
of zero curves.

fixedbyzero Fixed-rate note prices from a set of zero curves.

floatbyzero Floating-rate note prices from a set of zero curves.

swapbyzero Swap prices from a set of zero curves.

6-488

intenvprice

Examples Load the zero curves and instruments from a data file.

load deriv.mat
instdisp(ZeroInstSet)

Price = intenvprice(ZeroRateSpec, ZeroInstSet)

Price =

98.7159
97.5334
98.7159

100.5529
3.6923

See Also hjmprice | hjmsens | instadd | intenvsens | intenvset

6-489

intenvsens

Purpose Instrument price and sensitivities from set of zero curves

Syntax [Delta, Gamma, Price] = intenvsens(RateSpec, InstSet)

Arguments

RateSpec A structure containing the properties of an
interest-rate structure. See intenvset for
information on creating RateSpec.

InstSet Variable containing a collection of instruments.
Instruments are categorized by type; each type can
have different data fields. The stored data field is a
row vector or string for each instrument.

Description [Delta, Gamma, Price] = intenvsens(RateSpec, InstSet)
computes dollar prices and price sensitivities for instruments that use a
zero coupon bond rate structure.

Delta is a number of instruments (NINST) by number of curves
(NUMCURVES) matrix of deltas, representing the rate of change of
instrument prices with respect to shifts in the observed forward yield
curve. Delta is computed by finite differences.

Gamma is an NINST-by-NUMCURVES matrix of gammas, representing the
rate of change of instrument deltas with respect to shifts in the observed
forward yield curve. Gamma is computed by finite differences.

Note Both sensitivities are returned as dollar sensitivities. To find the
per-dollar sensitivities, divide by the respective instrument price.

Price is an NINST-by-NUMCURVES matrix of prices of each instrument. If
an instrument cannot be priced, a NaN is returned.

6-490

intenvsens

intenvsens handles the following instrument types: 'Bond',
'CashFlow', 'Fixed', 'Float', 'Swap'. See instadd for information
about constructing defined types.

Examples Load the tree and instruments from a data file.

load deriv.mat
instdisp(ZeroInstSet)

[Delta, Gamma] = intenvsens(ZeroRateSpec, ZeroInstSet)

Delta =

-272.6403
-347.4386
-272.6403

-1.0445
-282.0405

Gamma =

1.0e+003 *

1.0298
1.6227
1.0298

6-491

intenvsens

0.0033
1.0596

See Also hjmprice | hjmsens | instadd | intenvprice | intenvset

6-492

intenvset

Purpose Set properties of interest-rate structure

Syntax [RateSpec, RateSpecOld] = intenvset(RateSpec, 'Argument1',
Value1, 'Argument2', Value2, ...)
[RateSpec, RateSpecOld] = intenvset
intenvset

Arguments

RateSpec (Optional) An existing interest-rate specification
structure to be changed, probably created from a
previous call to intenvset.

Arguments may be chosen from the following table and specified in
any order.

Compounding Scalar value representing the rate at which
the input zero rates were compounded when
annualized. Default = 2. This argument
determines the formula for the discount factors:

Compounding = 1, 2, 3, 4, 6, 12

Disc = (1 + Z/F)^(-T), where F is the
compounding frequency, Z is the zero rate, and
T is the time in periodic units; for example, T
= F is 1 year.

Compounding = 365

Disc = (1 + Z/F)^(-T), where F is the
number of days in the basis year and T is a
number of days elapsed computed by basis.

Compounding = -1

6-493

intenvset

Disc = exp(-T*Z), where T is time in years.

Disc Number of points (NPOINTS) by number of
curves (NCURVES) matrix of unit bond prices
over investment intervals from StartDates,
when the cash flow is valued, to EndDates,
when the cash flow is received.

Rates Number of points (NPOINTS) by number of
curves (NCURVES) matrix of rates in decimal
form. For example, 5% is 0.05 in Rates. Rates
are the yields over investment intervals from
StartDates, when the cash flow is valued, to
EndDates, when the cash flow is received.

EndDates NPOINTS-by-1 vector or scalar of serial maturity
dates ending the interval to discount over.

StartDates NPOINTS-by-1 vector or scalar of serial dates
starting the interval to discount over. Default
= ValuationDate. StartDates must be earlier
than EndDates.

ValuationDate (Optional) Scalar value in serial date number
form representing the observation date of the
investment horizons entered in StartDates
and EndDates. Default = min(StartDates).

Basis (Optional) Day-count basis of the instrument. A
vector of integers.

• 0 = actual/actual (default)

• 1 = 30/360 (SIA)

• 2 = actual/360

• 3 = actual/365

• 4 = 30/360 (BMA)

• 5 = 30/360 (ISDA)

6-494

intenvset

• 6 = 30/360 (European)

• 7 = actual/365 (Japanese)

• 8 = actual/actual (ICMA)

• 9 = actual/360 (ICMA)

• 10 = actual/365 (ICMA)

• 11 = 30/360E (ICMA)

• 12 = actual/actual (ISDA)

• 13 = BUS/252
For more information, see basis.

EndMonthRule (Optional) End-of-month rule. A vector.
This rule applies only when Maturity is an
end-of-month date for a month having 30 or
fewer days. 0 = ignore rule, meaning that
a bond’s coupon payment date is always the
same numerical day of the month. 1 = set rule
on (default), meaning that a bond’s coupon
payment date is always the last actual day of
the month.

It is sufficient to type only the leading characters that uniquely identify
the parameter. Case is ignored for argument names.

When creating a new RateSpec, the set of arguments passed to
intenvset must include StartDates, EndDates, and either Rates or
Disc.

Call intenvset with no input or output arguments to display a list of
argument names and possible values.

Description [RateSpec, RateSpecOld] = intenvset(RateSpec, 'Argument1',
Value1, 'Argument2', Value2, ...) creates an interest term
structure (RateSpec) in which the input argument list is specified as

6-495

intenvset

argument name /argument value pairs. The argument name portion
of the pair must be recognized as a valid field of the output structure
RateSpec; the argument value portion of the pair is then assigned to
its paired field.

If the optional argument RateSpec is specified, intenvset modifies
an existing interest term structure RateSpec by changing the named
argument to the specified values and recalculating the arguments
dependent on the new values.

[RateSpec, RateSpecOld] = intenvset creates an interest term
structure RateSpec with all fields set to [].

intenvset with no input or output arguments displays a list of
argument names and possible values.

RateSpecOld is a structure containing the properties of an interest-rate
structure before the changes introduced by the call to intenvset.

Examples Create a RateSpec

Use intenvset to create a RateSpec.

Use intenvset to create a RateSpec.

RateSpec = intenvset('Rates', 0.05, 'StartDates',...
'20-Jan-2000', 'EndDates', '20-Jan-2001')

RateSpec =

FinObj: 'RateSpec'
Compounding: 2

Disc: 0.9518
Rates: 0.0500

EndTimes: 2
StartTimes: 0

EndDates: 730871
StartDates: 730505

ValuationDate: 730505
Basis: 0

6-496

intenvset

EndMonthRule: 1

Now change the Compounding argument to 1 (annual).

RateSpec = intenvset(RateSpec, 'Compounding', 1)

RateSpec =

FinObj: 'RateSpec'
Compounding: 1

Disc: 0.9518
Rates: 0.0506

EndTimes: 1
StartTimes: 0

EndDates: 730871
StartDates: 730505

ValuationDate: 730505
Basis: 0

EndMonthRule: 1

Calling intenvset with no input or output arguments displays a list of
argument names and possible values.

intenvset

Compounding: [1 | {2} | 3 | 4 | 6 | 12 | 365 | -1]
Disc: [scalar | vector (NPOINTS x 1)]

Rates: [scalar | vector (NPOINTS x 1)]
EndDates: [scalar | vector (NPOINTS x 1)]

StartDates: [scalar | vector (NPOINTS x 1)]
ValuationDate: [scalar]

Basis: [{0} | 1 | 2 | 3]
EndMonthRule: [0 | {1}]

Create RateSpec Using Two Curves

Create a RateSpec for two interest-rate curves.

6-497

intenvset

Define data for the interest-rate term structure and use intenvset to
create a RateSpec.

StartDates = '01-Oct-2011';

EndDates = ['01-Oct-2012'; '01-Oct-2013';'01-Oct-2015';'01-Oct-2015'];

Rates = [[0.0356;0.041185;0.04489;0.047741],[0.0325;0.0423;0.0437;0.0465]];

RateSpec = intenvset('Rates', Rates, 'StartDates',StartDates,...

'EndDates', EndDates, 'Compounding', 1)

RateSpec =

FinObj: 'RateSpec'
Compounding: 1

Disc: [4x2 double]
Rates: [4x2 double]

EndTimes: [4x1 double]
StartTimes: [4x1 double]

EndDates: [4x1 double]
StartDates: 734777

ValuationDate: 734777
Basis: 0

EndMonthRule: 1

To look at the Rates for the two interest-rate curves:

RateSpec.Rates

ans =

0.0356 0.0325
0.0412 0.0423
0.0449 0.0437
0.0477 0.0465

Price a Multi-Stepped Coupon Bond

Price the following multi-stepped coupon bonds using market data.

The data for the interest rate term structure is as follows:

6-498

intenvset

Rates = [0.035; 0.042147; 0.047345; 0.052707];
ValuationDate = 'Jan-1-2010';
StartDates = ValuationDate;
EndDates = {'Jan-1-2011'; 'Jan-1-2012'; 'Jan-1-2013'; 'Jan-1-2014'};
Compounding = 1;

Create RateSpec.

RS = intenvset('ValuationDate', ValuationDate, 'StartDates', StartDates,...

'EndDates', EndDates,'Rates', Rates, 'Compounding', Compounding);

Create a portfolio of stepped coupon bonds with different maturities.

Settle = '01-Jan-2010';

Maturity = {'01-Jan-2011';'01-Jan-2012';'01-Jan-2013';'01-Jan-2014'};

CouponRate = {{'01-Jan-2011' .042;'01-Jan-2012' .05; '01-Jan-2013' .06; '01-Jan-2014' .07}};

ISet = instbond(CouponRate, Settle, Maturity, 1);

instdisp(ISet)

Index Type CouponRate Settle Maturity Period Basis EndMonthRule ... Face

1 Bond [Cell] 01-Jan-2010 01-Jan-2011 1 0 1 ... 100

2 Bond [Cell] 01-Jan-2010 01-Jan-2012 1 0 1 ... 100

3 Bond [Cell] 01-Jan-2010 01-Jan-2013 1 0 1 ... 100

4 Bond [Cell] 01-Jan-2010 01-Jan-2014 1 0 1 ... 100

Table of instrument portfolio is partially displayed.

Compute the price of the stepped coupon bonds.

PZero = intenvprice(RS, ISet)

Index Type CouponRate Settle Maturity Period Basis EndMonthRule ... Face

1 Bond [Cell] 01-Jan-2010 01-Jan-2011 1 0 1 ... 100

2 Bond [Cell] 01-Jan-2010 01-Jan-2012 1 0 1 ... 100

3 Bond [Cell] 01-Jan-2010 01-Jan-2013 1 0 1 ... 100

6-499

intenvset

4 Bond [Cell] 01-Jan-2010 01-Jan-2014 1 0 1 ... 100

PZero =

100.6763

100.7368

100.9266

101.0115

Table of instrument portfolio is partially displayed.

See Also intenvget

6-500

isafin

Purpose True if input argument is financial structure type or financial object
class

Syntax IsFinObj = isafin(Obj, ClassName)

Arguments

Obj Name of a financial structure.

ClassName String containing the name of a financial structure
class.

Description IsFinObj = isafin(Obj, ClassName) returns True if input argument
is a financial structure type or financial object class, otherwise False
is returned.

Examples load deriv.mat
IsFinObj = isafin(HJMTree, 'HJMFwdTree') returns True

See Also classfin

6-501

ittprice

Purpose Price instruments using implied trinomial tree (ITT)

Syntax Price = ittprice(ITTTree, InstSet)
Price = ittprice(ITTTree, InstSet, Options)
[Price, PriceTree] = ittprice(ITTTree, InstSet, Options)

Arguments

ITTTree Implied trinomial stock tree. See itttree for
information on creating the variable ITTTree.

InstSet Variable containing a collection of NINST instruments.
Instruments are broken down by type and each type
can have different data fields.

Options (Optional) Structure created using derivset
containing derivative pricing options.

Description Price = ittprice(ITTTree, InstSet)

Price = ittprice(ITTTree, InstSet, Options)

[Price, PriceTree] = ittprice(ITTTree, InstSet, Options)

The outputs for ittprice are:

• Price is a NINST-by-1 vector of prices of each instrument at time 0.
The prices are computed by backward dynamic programming on the
stock tree. If an instrument cannot be priced, a NaN is returned in
that entry.

• PriceTree is a structure containing trees of vectors of instrument
prices and a vector of observation times for each node.

- PriceTree.PTree contains the prices.

- PriceTree.tObs contains the observation times.

- PriceTree.dObs contains the observation dates.

6-502

ittprice

ittprice computes prices for instruments using an implied trinomial
tree created with itttree.

Note ittprice handles the following instrument types: optstock,
barrier, Asian, lookback, and compound. Use instadd to construct the
defined types.

When using an implied trinomial tree, pricing of path-dependent options
is done using Hull-White. Consequently, for these options there are no
unique prices on the tree nodes with the exception of the root node.
The corresponding nodes of the tree are populated with NaNs for these
particular options. For information on single-type pricing functions to
retrieve state-by-state pricing tree information, see the following:

• barrierbyitt for pricing barrier options using an ITT tree

• optstockbyitt for pricing American, European or Bermuda options
using an ITT tree

• asianbyitt for pricing Asian options using an ITT tree

• lookbackbyitt for pricing lookback options using an ITT tree

• compoundbyitt for price compound options using an ITT tree

Examples Load the ITT tree and instruments from the data file deriv.mat.

load deriv.mat

Price the barrier and Asian options contained in the instrument set.

ITTSubSet = instselect(ITTInstSet,'Type', {'Barrier', 'Asian'});

instdisp(ITTSubSet)

instdisp(ITTSubSet)

Index Type OptSpec Strike Settle ExerDates AmerOpt BarrSpec Barr Rebate Name Quantity

6-503

ittprice

1 Barrier call 85 01-Jan-2006 31-Dec-2008 1 ui 115 0 Barrier1 1

IndxType OptSpec Strike Settle ExerDates AmerOpt AvgType AvgPrice AvgDate Name Quantity

2 Asian call 55 01-Jan-2006 01-Jan-2008 0 arithmetic NaN NaN Asian1 5

3 Asian call 55 01-Jan-2006 01-Jan-2010 0 arithmetic NaN NaN Asian2 7

[Price, PriceTree] = ittprice(ITTTree, ITTSubSet)

Price =

2.4074

3.2052

6.6074

PriceTree =

FinObj: 'TrinPriceTree'

PTree: {[3x1 double] [3x3 double] [3x5 double] [3x7 double] [3x9 double]}

tObs: [0 1 2 3 4]

dObs: [732678 733043 733408 733773 734139]

See Also ittsens | itttree

6-504

ittsens

Purpose Instrument sensitivities and prices using implied trinomial tree (ITT)

Syntax [Delta, Gamma, Vega] = ittsens(ITTTree, InstSet)
[Delta, Gamma, Vega, Price] = ittsens(ITTTree, InstSet)
[Delta, Gamma, Vega, Price] = ittsens(ITTTree, InstSet,
Options)

Arguments

ITTTree Implied trinomial stock tree. See itttree for
information on creating the variable ITTTree.

InstSet Variable containing a collection of NINST instruments.
Instruments are broken down by type and each type
can have different data fields.

Options (Optional) Structure created using derivset
containing derivative pricing options.

Description [Delta, Gamma, Vega] = ittsens(ITTTree, InstSet)

[Delta, Gamma, Vega, Price] = ittsens(ITTTree, InstSet)

[Delta, Gamma, Vega, Price] = ittsens(ITTTree, InstSet,
Options)

The outputs for ittsens are:

• Delta is a NINST-by-1 vector of deltas, representing the rate of change
of instruments prices with respect to changes in the stock price.

• Gamma is a NINST-by-1 vector of gammas, representing the rate of
change of instruments deltas with respect to changes in the stock
price.

• Vega is a NINST-by-1 vector of vegas, representing the rate of change
of instruments prices with respect to changes in the volatility of the
stock. Vega is computed by finite differences in calls to itttree.

6-505

ittsens

• Price is a NINST-by-1 vector of prices of each instrument. The prices
are computed by backward dynamic programming on the stock tree.
If an instrument cannot be priced, a NaN is returned.

ittsens computes dollar sensitivities and prices for instruments using
an ITT tree created with itttree.

Note ittsens handles the following instrument types: optstock,
barrier, Asian, lookback, and compound. Use instadd to construct the
defined types.

For path-dependent options (lookbacks and Asians), Delta and Gamma
are computed by finite differences in calls to ittprice. For the rest of
the options (optstock, barrier, and compound), Delta and Gamma are
computed from the ITT tree and the corresponding option price tree.

All sensitivities are returned as dollar sensitivities. To find the
per-dollar sensitivities, they must be divided by their respective
instrument price.

Examples Load the ITT tree and instruments from the data file deriv.mat.
Compute the Delta and Gamma sensitivities of vanilla options and
barrier option contained in the instrument set.

load deriv.mat

ITTSubSet = instselect(ITTInstSet,'Type', {'OptStock', 'Barrier'});

instdisp(ITTSubSet)

Index Type OptSpec Strike Settle ExerciseDates AmericanOpt Name Quantity

1 OptStock call 95 01-Jan-2006 31-Dec-2008 1 Call1 10

2 OptStock put 80 01-Jan-2006 01-Jan-2010 0 Put1 4

Index Type OptSpec Strike Settle ExercDates AmerOpt BarrSpec Barr Rebate Name Quantity

6-506

ittsens

3 Barrier call 85 01-Jan-2006 31-Dec-2008 1 ui 115 0 Barrier1 1

[Delta, Gamma] = ittsens(ITTTree, ITTSubSet)

Warning: The option set specified in StockOptSpec was too narrow for the generated tree.

This made extrapolation necessary. Below is a list of the options that were outside of

the range of those specified in StockOptSpec.

Option Type: 'call' Maturity: 01-Jan-2007 Strike=67.2897

Option Type: 'put' Maturity: 01-Jan-2007 Strike=37.1528

Option Type: 'put' Maturity: 01-Jan-2008 Strike=27.6066

Option Type: 'put' Maturity: 31-Dec-2008 Strike=20.5132

Option Type: 'call' Maturity: 01-Jan-2010 Strike=164.0157

Option Type: 'put' Maturity: 01-Jan-2010 Strike=15.2424

> In itttree>InterpOptPrices at 675

In itttree at 277

In stocktreesens>stocktreevega at 191

In stocktreesens at 92

In ittsens at 81

Delta =

0.2387

-0.4283

0.3482

Gamma =

0.0260

0.0188

0.0380

References Chriss, Neil. and I. Kawaller, Black-Scholes and Beyond: Options
Pricing Models, McGraw-Hill, 1996, pp. 308-312.

6-507

ittsens

See Also ittprice | itttree

6-508

itttimespec

Purpose Specify time structure using implied trinomial tree (ITT)

Syntax TimeSpec = itttimespec(ValuationDate, Maturity, NumPeriods)

Arguments

ValuationDate Scalar date marking the pricing date and first
observation in the tree. Specify ValuationDate as
a serial date number or date string.

Maturity Scalar date marking the depth of the tree.

NumPeriods Scalar that determines how many time steps are
in the tree.

Description TimeSpec = itttimespec(ValuationDate, Maturity, NumPeriods)
creates the structure specifying the time layout for an ITT tree.

Examples Specify a four-period tree with time steps of 1 year.

ValuationDate = '1-July-2006';
Maturity = '1-July-2010';
TimeSpec = itttimespec(ValuationDate, Maturity, 4);

See Also itttree | stockspec

6-509

itttree

Purpose Build implied trinomial stock tree

Syntax itttree(StockSpec, RateSpec, TimeSpec, StockOptSpec)

Arguments

StockSpec Stock specification. For more information, see
stockspec.

RateSpec Interest rate specification of the initial risk-free rate
curve. For more information on declaring an interest
rate variable, see intenvset.

TimeSpec Tree time layout specification. Defines the
observation dates of the implied trinomial tree.
For more information on the tree structure, see
itttimespec.

StockOptSpec Option stock specification. For more information, see
stockoptspec.

Description itttree(StockSpec, RateSpec, TimeSpec, StockOptSpec) creates
the itttree structure specifying stock and time information for an
implied trinomial tree.

Examples For this example, assume that the interest rate is fixed at 8% annually
between the valuation date of the tree (January 1, 2006) until its
maturity.

Rate = 0.08;

ValuationDate = '01-01-2006';

EndDate = '01-01-2008';

RateSpec = intenvset('StartDates', ValuationDate, 'EndDates', EndDate, ...

'ValuationDate', ValuationDate, 'Rates', Rate, 'Compounding', -1);

6-510

itttree

To build an ITTTree, create StockSpec, TimeSpec, and StockOptSpec
structures.

To create theStockSpec structure:

Sigma = 0.20;

AssetPrice = 50;

DividendType = 'cash';

DividendAmounts = [0.50; 0.50; 0.50; 0.50];

ExDividendDates = {'03-Jan-2007'; '01-Apr-2007'; '05-July-2007';'01-Oct-2007'}

StockSpec = stockspec(Sigma, AssetPrice, DividendType, ...

DividendAmounts, ExDividendDates)

StockSpec =

FinObj: 'StockSpec'

Sigma: 0.2000

AssetPrice: 50

DividendType: 'cash'

DividendAmounts: [4x1 double]

ExDividendDates: [4x1 double]

The syntax for building a TimeSpec structure is TimeSpec =
itttimespec(ValuationDate, Maturity, NumPeriods).

Consider building an ITT tree, with a valuation date of January 1, 2006;
a maturity date of January 1, 2008; and four time steps.

ValuationDate = '01-01-2006';
EndDate = '01-01-2008';
NumPeriods = 4;

TimeSpec = itttimespec(ValuationDate, EndDate, NumPeriods)

TimeSpec =

FinObj: 'ITTTimeSpec'
ValuationDate: 732678

6-511

itttree

Maturity: 733408
NumPeriods: 4

Basis: 0
EndMonthRule: 1

tObs: [0 0.5000 1 1.5000 2]
dObs: [732678 732860 733043 733225 733408]

The syntax for building a StockOptSpec structure is [StockOptSpec]
= stockoptspec(OptPrice, Strike, Settle, Maturity, OptSpec).

Settle = '01/01/06';

Maturity = ['07/01/06';

'07/01/06';

'07/01/06';

'07/01/06';

'01/01/07';

'01/01/07';

'01/01/07';

'01/01/07';

'07/01/07';

'07/01/07';

'07/01/07';

'07/01/07';

'01/01/08';

'01/01/08';

'01/01/08';

'01/01/08'];

Strike = [113;

101;

100;

88;

128;

112;

100;

78;

6-512

itttree

144;

112;

100;

69;

162;

112;

100;

61];

OptPrice =[0;

4.807905472659144;

1.306321897011867;

0.048039195057173;

0;

2.310953054191461;

1.421950392866235;

0.020414826276740;

0;

5.091986935627730;

1.346534812295291;

0.005101325584140;

0;

8.047628153217246;

1.219653432150932;

0.001041436654748];

OptSpec = { 'call';

'call';

'put';

'put';

'call';

'call';

'put';

'put';

'call';

'call';

6-513

itttree

'put';

'put';

'call';

'call';

'put';

'put'};

StockOptSpec = stockoptspec(OptPrice, Strike, Settle, Maturity, OptSpec)

StockOptSpec =

FinObj: 'StockOptSpec'

OptPrice: [16x1 double]

Strike: [16x1 double]

Settle: 732678

Maturity: [16x1 double]

OptSpec: {16x1 cell}

InterpMethod: 'price'

Note In this example, the extrapolation warnings are turned on to
display warnings on the Command Window. These warnings are a
consequence of having to extrapolate to find the option price of the tree
nodes. In this example, the set of inputs options was too narrow for the
shift in the tree nodes introduced by the disturbance used to calculate
the sensitivities. As a consequence extrapolation for some of the nodes
was needed.

Use the following command to turn on extrapolation warnings:

warning('on', 'finderiv:itttree:Extrapolation');

Use the StockSpec, RateSpec, TimeSpec, and StockOptSpec structure
to create an ITTTree.

ITTTree = itttree(StockSpec, RateSpec, TimeSpec, StockOptSpec)

6-514

itttree

Warning: The option set specified in StockOptSpec was too narrow for the generated tree.

This made extrapolation necessary. Below is a list of the options that were outside of

the range of those specified in StockOptSpec.

Option Type: 'call' Maturity: 02-Jul-2006 Strike=60.7466

Option Type: 'put' Maturity: 02-Jul-2006 Strike=50.0731

Option Type: 'put' Maturity: 02-Jul-2006 Strike=41.3344

Option Type: 'call' Maturity: 01-Jan-2007 Strike=73.8592

Option Type: 'call' Maturity: 01-Jan-2007 Strike=60.8227

Option Type: 'put' Maturity: 01-Jan-2007 Strike=50.1492

Option Type: 'put' Maturity: 01-Jan-2007 Strike=41.4105

Option Type: 'put' Maturity: 01-Jan-2007 Strike=34.2559

Option Type: 'call' Maturity: 02-Jul-2007 Strike=88.8310

Option Type: 'call' Maturity: 02-Jul-2007 Strike=72.9081

Option Type: 'call' Maturity: 02-Jul-2007 Strike=59.8715

Option Type: 'put' Maturity: 02-Jul-2007 Strike=49.1980

Option Type: 'put' Maturity: 02-Jul-2007 Strike=40.4594

Option Type: 'put' Maturity: 02-Jul-2007 Strike=33.3047

Option Type: 'put' Maturity: 02-Jul-2007 Strike=27.4470

Option Type: 'call' Maturity: 01-Jan-2008 Strike=107.2895

Option Type: 'call' Maturity: 01-Jan-2008 Strike=87.8412

Option Type: 'call' Maturity: 01-Jan-2008 Strike=71.9183

Option Type: 'call' Maturity: 01-Jan-2008 Strike=58.8817

Option Type: 'put' Maturity: 01-Jan-2008 Strike=48.2083

Option Type: 'put' Maturity: 01-Jan-2008 Strike=39.4696

Option Type: 'put' Maturity: 01-Jan-2008 Strike=32.3150

Option Type: 'put' Maturity: 01-Jan-2008 Strike=26.4573

Option Type: 'put' Maturity: 01-Jan-2008 Strike=21.6614

> In itttree>InterpOptPrices at 675

In itttree at 277

ITTTree =

FinObj: 'ITStockTree'

StockSpec: [1x1 struct]

StockOptSpec: [1x1 struct]

6-515

itttree

TimeSpec: [1x1 struct]

RateSpec: [1x1 struct]

tObs: [0 0.500000000000000 1 1.500000000000000 2]

dObs: [732678 732860 733043 733225 733408]

STree: {1x5 cell}

Probs: {[3x1 double] [3x3 double] [3x5 double] [3x7 double]}

See Also intenvset | itttimespec | stockoptspec | stockspec

6-516

lookbackbycrr

Purpose Price lookback option from Cox-Ross-Rubinstein tree

Syntax PriceTree = lookbackbycrr(CRRTree, OptSpec, Strike,
Settle, ExerciseDates, AmericanOpt)

Arguments

CRRTree Stock tree structure created by crrtree.

OptSpec Number of instruments (NINST)-by-1 cell array
of strings 'call' or 'put'.

Strike NINST-by-1 vector of strike price values. Each
row is the schedule for one option. To calculate
the value of a floating-strike lookback option,
specify Strike as NaN.

Settle NINST-by-1 vector of Settle dates. The settle
date for every lookback is set to the valuation
date of the stock tree. The lookback argument
Settle is ignored.

ExerciseDates For a European option (AmericanOpt = 0):

NINST-by-1 vector of exercise dates. Each row
is the schedule for one option. For a European
option, there is only one exercise date, the
option expiry date.

For an American option (AmericanOpt = 1):

NINST-by-2 vector of exercise date boundaries.
For each instrument, the option can be
exercised on any tree date between or including
the pair of dates on that row. If only one
non-NaN date is listed, or if ExerciseDates
is NINST-by-1, the option can be exercised

6-517

lookbackbycrr

between the valuation date of the stock tree
and the single listed exercise date.

AmericanOpt (Optional) If AmericanOpt = 0, NaN, or is
unspecified, the option is a European option. If
AmericanOpt = 1, the option is an American
option.

Description PriceTree = lookbackbycrr(CRRTree, OptSpec, Strike, Settle,
ExerciseDates, AmericanOpt) calculates the value of fixed- and
floating-strike lookback options. Data arguments are NINST-by-1
vectors, scalar, or empty. Fill unspecified entries in vectors with NaN.
Only one data argument is required to create the instrument. The
others may be omitted or passed as empty matrices [].

Price is a NINST-by-1 vector of expected option prices at time 0.

Note lookbackbycrr calculates values of fixed and floating strike
lookback options. To compute the value of a floating strike lookback
option, strike should be specified as NaN. Pricing of lookback options is
done using Hull-White (1993). Consequently, for these options there are
not unique prices on the tree nodes with the exception of the root node.

Examples Price a lookback option using a CRR binomial tree.

Load the file deriv.mat, which provides CRRTree. The CRRTree
structure contains the stock specification and time information needed
to price the option.

load deriv.mat;

Set the required values. Other arguments will use defaults.

OptSpec = 'Call';

Strike = 115;

6-518

lookbackbycrr

Settle = '01-Jan-2003';

ExerciseDates = '01-Jan-2006';

Price = lookbackbycrr(CRRTree, OptSpec, Strike, Settle, ...

ExerciseDates)

Price =

7.6015

References Hull, J., and A. White, “Efficient Procedures for Valuing European
and American Path-Dependent Options,” Journal of Derivatives, Fall
1993, pp. 21-31.

See Also crrtree | instlookback

6-519

lookbackbyeqp

Purpose Price lookback option from Equal Probabilities binomial tree

Syntax [Price, PriceTree] = lookbackbyeqp(EQPTree, OptSpec, Strike,
Settle, ExerciseDates, AmericanOpt)

Arguments

EQPTree Stock tree structure created by eqptree.

OptSpec Number of instruments (NINST)-by-1 cell array
of strings 'call' or 'put'.

Strike NINST-by-1 vector of strike price values. Each
row is the schedule for one option. To calculate
the value of a floating-strike lookback option,
specify Strike as NaN.

Settle NINST-by-1 vector of Settle dates. The settle
date for every lookback is set to the valuation
date of the stock tree. The lookback argument
Settle is ignored.

ExerciseDates For a European option (AmericanOpt = 0):

NINST-by-1 vector of exercise dates. Each row
is the schedule for one option. For a European
option, there is only one exercise date, the
option expiry date.

For an American option (AmericanOpt = 1):

NINST-by-2 vector of exercise date boundaries.
For each instrument, the option can be
exercised on any tree date between or including
the pair of dates on that row. If only one
non-NaN date is listed, or if ExerciseDates
is NINST-by-1, the option can be exercised

6-520

lookbackbyeqp

between the valuation date of the stock tree
and the single listed exercise date.

AmericanOpt (Optional) If AmericanOpt = 0, NaN, or is
unspecified, the option is a European option. If
AmericanOpt = 1, the option is an American
option.

Description Price = lookbackbyeqp(EQPTree, OptSpec, Strike,
ExerciseDates, AmericanOpt) calculates the value of fixed- and
floating-strike lookback options. Data arguments are NINST-by-1
vectors, scalar, or empty. Fill unspecified entries in vectors with NaN.
Only one data argument is required to create the instrument. The
others may be omitted or passed as empty matrices [].

Price is a NINST-by-1 vector of expected option prices at time 0.

Note lookbackbyeqp calculates values of fixed and floating strike
lookback options. To compute the value of a floating strike lookback
option, strike should be specified as NaN. Pricing of lookback options is
done using Hull-White (1993). Consequently, for these options there are
not unique prices on the tree nodes with the exception of the root node.

Examples Price a lookback option using an EQP equity tree.

Load the file deriv.mat, which provides EQPTree. The EQPTree
structure contains the stock specification and time information needed
to price the option.

load deriv.mat

Set the required values. Other arguments will use defaults.

OptSpec = 'Call';

Strike = 115;

6-521

lookbackbyeqp

Settle = '01-Jan-2003';

ExerciseDates = '01-Jan-2006';

Price = lookbackbyeqp(EQPTree, OptSpec, Strike, Settle, ...

ExerciseDates)

Price =

8.7941

References Hull, J., and A. White, “Efficient Procedures for Valuing European
and American Path-Dependent Options,” Journal of Derivatives, Fall
1993, pp. 21-31.

See Also eqptree | instlookback

6-522

lookbackbyitt

Purpose Price lookback option using implied trinomial tree (ITT)

Syntax [Price, PriceTree] = lookbackbyitt(ITTTree, OptSpec, Strike,
Settle, ExerciseDates, AmericanOpt)

Arguments

ITTTree Stock tree structure created by itttree.

OptSpec Number of instruments (NINST)-by-1 cell array
of strings 'call' or 'put'.

Strike NINST-by-1 vector of strike price values. Each
row is the schedule for one option. To calculate
the value of a floating-strike lookback option,
specify Strike as NaN.

Settle NINST-by-1 vector of Settle dates. The settle
date for every lookback option is set to the
ValuationDate of the stock tree. The lookback
argument Settle is ignored.

ExerciseDates For a European option (AmericanOpt = 0):

NINST-by-1 vector of exercise dates. Each row
is the schedule for one option. For a European
option, there is only one exercise date, the
option expiry date.

For an American option (AmericanOpt = 1):

NINST-by-2 vector of exercise date boundaries.
For each instrument, the option can be
exercised on any tree date between or including
the pair of dates on that row. If only one
non-NaN date is listed, or if ExerciseDates
is NINST-by-1, the option can be exercised

6-523

lookbackbyitt

between the valuation date of the stock tree
and the single listed exercise date.

AmericanOpt (Optional) If AmericanOpt = 0, NaN, or is
unspecified, the option is a European option. If
AmericanOpt = 1, the option is an American
option.

Description Price = lookbackbyitt(ITTTree, OptSpec, Strike, Settle,
ExerciseDates, AmericanOpt) calculates the value of fixed- and
floating-strike lookback options. Data arguments for lookbackbyitt
are NINST-by-1 vectors, scalar, or empty. Fill unspecified entries in
vectors with NaN. Only one data argument is required to create the
instrument; the others may be omitted or passed as empty matrices [].

Price is a NINST-by-1 vector of expected option prices at time 0.

Note lookbackbyitt calculates values of fixed and floating strike
lookback options. To compute the value of a floating strike lookback
option, strike should be specified as NaN. Pricing of lookback options is
done using Hull-White (1993). Consequently, for these options there are
not unique prices on the tree nodes with the exception of the root node.

Examples Price a lookback option using an ITT equity tree.

Load the file deriv.mat which provides the ITTTree. The ITTTree
structure contains the stock specification and time information needed
to price the option.

load deriv.mat

Set the required values. Other arguments will use defaults.

OptSpec = 'Call';

Strike = 85;

6-524

lookbackbyitt

Settle = '01-Jan-2006';

ExerciseDates = '01-Jan-2008';

Price = lookbackbyitt(ITTTree, OptSpec, Strike, Settle, ExerciseDates)

Price =

0.5426

References Hull, J., and A. White, “Efficient Procedures for Valuing European
and American Path-Dependent Options,” Journal of Derivatives, Fall
1993, pp. 21-31.

See Also instlookback | itttree

6-525

lrtimespec

Purpose Specify time structure for Leisen-Reimer binomial tree

Syntax TimeSpec = lrtimespec(ValuationDate, Maturity, NumPeriods)

Description TimeSpec = lrtimespec(ValuationDate, Maturity, NumPeriods)
specifies a time structure for a Leisen-Reimer stock tree.

Input
Arguments

ValuationDate

Scalar date marking the pricing date and first observation in the
Leisen-Reimer stock tree. Specify ValuationDate as a serial date
number or date string.

Maturity

Scalar date marking the depth of the Leisen-Reimer stock tree.

NumPeriods

Scalar value determining how many time steps are in the Leisen-Reimer
stock tree.

Note Leisen-Reimer requires the number of steps to be an odd number.

Output
Arguments

TimeSpec

Structure specifying the time layout for a Leisen-Reimer stock tree.

Examples Specify a 5-period tree with time steps of 1 year:

ValuationDate = '1-July-2010';
Maturity = '1-July-2015';
TimeSpec = lrtimespec(ValuationDate, Maturity, 5);
TimeSpec =

FinObj: 'BinTimeSpec'

6-526

lrtimespec

ValuationDate: 734320
Maturity: 736146

NumPeriods: 5
Basis: 0

EndMonthRule: 1
tObs: [0 1 2 3 4 5]
dObs: [734320 734685 735050 735415 735780 736146]

References Leisen D.P., M. Reimer, “Binomial Models for Option Valuation –
Examining and Improving Convergence,” Applied Mathematical
Finance, Number 3, 1996, pp. 319-346.

See Also | stockspec | lrtree

6-527

lrtree

Purpose Build Leisen-Reimer stock tree

Syntax LRTree = lrtree(StockSpec, RateSpec, TimeSpec, Strike)
LRTree = lrtree(StockSpec, RateSpec, TimeSpec,
Strike, Name,

Value)

Description LRTree = lrtree(StockSpec, RateSpec, TimeSpec, Strike)
constructs a Leisen-Reimer stock tree.

LRTree = lrtree(StockSpec, RateSpec, TimeSpec, Strike,
Name,Value) constructs a Leisen-Reimer stock tree with additional
options specified by one or more Name,Value pair arguments.

Input
Arguments

StockSpec

Stock specification. For more information, see stockspec.

RateSpec

Interest rate specification of the initial risk-free rate curve. For more
information, see intenvset.

TimeSpec

Tree time layout specification. For more information, see lrtimespec.

Strike

Scalar defining the option strike.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments,
where Name is the argument name and Value is the corresponding
value. Name must appear inside single quotes (' '). You can
specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

Method

6-528

lrtree

String value. Use PP1 for Peizer-Pratt method 1 inversion and PP2 for
Peizer-Pratt method 2 inversion. For more information on PP1 and PP2
methods, see “Leisen-Reimer Tree (LR) Modeling” on page B-7.

Default: PP1

Output
Arguments

LRTree

Structure specifying stock and time information for a Leisen-Reimer
tree.

Examples Consider a European put option with an exercise price of $30 that
expires on June 1, 2010. The underlying stock is trading at $30 on
January 1, 2010 and has a volatility of 30% per annum. The annualized
continuously compounded risk-free rate is 5% per annum. Using this
data, create a Leisen-Reimer tree with 101 steps using the PP1 method.

AssetPrice = 30;

Strike = 30;

ValuationDate = 'Jan-1-2010';

Maturity = 'June-1-2010';

% Define StockSpec

Sigma = 0.3;

StockSpec = stockspec(Sigma, AssetPrice);

% Define RateSpec

Rates = 0.05;

Settle = ValuationDate;

Basis = 1;

Compounding = -1;

RateSpec = intenvset('ValuationDate', ValuationDate, 'StartDates', Settle, ...

'EndDates', Maturity, 'Rates', Rates, 'Compounding', Compounding, 'Basis', Basis);

% Build the Leisen-Reimer (LR) tree with 101 steps

6-529

lrtree

LRTimeSpec = lrtimespec(ValuationDate, Maturity, 101);

% Use the PP1 method

LRMethod = 'PP1';

LRTree = lrtree(StockSpec, RateSpec, LRTimeSpec, Strike, ...

'method', LRMethod)

LRTree =

FinObj: 'BinStockTree'

Method: 'LR'

Submethod: 'PP1'

Strike: 30

StockSpec: [1x1 struct]

TimeSpec: [1x1 struct]

RateSpec: [1x1 struct]

tObs: [1x102 double]

dObs: [1x102 double]

STree: {1x102 cell}

UpProbs: [101x1 double]

References Leisen D.P., M. Reimer, “Binomial Models for Option Valuation –
Examining and Improving Convergence,” Applied Mathematical
Finance, Number 3, 1996, pp. 319-346.

See Also | stockspec | lrtimespec | intenvset | optstockbylr |
optstocksensbylr

6-530

maxassetbystulz

Purpose Determine European rainbow option price on maximum of two risky
assets using Stulz option pricing model

Syntax Price = maxassetbystulz(RateSpec, StockSpec1, StockSpec2,
Settle, Maturity, OptSpec, Strike, Corr)

Arguments

RateSpec The annualized, continuously compounded rate
term structure. For information on the interest
rate specification, see intenvset.

StockSpec1 Stock specification for asset 1. See stockspec.

StockSpec2 Stock specification for asset 2. See stockspec.

Settle NINST-by-1 vector of settlement or trade dates.

Maturity NINST-by-1 vector of maturity dates.

OptSpec NINST-by-1 cell array of strings 'call' or 'put'.

Strike NINST-by-1 vector of strike price values.

Corr NINST-by-1 vector of correlation between the
underlying asset prices.

Description Price = maxassetbystulz(RateSpec, StockSpec1, StockSpec2,
Settle, Maturity, OptSpec, Strike, Corr) computes rainbow
option prices using the Stulz option pricing model.

Price is a NINST-by-1 vector of expected option prices.

Examples Consider a European rainbow option that gives the holder the right to
buy either $100,000 worth of an equity index at a strike price of 1000
(asset 1) or $100,000 of a government bond (asset 2) with a strike price
of 100% of face value, whichever is worth more at the end of 12 months.
On January 15, 2008, the equity index is trading at 950, pays a dividend

6-531

maxassetbystulz

of 2% annually and has a return volatility of 22%. Also on January 15,
2008, the government bond is trading at 98, pays a coupon yield of 6%,
and has a return volatility of 15%. The risk-free rate is 5%. Using this
data, if the correlation between the rates of return is -0.5, 0, and 0.5,
calculate the price of the European rainbow option.

Since the asset prices in this example are in different units, it is
necessary to work in either index points (asset 1) or in dollars (asset 2).
The European rainbow option allows the holder to buy the following:
100 units of the equity index at $1000 each (for a total of $100,000)
or 1000 units of the government bonds at $100 each (for a total of
$100,000). To convert the bond price (asset 2) to index units (asset 1),
you must make the following adjustments:

• Multiply the strike price and current price of the government bond
by 10 (1000/100).

• Multiply the option price by 100, considering that there are 100
equity index units in the option.

Once these adjustments are introduced, the strike price is the same for
both assets ($1000).

Create the RateSpec:

Settle = 'Jan-15-2008';

Maturity = 'Jan-15-2009';

Rates = 0.05;

Basis = 1;

RateSpec = intenvset('ValuationDate', Settle, 'StartDates', Settle,...

'EndDates', Maturity, 'Rates', Rates, 'Compounding', -1, 'Basis', Basis);

Create the two StockSpec definitions:

AssetPrice1 = 950; % Asset 1 => Equity index

AssetPrice2 = 980; % Asset 2 => Government bond

Sigma1 = 0.22;

Sigma2 = 0.15;

Div1 = 0.02;

6-532

maxassetbystulz

Div2 = 0.06;

StockSpec1 = stockspec(Sigma1, AssetPrice1, 'continuous', Div1);

StockSpec2 = stockspec(Sigma2, AssetPrice2, 'continuous', Div2);

Calculate the price of the options for different correlation levels:

Strike = 1000 ;
Corr = [-0.5; 0; 0.5];
OptSpec = 'call';

Price = maxassetbystulz(RateSpec, StockSpec1, StockSpec2,...
Settle, Maturity, OptSpec, Strike, Corr)

Price =

111.6683
103.7715
92.4412

These are the prices of one unit. This means that the premium is
11166.83, 10377.15, and 9244.12 (for 100 units).

See Also intenvset | maxassetsensbystulz | minassetbystulz | stockspec

6-533

maxassetsensbystulz

Purpose Determine European rainbow option prices and sensitivities on
maximum of two risky assets using Stulz pricing model

Syntax PriceSens = maxassetsensbystulz(RateSpec, StockSpec1,
StockSpec2, Settle, Maturity, OptSpec, Strike, Corr)
PriceSens = maxassetsensbystulz(RateSpec, StockSpec1,
StockSpec2, Settle, Maturity, OptSpec, Strike, Corr, OutSpec)

Arguments

RateSpec The annualized, continuously compounded rate
term structure. For information on the interest
rate specification, see intenvset.

StockSpec1 Stock specification for asset 1. See stockspec.

StockSpec2 Stock specification for asset 2. See stockspec.

Settle NINST-by-1 vector of settlement or trade dates.

Maturity NINST-by-1 vector of maturity dates.

OptSpec NINST-by-1 cell array of strings 'call' or 'put'.

Strike NINST-by-1 vector of strike price values.

Corr NINST-by-1 vector of correlation between the
underlying asset prices.

OutSpec (Optional) All optional inputs are specified as
matching parameter name/value pairs. The
parameter name is specified as a character string,
followed by the corresponding parameter value.
You can specify parameter name/value pairs
in any order. Names are case-insensitive and
partial string matches are allowed provided no
ambiguities exist. Valid parameter names are:

• NOUT-by-1 or 1-by-NOUT cell array of strings
indicating the nature and order of the outputs
for the function. Possible values are 'Price',

6-534

maxassetsensbystulz

'Delta', 'Gamma', 'Vega', 'Lambda', 'Rho',
'Theta', or 'All'.

For example, OutSpec = {'Price'; 'Lamba';
'Rho'} specifies that the output should be
Price, Lambda, and Rho, in that order.

To invoke from a function: [Price, Lambda,
Rho] = maxassetsensbystulz(...,
'OutSpec', {'Price', 'Lamba', 'Rho'})

OutSpec = {'All'} specifies that the output
should be Delta, Gamma, Vega, Lambda, Rho,
Theta, and Price, in that order. This is the
same as specifying OutSpec as OutSpec =
{'Delta', 'Gamma', 'Vega', 'Lambda',
'Rho', 'Theta', 'Price'};.

• Default is OutSpec = {'Price'}.

Description PriceSens = maxassetsensbystulz(RateSpec, StockSpec1,
StockSpec2, Settle, Maturity, OptSpec, Strike, Corr)
computes rainbow option prices using the Stulz option pricing model.

PriceSens = maxassetsensbystulz(RateSpec, StockSpec1,
StockSpec2, Settle, Maturity, OptSpec, Strike, Corr,
OutSpec) computes rainbow option prices and sensitivities using the
Stulz option pricing model.

PriceSens is a NINST-by-1 or NINST-by-2 vector of expected prices and
sensitivities values.

Examples Consider a European rainbow option that gives the holder the right to
buy either $100,000 of an equity index at a strike price of 1000 (asset 1)
or $100,000 of a government bond (asset 2) with a strike price of 100%
of face value, whichever is worth more at the end of 12 months. On
January 15, 2008, the equity index is trading at 950, pays a dividend of
2% annually, and has a return volatility of 22%. Also on January 15,

6-535

maxassetsensbystulz

2008, the government bond is trading at 98, pays a coupon yield of 6%,
and has a return volatility of 15%. The risk-free rate is 5%. Using this
data, calculate the price and sensitivity of the European rainbow option
if the correlation between the rates of return is -0.5, 0, and 0.5.

Since the asset prices in this example are in different units, it is
necessary to work in either index points (for asset 1) or in dollars (for
asset 2). The European rainbow option allows the holder to buy the
following: 100 units of the equity index at $1000 each (for a total of
$100,000) or 1000 units of the government bonds at $100 each (for a
total of $100,000). To convert the bond price (asset 2) to index units
(asset 1), uou must make the following adjustments:

• Multiply the strike price and current price of the government bond
by 10 (1000/100).

• Multiply the option price by 100, considering that there are 100
equity index units in the option.

Once these adjustments are introduced, the strike price is the same for
both assets ($1000).

Create the RateSpec:

Settle = 'Jan-15-2008';

Maturity = 'Jan-15-2009';

Rates = 0.05;

Basis = 1;

RateSpec = intenvset('ValuationDate', Settle, 'StartDates', Settle,...

'EndDates', Maturity, 'Rates', Rates, 'Compounding', -1, 'Basis', Basis);

Create the two StockSpec definitions:

AssetPrice1 = 950; % Asset 1 => Equity index

AssetPrice2 = 980; % Asset 2 => Government bond

Sigma1 = 0.22;

Sigma2 = 0.15;

Div1 = 0.02;

Div2 = 0.06;

6-536

maxassetsensbystulz

StockSpec1 = stockspec(Sigma1, AssetPrice1, 'continuous', Div1);

StockSpec2 = stockspec(Sigma2, AssetPrice2, 'continuous', Div2);

Calculate the price and delta for different correlation levels:

Strike = 1000 ;

Corr = [-0.5; 0; 0.5];

OutSpec = {'price'; 'delta'};

[Price, Delta] = maxassetsensbystulz(RateSpec, StockSpec1, StockSpec2,...

Settle, Maturity, OptSpec, Strike, Corr,'OutSpec', OutSpec)

Price =

111.6683

103.7715

92.4412

Delta =

0.4594 0.3698

0.4292 0.3166

0.4053 0.2512

The output Delta has two columns: the first column represents the
Delta with respect to the equity index (asset 1), and the second column
represents the Delta with respect to the government bond (asset 2).
The value 0.4595 represents Delta with respect to one unit of the equity
index. Since there are 100 units of the equity index, the overall Delta
would be 45.94 (100 * 0.4594) for a correlation level of -0.5. To calculate
the Delta with respect to the government bond, remember that an
adjusted price of 980 was used instead of 98. Therefore, for example, the
Delta with respect to government bond, for a correlation of 0.5 would be
251.2 (0.2512 * 100 * 10).

See Also intenvset | maxassetbystulz | stockspec

6-537

minassetbystulz

Purpose Determine European rainbow option prices on minimum of two risky
assets using Stulz option pricing model

Syntax Price = minassetbystulz(RateSpec, StockSpec1, StockSpec2,
Settle, Maturity, OptSpec, Strike, Corr)

Arguments

RateSpec The annualized, continuously compounded rate
term structure. For information on the interest
rate specification, see intenvset.

StockSpec1 Stock specification for asset 1. See stockspec.

StockSpec2 Stock specification for asset 2. See stockspec.

Settle NINST-by-1 vector of settlement or trade dates.

Maturity NINST-by-1 vector of maturity dates.

OptSpec NINST-by-1 cell array of strings 'call' or 'put'.

Strike NINST-by-1 vector of strike price values.

Corr NINST-by-1 vector of correlation between the
underlying asset prices.

Description Price = minassetbystulz(RateSpec, StockSpec1, StockSpec2,
Settle, Maturity, OptSpec, Strike, Corr) computes option prices
using the Stulz option pricing model.

Price is a NINST-by-1 vector of expected option prices.

Examples Consider a European rainbow put option that gives the holder the right
to sell either stock A or stock B at a strike of 50.25, whichever has the
lower value on the expiration date May 15, 2009. On November 15,
2008, stock A is trading at 49.75 with a continuous annual dividend
yield of 4.5% and has a return volatility of 11%. Stock B is trading at
51 with a continuous dividend yield of 5% and has a return volatility

6-538

minassetbystulz

of 16%. The risk-free rate is 4.5%. Using this data, if the correlation
between the rates of return is -0.5, 0, and 0.5, calculate the price of the
minimum of two assets that are European rainbow put options.

Create the RateSpec:

Settle = 'Nov-15-2008';

Maturity = 'May-15-2009';

Rates = 0.045;

Basis = 1;

RateSpec = intenvset('ValuationDate', Settle, 'StartDates', Settle,...

'EndDates', Maturity, 'Rates', Rates, 'Compounding', -1, 'Basis', Basis);

Create the two StockSpec definitions:

AssetPriceA = 49.75;

AssetPriceB = 51;

SigmaA = 0.11;

SigmaB = 0.16;

DivA = 0.045;

DivB = 0.05;

StockSpecA = stockspec(SigmaA, AssetPriceA, 'continuous', DivA);

StockSpecB = stockspec(SigmaB, AssetPriceB, 'continuous', DivB);

Compute the price of the options for different correlation levels:

Strike = 50.25;

Corr = [-0.5;0;0.5];

OptSpec = 'put';

Price = minassetbystulz(RateSpec, StockSpecA, StockSpecB, Settle,...

Maturity, OptSpec, Strike, Corr)

Price =

3.4320

6-539

minassetbystulz

3.1384

2.7694

The values 3.43, 3.14, and 2.77 are the price of the European rainbow
put options with a correlation level of -0.5, 0, and 0.5 respectively.

See Also intenvset | maxassetbystulz | minassetsensbystulz | stockspec

6-540

minassetsensbystulz

Purpose Determine European rainbow option prices and sensitivities on
minimum of two risky assets using Stulz pricing model

Syntax PriceSens = minassetsensbystulz(RateSpec, StockSpec1,
StockSpec2, Settle, Maturity, OptSpec, Strike, Corr)
PriceSens = minassetsensbystulz(RateSpec, StockSpec1,
StockSpec2, Settle, Maturity, OptSpec, Strike, Corr, OutSpec)

Arguments

RateSpec The annualized continuously compounded rate
term structure. For information on the interest
rate specification, see intenvset.

StockSpec1 Stock specification for asset 1. See stockspec.

StockSpec2 Stock specification for asset 2. See stockspec.

Settle NINST-by-1 vector of settlement or trade dates.

Maturity NINST-by-1 vector of maturity dates.

OptSpec NINST-by-1 cell array of strings 'call' or 'put'.

Strike NINST-by-1 vector of strike price values.

Corr NINST-by-1 vector of correlation between the
underlying asset prices.

OutSpec (Optional) All optional inputs are specified as
matching parameter name/value pairs. The
parameter name is specified as a character string,
followed by the corresponding parameter value.
You can specify parameter name/value pairs
in any order. Names are case-insensitive and
partial string matches are allowed provided no
ambiguities exist. Valid parameter names are:

• NOUT-by-1 or 1-by-NOUT cell array of strings
indicating the nature and order of the outputs
for the function. Possible values are 'Price',

6-541

minassetsensbystulz

'Delta', 'Gamma', 'Vega', 'Lambda', 'Rho',
'Theta', or 'All'.

For example, OutSpec = {'Price'; 'Lamba';
'Rho'} specifies that the output should be
Price, Lambda, and Rho, in that order.

To invoke from a function: [Price, Lambda,
Rho] = minassetsensbystulz(...,
'OutSpec', {'Price', 'Lamba', 'Rho'})

OutSpec = {'All'} specifies that the output
should be Delta, Gamma, Vega, Lambda, Rho,
Theta, and Price, in that order. This is the
same as specifying OutSpec as OutSpec =
{'Delta', 'Gamma', 'Vega', 'Lambda',
'Rho', 'Theta', 'Price'};.

• Default is OutSpec = {'Price'}.

Description PriceSens = minassetsensbystulz(RateSpec, StockSpec1,
StockSpec2, Settle, Maturity, OptSpec, Strike, Corr)
computes rainbow option prices using the Stulz option pricing model.

PriceSens = minassetsensbystulz(RateSpec, StockSpec1,
StockSpec2, Settle, Maturity, OptSpec, Strike, Corr,
OutSpec) computes rainbow option prices and sensitivities using the
Stulz option pricing model.

PriceSens is a NINST-by-1 or NINST-by-2 vector of expected prices and
sensitivities.

Examples Consider a European rainbow put option that gives the holder the right
to sell either stock A or stock B at a strike of 50.25, whichever has the
lower value on the expiration date May 15, 2009. On November 15,
2008, stock A is trading at 49.75 with a continuous annual dividend
yield of 4.5% and has a return volatility of 11%. Stock B is trading at
51 with a continuous dividend yield of 5% and has a return volatility

6-542

minassetsensbystulz

of 16%. The risk-free rate is 4.5%. Using this data, if the correlation
between the rates of return is -0.5, 0, and 0.5, calculate the price and
sensitivity of the minimum of two assets that are European rainbow
put options.

Create the RateSpec:

Settle = 'Nov-15-2008';

Maturity = 'May-15-2009';

Rates = 0.045;

Basis = 1;

RateSpec = intenvset('ValuationDate', Settle, 'StartDates', Settle,...

'EndDates', Maturity, 'Rates', Rates, 'Compounding', -1, 'Basis', Basis);

Create the two StockSpec definitions:

AssetPriceA = 49.75;

AssetPriceB = 51;

SigmaA = 0.11;

SigmaB = 0.16;

DivA = 0.045;

DivB = 0.05;

StockSpecA = stockspec(SigmaA, AssetPriceA, 'continuous', DivA);

StockSpecB = stockspec(SigmaB, AssetPriceB, 'continuous', DivB);

Calculate price and delta for different correlation levels:

Strike = 50.25;

Corr = [-0.5;0;0.5];

OutSpec = {'Price'; 'delta'};

[P, D] = minassetsensbystulz(RateSpec, StockSpecA, StockSpecB,...

Settle, Maturity, OptSpec, Strike, Corr, 'OutSpec', OutSpec)

P =

3.4320

6-543

minassetsensbystulz

3.1384

2.7694

D =

-0.4183 -0.3496

-0.3746 -0.3189

-0.3304 -0.2905

The output Delta has two columns: the first column represents the
Delta with respect to the stock A (asset 1), and the second column
represents the Delta with respect to the stock B (asset 2). The value
0.4183 represents Delta with respect to the stock A for a correlation
level of -0.5. The Delta with respect to stock B, for a correlation of
zero is -0.3189.

See Also intenvset | minassetbystulz | stockspec

6-544

mkbush

Purpose Create bushy tree

Syntax [Tree, NumStates] = mkbush(NumLevels, NumChild, NumPos, Trim,
NodeVal)

Arguments

NumLevels Number of time levels of the tree.

NumChild 1-by- number of levels (NUMLEVELS) vector with
number of branches (children) of the nodes in each
level.

NumPos 1-by-NUMLEVELS vector containing the length of the
state vectors in each time level.

Trim (Optional) Scalar 0 or 1. If Trim = 1, NumPos
decreases by 1 when moving from one time level to
the next. Otherwise, if Trim = 0 (Default), NumPos
does not decrease.

NodeVal (Optional) Initial value at each node of the tree.
Default = NaN.

Description [Tree, NumStates] = mkbush(NumLevels, NumChild, NumPos,
Trim, NodeVal) creates a bushy tree Tree with initial values NodeVal
at each node. NumStates is a 1-by-NUMLEVELS vector containing the
number of state vectors in each level.

Examples Create a tree with four time levels, two branches per node, and a vector
of three elements in each node with each element initialized to NaN.

Tree = mkbush(4, 2, 3);
treeviewer(Tree)

6-545

mkbush

See Also bushpath | bushshape

6-546

mktree

Purpose Create recombining binomial tree

Syntax Tree = mktree(NumLevels, NumPos, NodeVal, IsPriceTree)

Arguments

NumLevels Number of time levels of the tree.

NumPos 1-by-NUMLEVELS vector containing the length of
the state vectors in each time level.

NodeVal (Optional) Initial value at each node of the tree.
Default = NaN.

IsPriceTree (Optional) Boolean determining if a final
horizontal branch is added to the tree.
Default = 0.

Description Tree = mktree(NumLevels, NumPos, NodeVal, IsPriceTree)
creates a recombining tree Tree with initial values NodeVal at each
node.

Examples Create a recombining tree of four time levels with a vector of two
elements in each node and each element initialized to NaN.

Tree = mktree(4, 2);

See Also treepath | treeshape

6-547

mktrintree

Purpose Create recombining trinomial tree

Syntax TrinTree = mktrintree(NumLevels, NumPos, NumStates, NodeVal)

Arguments

NumLevels Number of time levels of the tree.

NumPos 1-by-NUMLEVELS vector containing the length of the
state vectors in each time level.

NumStates 1-by-NUMLEVELS vector containing the number of state
vectors in each time level.

NodeVal (Optional) Initial value at each node of the tree.
Default = NaN.

Description TrinTree = mktrintree(NumLevels, NumPos, NumStates,
NodeVal) creates a recombining tree Tree with initial values NodeVal
at each node.

Examples Create a recombining trinomial tree of four time levels with a vector of
two elements in each node and each element initialized to NaN.

TrinTree = mktrintree(4, [2 2 2 2], [1 3 5 7]);

See Also trintreepath | trintreeshape

6-548

mmktbybdt

Purpose Create money-market tree from Black-Derman-Toy interest-rate tree

Syntax MMktTree = mmktbybdt(BDTTree)

Arguments

BDTTree Interest-rate tree structure created by bdttree.

Description MMktTree = mmktbybdt(BDTTree) creates a money-market tree from
an interest-rate tree structure created by bdttree.

Examples load deriv.mat;
MMktTree = mmktbybdt(BDTTree);
treeviewer(MMktTree)

6-549

mmktbybdt

See Also bdttree

6-550

mmktbyhjm

Purpose Create money-market tree from Heath-Jarrow-Morton interest-rate tree

Syntax MMktTree = mmktbyhjm(HJMTree)

Arguments

HJMTree Forward-rate tree structure created by hjmtree.

Description MMktTree = mmktbyhjm(HJMTree) creates a money-market tree from a
forward-rate tree structure created by hjmtree.

Examples load deriv.mat;
MMktTree = mmktbyhjm(HJMTree);
treeviewer(MMktTree)

6-551

mmktbyhjm

See Also hjmtree

6-552

oasbybdt

Purpose Determine option adjusted spread using Black-Derman-Toy model

Syntax [OAS, OAD, OAC] = oasbybdt(BDTTree, Price, CouponRate, Settle,
Maturity, OptSpec, Strike, ExerciseDates)
[OAS, OAD, OAC] = oasbybdt(BDTTree, Price, CouponRate, Settle,
Maturity, OptSpec, Strike, ExerciseDates, Name,Value)

Description [OAS, OAD, OAC] = oasbybdt(BDTTree, Price, CouponRate,
Settle, Maturity, OptSpec, Strike, ExerciseDates) calculates
option adjusted spread (OAS), duration (OAD), and convexity (OAC) using
a BDT model.

[OAS, OAD, OAC] = oasbybdt(BDTTree, Price, CouponRate,
Settle, Maturity, OptSpec, Strike, ExerciseDates,
Name,Value) calculates option adjusted spread (OAS), duration (OAD),
and convexity (OAC) using a BDT model with additional options specified
by one or more Name,Value pair arguments.

Input
Arguments

BDTTree

Interest-rate tree structure created by bdttree.

Price

NINST-by-1 vector of market prices of bonds with embedded options.

CouponRate

NINST-by-1 vector for decimal annual rate.

Settle

NINST-by-1 vector for settlement date.

Maturity

NINST-by-1 vector for maturity date.

OptSpec

6-553

oasbybdt

NINST-by-1 cell array of strings for 'call' or 'put'.

Strike

Matrix of strike price values for supported option types:

• European option: NINST-by-1 vector of strike price values.

• Bermuda option: NINST by number of strikes (NSTRIKES) matrix of
strike price values.

Each row is the schedule for one option. If an option has fewer than
NSTRIKES exercise opportunities, the end of the row is padded with
NaNs.

• American option: NINST-by-1 vector of strike price values for each
option.

ExerciseDates

Matrix of exercise callable or puttable dates for supported option types:

• NINST-by-1 (European option) or NINST-by-NSTRIKES (Bermuda
option) matrix of exercise dates. Each row is the schedule for one
option. For a European option, there is only one exercise date, the
option expiry date.

• American option: NINST-by-2 vector of exercise date boundaries. For
each instrument, the option is exercised on any coupon date between
or including the pair of dates on that row. If only one non-NaN date
is listed, or if ExerciseDates is NINST-by-1, the option is exercised
between the underlying bond Settle and the single listed exercise
date.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments,
where Name is the argument name and Value is the corresponding
value. Name must appear inside single quotes (' '). You can
specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

6-554

oasbybdt

AmericanOpt

NINST-by-1 vector for option flags: 0 (European/Bermuda) or 1
(American).

Default: 0 (European/Bermuda)

Basis

Day-count basis of the instrument. A vector of integers.

• 0 = actual/actual

• 1 = 30/360 (SIA)

• 2 = actual/360

• 3 = actual/365

• 4 = 30/360 (BMA)

• 5 = 30/360 (ISDA)

• 6 = 30/360 (European)

• 7 = actual/365 (Japanese)

• 8 = actual/actual (ICMA)

• 9 = actual/360 (ICMA)

• 10 = actual/365 (ICMA)

• 11 = 30/360E (ICMA)

• 12 = actual/actual (ISDA)

• 13 = BUS/252
For more information, see basis.

Default: 0 (actual/actual)

EndMonthRule

6-555

oasbybdt

NINST-by-1 vector for end-of-month rule. Values are 1 (in effect) and
0 (not in effect).

Default: 1 (in effect)

IssueDate

NINST-by-1 vector of bond issue date.

Default: If you do not specify an IssueDate, the cash flow
payment dates are determined from other inputs.

Face

NINST-by-1 vector for face value.

Default: 100

FirstCouponDate

NINST-by-1 vector. Date when a bond makes its first coupon
payment; used when bond has an irregular first coupon period.
When FirstCouponDate and LastCouponDate are both specified,
FirstCouponDate takes precedence in determining the coupon payment
structure.

Default: If you do not specify a FirstCouponDate, the cash flow
payment dates are determined from other inputs.

LastCouponDate

NINST-by-1 vector. Last coupon date of a bond before the maturity date;
used when bond has an irregular last coupon period. In the absence of
a specified FirstCouponDate, a specified LastCouponDate determines
the coupon structure of the bond. The coupon structure of a bond is
truncated at the LastCouponDate, regardless of where it falls, and is
followed only by the bond’s maturity cash flow date.

6-556

oasbybdt

Default: If you do not specify a LastCouponDate, the cash flow
payment dates are determined from other inputs.

Period

NINST-by-1 vector for coupons per year.

Default: 2 per year

Options

Structure created with derivset containing derivatives pricing options.

Default: None

Output
Arguments

OAS

NINST-by-1 vector for option adjusted spread.

OAD

NINST-by-1 vector for option adjusted duration.

OAC

NINST-by-1 vector for option adjusted convexity.

Definitions Bond with Embedded Options

A bond with embedded option allows the issuer to buy back (callable) or
redeem (puttable) the bond at a predetermined price at specified future
dates. Financial Derivatives Toolbox software supports American,
European, and Bermuda callable and puttable bonds.

The pricing for a bond with embedded options is as follows:

• Callable bond — The holder bought a bond and sold a call option to
the issuer. For example, if interest rates go down by the time of the
call date, the issuer is able to refinance its debt at a cheaper level and
can call the bond. The price of a callable bond is:

6-557

oasbybdt

Price callable bond = Price Option free bond − Price call
option

• Puttable bond — The holder bought a bond and a put option. For
example, if interest rates rise, the future value of coupon payments
becomes less valuable. Therefore, the investor can sell the bond back
to the issuer and then lend proceeds elsewhere at a higher rate. The
price of a puttable bond is:

Price puttable bond = Price Option free bond + Price put
option

Examples Compute OAS using the Black-Derman-Toy (BDT) model with:

ValuationDate = 'Oct-1-2010';

Rates = [0.035; 0.042; 0.047; 0.052];

StartDates = ValuationDate;

EndDates = datemnth(ValuationDate, 12:12:48)';

Compounding = 1;

% Define RateSpec

RateSpec = intenvset('ValuationDate', ValuationDate,...

'StartDates', StartDates, 'EndDates', EndDates, ...

'Rates', Rates, 'Compounding', Compounding);

% Specify VolsSpec and TimeSpec

Sigma = 0.20;

VS = bdtvolspec(ValuationDate, EndDates, Sigma*ones(size(EndDates)));

TS = bdttimespec(ValuationDate, EndDates, Compounding);

% Build the BDT tree

BDTTree = bdttree(VS, RateSpec, TS);

BDTTreenew = cvtree(BDTTree);

% Instrument information

CouponRate = 0.065;

Settle = ValuationDate;

Maturity = '01-Oct-2014';

6-558

oasbybdt

OptSpec = 'call';

Strike = 100;

ExerciseDates ='01-Oct-2011';

Period = 1;

Price = 101.58;

% Compute the OAS

OAS = oasbybdt(BDTTree, Price, CouponRate, Settle, Maturity,...

OptSpec, Strike, ExerciseDates, 'Period', Period)

OAS =

36.5591

Use treeviewer to observe the tree you created:

treeviewer(BDTTree)

6-559

oasbybdt

References Fabozzi, F., Handbook of Fixed Income Securities, McGraw-Hill, 7th
edition, 2005.

Windas, T., Introduction to Option-Adjusted Spread Analysis,
Bloomberg Press, 3rd edition, 2007.

See Also | bdttree | bdtprice | instoptembnd | optembndbybdt | oasbyhjm |
oasbyhw | oasbybk

6-560

oasbybk

Purpose Determine option adjusted spread using Black-Karasinski model

Syntax [OAS, OAD, OAC] = oasbybk(BKTree, Price, CouponRate, Settle,
Maturity, OptSpec, Strike, ExerciseDates)
[OAS, OAD, OAC] = oasbybk(BKTree, Price, CouponRate, Settle,
Maturity, OptSpec, Strike, ExerciseDates, Name,Value)

Description [OAS, OAD, OAC] = oasbybk(BKTree, Price, CouponRate,
Settle, Maturity, OptSpec, Strike, ExerciseDates) calculates
option adjusted spread (OAS), duration (OAD), and convexity (OAC) using
a BK model.

[OAS, OAD, OAC] = oasbybk(BKTree, Price, CouponRate,
Settle, Maturity, OptSpec, Strike, ExerciseDates,
Name,Value) calculates option adjusted spread (OAS), duration (OAD),
and convexity (OAC) using a BK model with additional options specified
by one or more Name,Value pair arguments.

Input
Arguments

BKTree

Interest-rate tree structure created by bktree.

Price

NINST-by-1 vector of market prices of bonds with embedded options.

CouponRate

NINST-by-1 vector for decimal annual rate.

Settle

NINST-by-1 vector for settlement date.

Maturity

NINST-by-1 vector for maturity date.

OptSpec

6-561

oasbybk

NINST-by-1 cell array of strings for 'call' or 'put'.

Strike

Matrix of strike price values for supported option types:

• European option: NINST-by-1 vector of strike price values.

• Bermuda option: NINST by number of strikes (NSTRIKES) matrix of
strike price values.

Each row is the schedule for one option. If an option has fewer than
NSTRIKES exercise opportunities, the end of the row is padded with
NaNs.

• American option: NINST-by-1 vector of strike price values for each
option.

ExerciseDates

Matrix of exercise callable or puttable dates for supported option types:

• NINST-by-1 (European option) or NINST-by-NSTRIKES (Bermuda
option) matrix of exercise dates. Each row is the schedule for one
option. For a European option, there is only one exercise date, the
option expiry date.

• American option: NINST-by-2 vector of exercise date boundaries. For
each instrument, the option is exercised on any coupon date between
or including the pair of dates on that row. If only one non-NaN date
is listed, or if ExerciseDates is NINST-by-1, the option is exercised
between the underlying bond Settle and the single listed exercise
date.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments,
where Name is the argument name and Value is the corresponding
value. Name must appear inside single quotes (' '). You can
specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

6-562

oasbybk

AmericanOpt

NINST-by-1 vector for option flags: 0 (European/Bermuda) or 1
(American).

Default: 0 (European/Bermuda)

Basis

Day-count basis of the instrument. A vector of integers.

• 0 = actual/actual

• 1 = 30/360 (SIA)

• 2 = actual/360

• 3 = actual/365

• 4 = 30/360 (BMA)

• 5 = 30/360 (ISDA)

• 6 = 30/360 (European)

• 7 = actual/365 (Japanese)

• 8 = actual/actual (ICMA)

• 9 = actual/360 (ICMA)

• 10 = actual/365 (ICMA)

• 11 = 30/360E (ICMA)

• 12 = actual/actual (ISDA)

• 13 = BUS/252
For more information, see basis.

Default: 0 (actual/actual)

EndMonthRule

6-563

oasbybk

NINST-by-1 vector for end-of-month rule. Values are 1 (in effect) and
0 (not in effect).

Default: 1 (in effect)

IssueDate

NINST-by-1 vector of bond issue date.

Default: If you do not specify an IssueDate, the cash flow
payment dates are determined from other inputs

Face

NINST-by-1 vector for face value.

Default: 100

FirstCouponDate

NINST-by-1 vector. Date when a bond makes its first coupon
payment; used when bond has an irregular first coupon period.
When FirstCouponDate and LastCouponDate are both specified,
FirstCouponDate takes precedence in determining the coupon payment
structure.

Default: If you do not specify a FirstCouponDate, the cash flow
payment dates are determined from other inputs.

LastCouponDate

NINST-by-1 vector. Last coupon date of a bond before the maturity date;
used when bond has an irregular last coupon period. In the absence of
a specified FirstCouponDate, a specified LastCouponDate determines
the coupon structure of the bond. The coupon structure of a bond is
truncated at the LastCouponDate, regardless of where it falls, and is
followed only by the bond’s maturity cash flow date.

6-564

oasbybk

Default: If you do not specify a LastCouponDate, the cash flow
payment dates are determined from other inputs.

Period

NINST-by-1 vector for coupons per year.

Default: 2 per year

Options

Structure created with derivset containing derivatives pricing options.

Default: None

Output
Arguments

OAS

NINST-by-1 vector for option adjusted spread.

OAD

NINST-by-1 vector for option adjusted duration.

OAC

NINST-by-1 vector for option adjusted convexity.

Definitions Bond with Embedded Options

A bond with embedded option allows the issuer to buy back (callable) or
redeem (puttable) the bond at a predetermined price at specified future
dates. Financial Derivatives Toolbox software supports American,
European, and Bermuda callable and puttable bonds.

The pricing for a bond with embedded options is as follows:

• Callable bond — The holder bought a bond and sold a call option to
the issuer. For example, if interest rates go down by the time of the
call date, the issuer is able to refinance its debt at a cheaper level and
can call the bond. The price of a callable bond is:

6-565

oasbybk

Price callable bond = Price Option free bond − Price call
option

• Puttable bond — The holder bought a bond and a put option. For
example, if interest rates rise, the future value of coupon payments
becomes less valuable. Therefore, the investor can sell the bond back
to the issuer and then lend proceeds elsewhere at a higher rate. The
price of a puttable bond is:

Price puttable bond = Price Option free bond + Price put
option

Examples Compute OAS and OAD using the Black-Karasinski (BK) model with:

ValuationDate = 'Aug-2-2010';

Rates = [0.0355; 0.0382; 0.0427; 0.0489];

StartDates = ValuationDate;

EndDates = datemnth(ValuationDate, 12:12:48)';

Compounding = 1;

% Define RateSpec

RateSpec = intenvset('ValuationDate', ValuationDate,...

'StartDates', StartDates,'EndDates', EndDates, ...

'Rates', Rates,'Compounding', Compounding);

% Specify VolsSpec and TimeSpec

Sigma = 0.10;

Alpha = 0.01;

VS = bkvolspec(ValuationDate, EndDates, Sigma*ones(size(EndDates)),...

EndDates, Alpha*ones(size(EndDates)));

TS = bktimespec(ValuationDate, EndDates, Compounding);

% Build the BK tree

BKTree = bktree(VS, RateSpec, TS);

% Instrument information

CouponRate = 0.045;

6-566

oasbybk

Settle = ValuationDate;

Maturity = '02-Aug-2014';

OptSpec = 'put';

Strike = 100;

ExerciseDates ='02-Aug-2013';

Period = 1;

AmericanOpt = 1;

Price = 101;

% Compute OAS and OAD

[OAS, OAD] = oasbybk(BKTree, Price, CouponRate, Settle, Maturity,...

OptSpec, Strike, ExerciseDates, 'Period', Period, 'AmericanOpt', AmericanOpt)

OAS =

21.0839

OAD =

1.7833

Use treeviewer to observe the tree you created:

treeviewer(BKTree)

6-567

oasbybk

References Fabozzi, F., Handbook of Fixed Income Securities, McGraw-Hill, 7th
edition, 2005.

Windas, T., Introduction to Option-Adjusted Spread Analysis,
Bloomberg Press, 3rd edition, 2007.

See Also | bktree | bkprice | instoptembnd | optembndbybk | oasbyhjm |
oasbyhw | oasbybdt

6-568

oasbyhjm

Purpose Determine option adjusted spread using Heath-Jarrow-Morton model

Syntax [OAS, OAD, OAC] = oasbyhjm(HJMTree, Price, CouponRate, Settle,
Maturity, OptSpec, Strike, ExerciseDates)
[OAS, OAD, OAC] = oasbyhjm(HJMTree, Price, CouponRate, Settle,
Maturity, OptSpec, Strike, ExerciseDates, Name,Value)

Description [OAS, OAD, OAC] = oasbyhjm(HJMTree, Price, CouponRate,
Settle, Maturity, OptSpec, Strike, ExerciseDates) calculates
option adjusted spread (OAS), duration (OAD), and convexity (OAC) using
an HJM model.

[OAS, OAD, OAC] = oasbyhjm(HJMTree, Price, CouponRate,
Settle, Maturity, OptSpec, Strike, ExerciseDates,
Name,Value) calculates option adjusted spread (OAS), duration (OAD),
and convexity (OAC) using an HJM model with additional options
specified by one or more Name,Value pair arguments.

Input
Arguments

HJMTree

Interest-rate tree structure created by hjmtree.

Price

NINST-by-1 vector of market prices of bonds with embedded options.

CouponRate

NINST-by-1 vector for decimal annual rate.

Settle

NINST-by-1 vector for settlement date.

Maturity

NINST-by-1 vector for maturity date.

OptSpec

6-569

oasbyhjm

NINST-by-1 cell array of strings for 'call' or 'put'.

Strike

Matrix of strike price values for supported option types:

• European option: NINST-by-1 vector of strike price values.

• Bermuda option: NINST by number of strikes (NSTRIKES) matrix of
strike price values.

Each row is the schedule for one option. If an option has fewer than
NSTRIKES exercise opportunities, the end of the row is padded with
NaNs.

• American option: NINST-by-1 vector of strike price values for each
option.

ExerciseDates

Matrix of exercise callable or puttable dates for supported option types:

• NINST-by-1 (European option) or NINST-by-NSTRIKES (Bermuda
option) matrix of exercise dates. Each row is the schedule for one
option. For a European option, there is only one exercise date, the
option expiry date.

• American option: NINST-by-2 vector of exercise date boundaries. For
each instrument, the option is exercised on any coupon date between
or including the pair of dates on that row. If only one non-NaN date
is listed, or if ExerciseDates is NINST-by-1, the option is exercised
between the underlying bond Settle and the single listed exercise
date.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments,
where Name is the argument name and Value is the corresponding
value. Name must appear inside single quotes (' '). You can
specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

6-570

oasbyhjm

AmericanOpt

NINST-by-1 vector for option flags: 0 (European/Bermuda) or 1
(American).

Default: 0 (European/Bermuda)

Basis

Day-count basis of the instrument. A vector of integers.

• 0 = actual/actual

• 1 = 30/360 (SIA)

• 2 = actual/360

• 3 = actual/365

• 4 = 30/360 (BMA)

• 5 = 30/360 (ISDA)

• 6 = 30/360 (European)

• 7 = actual/365 (Japanese)

• 8 = actual/actual (ICMA)

• 9 = actual/360 (ICMA)

• 10 = actual/365 (ICMA)

• 11 = 30/360E (ICMA)

• 12 = actual/actual (ISDA)

• 13 = BUS/252
For more information, see basis.

Default: 0 (actual/actual)

EndMonthRule

6-571

oasbyhjm

NINST-by-1 vector for end-of-month rule. Values are 1 (in effect) and
0 (not in effect).

Default: 1 (in effect)

IssueDate

NINST-by-1 vector of bond issue date.

Default: If you do not specify an IssueDate, the cash flow
payment dates are determined from other inputs.

Face

NINST-by-1 vector for face value.

Default: 100

FirstCouponDate

NINST-by-1 vector. Date when a bond makes its first coupon
payment; used when bond has an irregular first coupon period.
When FirstCouponDate and LastCouponDate are both specified,
FirstCouponDate takes precedence in determining the coupon payment
structure.

Default: If you do not specify a FirstCouponDate, the cash flow
payment dates are determined from other inputs.

LastCouponDate

NINST-by-1 vector. Last coupon date of a bond before the maturity date;
used when bond has an irregular last coupon period. In the absence of
a specified FirstCouponDate, a specified LastCouponDate determines
the coupon structure of the bond. The coupon structure of a bond is
truncated at the LastCouponDate, regardless of where it falls, and is
followed only by the bond’s maturity cash flow date.

6-572

oasbyhjm

Default: If you do not specify a LastCouponDate, the cash flow
payment dates are determined from other inputs.

Period

NINST-by-1 vector for coupons per year.

Default: 2 per year

Options

Structure created with derivset containing derivatives pricing options.

Default: None

Output
Arguments

OAS

NINST-by-1 vector for option adjusted spread.

OAD

NINST-by-1 vector for option adjusted duration.

OAC

NINST-by-1 vector for option adjusted convexity.

Definitions Bond with Embedded Options

A bond with embedded option allows the issuer to buy back (callable) or
redeem (puttable) the bond at a predetermined price at specified future
dates. Financial Derivatives Toolbox software supports American,
European, and Bermuda callable and puttable bonds.

The pricing for a bond with embedded options is as follows:

• Callable bond — The holder bought a bond and sold a call option to
the issuer. For example, if interest rates go down by the time of the
call date, the issuer is able to refinance its debt at a cheaper level and
can call the bond. The price of a callable bond is:

6-573

oasbyhjm

Price callable bond = Price Option free bond − Price call
option

• Puttable bond — The holder bought a bond and a put option. For
example, if interest rates rise, the future value of coupon payments
becomes less valuable. Therefore, the investor can sell the bond back
to the issuer and then lend proceeds elsewhere at a higher rate. The
price of a puttable bond is:

Price puttable bond = Price Option free bond + Price put
option

Examples Compute OAS using the Heath-Jarrow-Morton (HJM) model with:

ValuationDate = 'Nov-1-2010';

Rates = [0.0356; 0.0427; 0.0478; 0.0529];

StartDates = ValuationDate;

EndDates = datemnth(ValuationDate, 12:12:48)';

Compounding = 1;

% Define RateSpec

RateSpec = intenvset('ValuationDate', ValuationDate,...

'StartDates', StartDates,'EndDates', EndDates, ...

'Rates', Rates,'Compounding', Compounding);

% Specify VolsSpec and TimeSpec

Sigma = 0.02;

VS = hjmvolspec('Constant', Sigma)

TS = hjmtimespec(ValuationDate, EndDates, Compounding);

% Build the HJM tree

HJMTree = hjmtree(VS, RateSpec, TS);

HJMTreenew = cvtree(HJMTree);

% Instrument information

CouponRate = 0.05;

Settle = ValuationDate;

6-574

oasbyhjm

Maturity = '01-Nov-2014';

OptSpec = 'call';

Strike = 100;

ExerciseDates ='01-Nov-2011';

Period = 1;

Price = 97.5;

% Compute the OAS

OAS = oasbyhjm(HJMTree, Price, CouponRate, Settle, Maturity, OptSpec, Strike,...

ExerciseDates, 'Period', Period)

VS =

FinObj: 'HJMVolSpec'

FactorModels: {'Constant'}

FactorArgs: {{1x1 cell}}

SigmaShift: 0

NumFactors: 1

NumBranch: 2

PBranch: [0.5000 0.5000]

Fact2Branch: [-1 1]

OAS =

5.0601

Use treeviewer to observe the tree you created:

treeviewer(HJMTree)

6-575

oasbyhjm

References Fabozzi, F., Handbook of Fixed Income Securities, McGraw-Hill, 7th
edition, 2005.

Windas, T., Introduction to Option-Adjusted Spread Analysis,
Bloomberg Press, 3rd edition, 2007.

See Also | hjmtree | hjmprice | instoptembnd | optembndbyhjm | oasbybdt |
oasbyhw | oasbybk

6-576

oasbyhw

Purpose Determine option adjusted spread using Hull-White model

Syntax [OAS, OAD, OAC] = oasbyhw(HWTree, Price, CouponRate, Settle,
Maturity, OptSpec, Strike, ExerciseDates)
[OAS, OAD, OAC] = oasbyhw(HWTree, Price, CouponRate, Settle,
Maturity, OptSpec, Strike, ExerciseDates, Name,Value)

Description [OAS, OAD, OAC] = oasbyhw(HWTree, Price, CouponRate,
Settle, Maturity, OptSpec, Strike, ExerciseDates) calculates
option adjusted spread (OAS), duration (OAD), and convexity (OAC) using
an HW model.

[OAS, OAD, OAC] = oasbyhw(HWTree, Price, CouponRate,
Settle, Maturity, OptSpec, Strike, ExerciseDates,
Name,Value) calculates option adjusted spread (OAS), duration (OAD),
and convexity (OAC) using an HW model with additional options
specified by one or more Name,Value pair arguments.

Input
Arguments

HWTree

Interest-rate tree structure created by hwtree.

Price

NINST-by-1 vector of market prices of bonds with embedded options.

CouponRate

NINST-by-1 vector for decimal annual rate.

Settle

NINST-by-1 vector for settlement date.

Maturity

NINST-by-1 vector for maturity date.

OptSpec

6-577

oasbyhw

NINST-by-1 cell array of strings for 'call' or 'put'.

Strike

Matrix of strike price values for supported option types:

• European option: NINST-by-1 vector of strike price values.

• Bermuda option: NINST by number of strikes (NSTRIKES) matrix of
strike price values.

Each row is the schedule for one option. If an option has fewer than
NSTRIKES exercise opportunities, the end of the row is padded with
NaNs.

• American option: NINST-by-1 vector of strike price values for each
option.

ExerciseDates

Matrix of exercise callable or puttable dates for supported option types:

• NINST-by-1 (European option) or NINST-by-NSTRIKES (Bermuda
option) matrix of exercise dates. Each row is the schedule for one
option. For a European option, there is only one exercise date, the
option expiry date.

• American option: NINST-by-2 vector of exercise date boundaries. For
each instrument, the option is exercised on any coupon date between
or including the pair of dates on that row. If only one non-NaN date
is listed, or if ExerciseDates is NINST-by-1, the option is exercised
between the underlying bond Settle and the single listed exercise
date.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments,
where Name is the argument name and Value is the corresponding
value. Name must appear inside single quotes (' '). You can
specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

6-578

oasbyhw

AmericanOpt

NINST-by-1 vector for option flags: 0 (European/Bermuda) or 1
(American).

Default: 0 (European/Bermuda)

Basis

Day-count basis of the instrument. A vector of integers.

• 0 = actual/actual

• 1 = 30/360 (SIA)

• 2 = actual/360

• 3 = actual/365

• 4 = 30/360 (BMA)

• 5 = 30/360 (ISDA)

• 6 = 30/360 (European)

• 7 = actual/365 (Japanese)

• 8 = actual/actual (ICMA)

• 9 = actual/360 (ICMA)

• 10 = actual/365 (ICMA)

• 11 = 30/360E (ICMA)

• 12 = actual/actual (ISDA)

• 13 = BUS/252
For more information, see basis.

Default: 0 (actual/actual)

EndMonthRule

6-579

oasbyhw

NINST-by-1 vector for end-of-month rule. Values are 1 (in effect) and
0 (not in effect).

Default: 1 (in effect)

Face

NINST-by-1 vector for face value.

Default: 100

IssueDate

NINST-by-1 vector of bond issue date.

Default: If you do not specify an IssueDate, the cash flow
payment dates are determined from other inputs.

FirstCouponDate

NINST-by-1 vector. Date when a bond makes its first coupon
payment; used when bond has an irregular first coupon period.
When FirstCouponDate and LastCouponDate are both specified,
FirstCouponDate takes precedence in determining the coupon payment
structure.

Default: If you do not specify a FirstCouponDate, the cash flow
payment dates are determined from other inputs.

LastCouponDate

NINST-by-1 vector. Last coupon date of a bond before the maturity date;
used when bond has an irregular last coupon period. In the absence of
a specified FirstCouponDate, a specified LastCouponDate determines
the coupon structure of the bond. The coupon structure of a bond is
truncated at the LastCouponDate, regardless of where it falls, and is
followed only by the bond’s maturity cash flow date.

6-580

oasbyhw

Default: If you do not specify a LastCouponDate, the cash flow
payment dates are determined from other inputs.

Period

NINST-by-1 vector for coupons per year.

Default: 2 per year

Options

Structure created with derivset containing derivatives pricing options.

Default: None

Output
Arguments

OAS

NINST-by-1 vector for option adjusted spread.

OAD

NINST-by-1 vector for option adjusted duration.

OAC

NINST-by-1 vector for option adjusted convexity.

Definitions Bond with Embedded Options

A bond with embedded option allows the issuer to buy back (callable) or
redeem (puttable) the bond at a predetermined price at specified future
dates. Financial Derivatives Toolbox software supports American,
European, and Bermuda callable and puttable bonds.

The pricing for a bond with embedded options is as follows:

• Callable bond — The holder bought a bond and sold a call option to
the issuer. For example, if interest rates go down by the time of the
call date, the issuer is able to refinance its debt at a cheaper level and
can call the bond. The price of a callable bond is:

6-581

oasbyhw

Price callable bond = Price Option free bond − Price call
option

• Puttable bond — The holder bought a bond and a put option. For
example, if interest rates rise, the future value of coupon payments
becomes less valuable. Therefore, the investor can sell the bond back
to the issuer and then lend proceeds elsewhere at a higher rate. The
price of a puttable bond is:

Price puttable bond = Price Option free bond + Price put
option

Examples Compute OAS and OAD using the Hull-White (HW) model with:

ValuationDate = 'October-25-2010';

Rates = [0.0355; 0.0382; 0.0427; 0.0489];

StartDates = ValuationDate;

EndDates = datemnth(ValuationDate, 12:12:48)';

Compounding = 1;

% Define RateSpec

RateSpec = intenvset('ValuationDate', ValuationDate,...

'StartDates', StartDates, 'EndDates', EndDates, ...

'Rates', Rates,'Compounding', Compounding);

% Specify VolsSpec and TimeSpec

Sigma = 0.05;

Alpha = 0.01;

VS = hwvolspec(ValuationDate, EndDates, Sigma*ones(size(EndDates)),...

EndDates, Alpha*ones(size(EndDates)));

TS = hwtimespec(ValuationDate, EndDates, Compounding);

% Build the HW tree

HWTree = hwtree(VS, RateSpec, TS);

% Instrument information

CouponRate = 0.045;

6-582

oasbyhw

Settle = ValuationDate;

Maturity = '25-October-2014';

OptSpec = 'call';

Strike = 100;

ExerciseDates = {'25-October-2010','25-October-2013'};

Period = 1;

AmericanOpt = 0;

Price = 97;

% Compute the OAS

[OAS, OAD] = oasbyhw(HWTree, Price, CouponRate, Settle, Maturity,...

OptSpec, Strike, ExerciseDates, 'Period', Period, 'AmericanOpt', AmericanOpt)

OAS =

-12.4436

OAD =

3.3045

At a 5% volatility, the OAS is -12.44 basis points. A negative OAS means
that the callable bond is expensive (overvalued) on a relative value
basis. OAS depends on the assumed interest rate volatility, so, if a 1%
interest rate volatility is assumed (Sigma = 0.01), the OAS is 51 basis
points (positive), and in this case the bond is attractive (underpriced).

Use treeviewer to observe the tree you created:

treeviewer(HWTree)

6-583

oasbyhw

References Fabozzi, F., Handbook of Fixed Income Securities, McGraw-Hill, 7th
edition, 2005.

Windas, T., Introduction to Option-Adjusted Spread Analysis,
Bloomberg Press, 3rd edition, 2007.

See Also | hwtree | hwprice | instoptembnd | optembndbyhw | oasbybdt |
oasbyhjm | oasbybk

6-584

optbndbybdt

Purpose Price bond option from Black-Derman-Toy interest-rate tree

Syntax [Price, PriceTree] = optbndbybdt(BDTTree, OptSpec, Strike,
ExerciseDates, AmericanOpt, CouponRate, Settle, Maturity,
Period, Basis, EndMonthRule, IssueDate, FirstCouponDate,
LastCouponDate, StartDate, Face, Options)

Arguments

BDTTree Forward-rate tree structure created by
bdttree.

OptSpec Number of instruments (NINST)-by-1 cell
array of string values 'Call' or 'Put'.

Strike European option: NINST-by-1 vector of
strike price values.

Bermuda option: NINST by number of
strikes (NSTRIKES) matrix of strike price
values.

Each row is the schedule for one option.
If an option has fewer than NSTRIKES
exercise opportunities, the end of the row
is padded with NaNs.

For an American option:

NINST-by-1 vector of strike price values for
each option.

6-585

optbndbybdt

ExerciseDates NINST-by-1 (European option) or
NINST-by-NSTRIKES (Bermuda option)
matrix of exercise dates. Each row is the
schedule for one option. For a European
option, there is only one exercise date, the
option expiry date.

For an American option:

NINST-by-2 vector of exercise date
boundaries. For each instrument, the
option can be exercised on any coupon date
between or including the pair of dates
on that row. If only one non-NaN date is
listed, or if ExerciseDates is NINST-by-1,
the option can be exercised between the
underlying bond Settle and the single
listed exercise date.

AmericanOpt NINST-by-1 vector of flags: 0
(European/Bermuda) or 1 (American).

CouponRate Decimal annual rate. CouponRate is a
NINST-by-1 vector.

Settle Settlement date. A vector of serial date
numbers or date strings. Settle must be
earlier than Maturity.

Maturity Maturity date. A vector of serial date
numbers or date strings.

Period (Optional) Coupons per year of the bond. A
vector of integers. Allowed values are 1, 2,
3, 4, 6, and 12. Default = 2.

6-586

optbndbybdt

Basis (Optional) Day-count basis of the
instrument. A vector of integers.

• 0 = actual/actual (default)

• 1 = 30/360 (SIA)

• 2 = actual/360

• 3 = actual/365

• 4 = 30/360 (BMA)

• 5 = 30/360 (ISDA)

• 6 = 30/360 (European)

• 7 = actual/365 (Japanese)

• 8 = actual/actual (ICMA)

• 9 = actual/360 (ICMA)

• 10 = actual/365 (ICMA)

• 11 = 30/360E (ICMA)

• 12 = actual/actual (ISDA)

• 13 = BUS/252
For more information, see basis.

EndMonthRule (Optional) End-of-month rule. A vector.
This rule applies only when Maturity is an
end-of-month date for a month having 30 or
fewer days. 0 = ignore rule, meaning that a
bond’s coupon payment date is always the
same numerical day of the month. 1 = set
rule on (default), meaning that a bond’s
coupon payment date is always the last
actual day of the month.

IssueDate (Optional) Date when a bond was issued.

6-587

optbndbybdt

FirstCouponDate (Optional) Date when a bond makes its
first coupon payment; used when bond has
an irregular first coupon period. When
FirstCouponDate and LastCouponDate
are both specified, FirstCouponDate takes
precedence in determining the coupon
payment structure. If you do not specify a
FirstCouponDate, the cash flow payment
dates are determined from other inputs.

LastCouponDate (Optional) Last coupon date of a bond
before the maturity date; used when bond
has an irregular last coupon period. In the
absence of a specified FirstCouponDate,
a specified LastCouponDate determines
the coupon structure of the bond. The
coupon structure of a bond is truncated at
the LastCouponDate, regardless of where
it falls, and is followed only by the bond’s
maturity cash flow date. If you do not
specify a LastCouponDate, the cash flow
payment dates are determined from other
inputs.

StartDate (Optional) Date when a bond actually
starts (the date from which a bond
cash flow is considered). To make an
instrument forward-starting, specify this
date as a future date. If you do not specify
StartDate, the effective start date is the
Settle date.

Face (Optional) Face or par value. Face is a
NINST-by-1 vector. Default = 100.

Options (Optional) Derivatives pricing options
structure created with derivset.

6-588

optbndbybdt

The Settle date for every bond is set to the ValuationDate of the BDT
tree. The bond argument Settle is ignored.

Description [Price, PriceTree] = optbndbybdt(BDTTree, OptSpec, Strike,
ExerciseDates, AmericanOpt, CouponRate, Settle, Maturity,
Period, Basis, EndMonthRule, IssueDate, FirstCouponDate,
LastCouponDate, StartDate, Face, Options) computes the price of
a bond option from a BDT interest-rate tree.

Price is an NINST-by-1 matrix of expected prices at time 0.

PriceTree is a tree structure with a vector of instrument prices at
each node.

Examples Example 1. Using the BDT interest-rate tree in the deriv.mat file,
price a European call option on a 10% bond with a strike of 95. The
exercise date for the option is Jan. 01, 2002. The settle date for the
bond is Jan. 01, 2000, and the maturity date is Jan. 01, 2003.

Load the file deriv.mat, which provides BDTTree. The BDTTree
structure contains the time and forward-rate information needed to
price the bond.

load deriv.mat;

Use optbondbybdt to compute the price of the option.

Price = optbndbybdt(BDTTree,'Call',95,'01-Jan-2002',...
0,0.10,'01-Jan-2000','01-Jan-2003',1)

Price =

1.7657

Example 2. Now use optbndbybdt to compute the price of a put option
on the same bond.

Price = optbndbybdt(BDTTree,'Put',95,'01-Jan-2002',...
0,0.10,'01-Jan-2000','01-Jan-2003',1)

6-589

optbndbybdt

Price =

0.5740

See Also bdtprice | bdttree | instoptbnd

6-590

optbndbybk

Purpose Price bond option from Black-Karasinski interest-rate tree

Syntax [Price, PriceTree] = optbndbybk(BKTree, OptSpec, Strike,
ExerciseDates, AmericanOpt, CouponRate, Settle, Maturity,
Period, Basis, EndMonthRule, IssueDate, FirstCouponDate,
LastCouponDate, StartDate, Face, Options)

Arguments

BKTree Forward-rate tree structure created by
bktree.

OptSpec Number of instruments (NINST)-by-1 cell
array of string values 'Call' or 'Put'.

Strike European option: NINST-by-1 vector of
strike price values.

Bermuda option: NINST-by-number of
strikes (NSTRIKES) matrix of strike price
values.

Each row is the schedule for one option. If
an option has fewer than NSTRIKES exercise
opportunities, the end of the row is padded
with NaNs.

For an American option:

NINST-by-1 vector of strike price values for
each option.

6-591

optbndbybk

ExerciseDates NINST-by-1 (European option) or
NINST-by-NSTRIKES (Bermuda option)
matrix of exercise dates. Each row is the
schedule for one option. For a European
option, there is only one exercise date, the
option expiry date.

For an American option:

NINST-by-2 vector of exercise date
boundaries. For each instrument, the
option can be exercised on any coupon
date between or including the pair of dates
on that row. If only one non-NaN date is
listed, or if ExerciseDates is NINST-by-1,
the option can be exercised between the
underlying bond Settle and the single
listed exercise date.

AmericanOpt NINST-by-1 vector of flags: 0
(European/Bermuda) or 1 (American).

CouponRate Decimal annual rate. CouponRate is a
NINST-by-1 vector.

Settle Settlement date. A vector of serial date
numbers or date strings. Settle must be
earlier than Maturity.

Maturity Maturity date. A vector of serial date
numbers or date strings.

Period (Optional) Coupons per year of the bond. A
vector of integers. Allowed values are 1, 2,
3, 4, 6, and 12. Default = 2.

6-592

optbndbybk

Basis (Optional) Day-count basis of the
instrument. A vector of integers.

• 0 = actual/actual (default)

• 1 = 30/360 (SIA)

• 2 = actual/360

• 3 = actual/365

• 4 = 30/360 (BMA)

• 5 = 30/360 (ISDA)

• 6 = 30/360 (European)

• 7 = actual/365 (Japanese)

• 8 = actual/actual (ICMA)

• 9 = actual/360 (ICMA)

• 10 = actual/365 (ICMA)

• 11 = 30/360E (ICMA)

• 12 = actual/actual (ISDA)

• 13 = BUS/252
For more information, see basis.

EndMonthRule (Optional) End-of-month rule. A vector.
This rule applies only when Maturity is an
end-of-month date for a month having 30 or
fewer days. 0 = ignore rule, meaning that a
bond’s coupon payment date is always the
same numerical day of the month. 1 = set
rule on (default), meaning that a bond’s
coupon payment date is always the last
actual day of the month.

IssueDate (Optional) Date when a bond was issued.

6-593

optbndbybk

FirstCouponDate (Optional) Date when a bond makes its
first coupon payment; used when bond has
an irregular first coupon period. When
FirstCouponDate and LastCouponDate
are both specified, FirstCouponDate takes
precedence in determining the coupon
payment structure. If you do not specify a
FirstCouponDate, the cash flow payment
dates are determined from other inputs.

LastCouponDate (Optional) Last coupon date of a bond
before the maturity date; used when bond
has an irregular last coupon period. In the
absence of a specified FirstCouponDate,
a specified LastCouponDate determines
the coupon structure of the bond. The
coupon structure of a bond is truncated at
the LastCouponDate, regardless of where
it falls, and is followed only by the bond’s
maturity cash flow date. If you do not
specify a LastCouponDate, the cash flow
payment dates are determined from other
inputs.

StartDate (Optional) Date when a bond actually starts
(the date from which a bond cash flow
is considered). To make an instrument
forward-starting, specify this date as a
future date. If you do not specify StartDate,
the effective start date is the Settle date.

Face (Optional) Face or par value. Face is a
NINST-by-1 vector. Default = 100.

Options (Optional) Derivatives pricing options
structure created with derivset.

6-594

optbndbybk

The Settle date for every bond is set to the ValuationDate of the BK
tree. The bond argument Settle is ignored.

Description [Price, PriceTree] = optbndbybk(BKTree, OptSpec, Strike,
ExerciseDates, AmericanOpt, CouponRate, Settle, Maturity,
Period, Basis, EndMonthRule, IssueDate, FirstCouponDate,
LastCouponDate, StartDate, Face, Options) computes the price of
a bond option from a Black-Karasinski interest rate tree.

Price is an NINST-by-1 matrix of expected prices at time 0.

PriceTree is a tree structure with a vector of instrument prices at
each node.

Examples Example 1. Using the BK interest rate tree in the deriv.mat file, price
a European call option on a 4% bond with a strike of 96. The exercise
date for the option is Jan. 01, 2006. The settle date for the bond is Jan.
01, 2005, and the maturity date is Jan. 01, 2009.

Load the file deriv.mat, which provides BKTree. The BKTree structure
contains the time and forward-rate information needed to price the
bond.

load deriv.mat;

Use optbondbybk to compute the price of the option.

Price = optbndbybk(BKTree,'Call',96,'01-Jan-2006',...

0,0.04,'01-Jan-2005','01-Jan-2009')

Warning: OptBonds are valued at Tree ValuationDate rather than Settle

> In optbndbytrintree at 43

In optbndbybk at 88

Warning: Not all cash flows are aligned with the tree. Result will be

approximated.

> In optbndbytrintree at 151

In optbndbybk at 88

6-595

optbndbybk

Price =

0.1512

Example 2. Now use optbndbybk to compute the price of a put option
on the same bond.

Price = optbndbybk(BKTree,'Put',96,'01-Jan-2006',...

0,0.04,'01-Jan-2005','01-Jan-2009')

Warning: OptBonds are valued at Tree ValuationDate rather than Settle

> In optbndbytrintree at 43

In optbndbybk at 88

Warning: Not all cash flows are aligned with the tree. Result will be

approximated.

> In optbndbytrintree at 151

In optbndbybk at 88

Price =

0.0272

See Also bkprice | bktree | instoptbnd

6-596

optbndbyhjm

Purpose Price bond option from Heath-Jarrow-Morton interest-rate tree

Syntax [Price, PriceTree] = optbndbyhjm(HJMTree, OptSpec, Strike,
ExerciseDates, AmericanOpt, CouponRate, Settle, Maturity,
Period, Basis, EndMonthRule, IssueDate, FirstCouponDate,
LastCouponDate, StartDate, Face, Options)

Arguments

HJMTree Forward-rate tree structure created by
hjmtree.

OptSpec Number of instruments (NINST)-by-1 cell
array of string values 'Call' or 'Put'.

Strike European option: NINST-by-1 vector of strike
price values.

Bermuda option: NINST by number of strikes
(NSTRIKES) matrix of strike price values.

Each row is the schedule for one option. If
an option has fewer than NSTRIKES exercise
opportunities, the end of the row is padded
with NaNs.

For an American option:

NINST-by-1 vector of strike price values for
each option.

6-597

optbndbyhjm

ExerciseDates NINST-by-1 (European option) or
NINST-by-NSTRIKES (Bermuda option)
matrix of exercise dates. Each row is the
schedule for one option. For a European
option, there is only one exercise date, the
option expiry date.

For an American option:

NINST-by-2 vector of exercise date
boundaries. For each instrument, the option
can be exercised on any coupon date between
or including the pair of dates on that row.
If only one non-NaN date is listed, or if
ExerciseDates is NINST-by-1, the option can
be exercised between the underlying bond
Settle and the single listed exercise date.

AmericanOpt NINST-by-1 vector of flags: 0
(European/Bermuda) or 1 (American).

CouponRate Decimal annual rate. CouponRate is a
NINST-by-1 vector.

Settle Settlement date. A vector of serial date
numbers or date strings. Settle must be
earlier than Maturity.

Maturity Maturity date. A vector of serial date
numbers or date strings.

Period (Optional) Coupons per year of the bond. A
vector of integers. Allowed values are 1, 2, 3,
4, 6, and 12. Default = 2.

6-598

optbndbyhjm

Basis (Optional) Day-count basis of the instrument.
A vector of integers.

• 0 = actual/actual (default)

• 1 = 30/360 (SIA)

• 2 = actual/360

• 3 = actual/365

• 4 = 30/360 (BMA)

• 5 = 30/360 (ISDA)

• 6 = 30/360 (European)

• 7 = actual/365 (Japanese)

• 8 = actual/actual (ICMA)

• 9 = actual/360 (ICMA)

• 10 = actual/365 (ICMA)

• 11 = 30/360E (ICMA)

• 12 = actual/actual (ISDA)

• 13 = BUS/252
For more information, see basis.

EndMonthRule (Optional) End-of-month rule. A vector.
This rule applies only when Maturity is an
end-of-month date for a month having 30 or
fewer days. 0 = ignore rule, meaning that
a bond’s coupon payment date is always
the same numerical day of the month. 1 =
set rule on (default), meaning that a bond’s
coupon payment date is always the last
actual day of the month.

IssueDate (Optional) Date when a bond was issued.

6-599

optbndbyhjm

FirstCouponDate (Optional) Date when a bond makes its
first coupon payment; used when bond has
an irregular first coupon period. When
FirstCouponDate and LastCouponDate
are both specified, FirstCouponDate takes
precedence in determining the coupon
payment structure. If you do not specify a
FirstCouponDate, the cash flow payment
dates are determined from other inputs.

LastCouponDate (Optional) Last coupon date of a bond before
the maturity date; used when bond has
an irregular last coupon period. In the
absence of a specified FirstCouponDate,
a specified LastCouponDate determines
the coupon structure of the bond. The
coupon structure of a bond is truncated at
the LastCouponDate, regardless of where
it falls, and is followed only by the bond’s
maturity cash flow date. If you do not specify
a LastCouponDate, the cash flow payment
dates are determined from other inputs.

StartDate (Optional) Date when a bond actually starts
(the date from which a bond cash flow
is considered). To make an instrument
forward-starting, specify this date as a
future date. If you do not specify StartDate,
the effective start date is the Settle date.

Face (Optional) Face or par value. Face is a
NINST-by-1 vector. Default = 100.

Options (Optional) Derivatives pricing options
structure created with derivset.

The Settle date for every bond is set to the ValuationDate of the HJM
tree. The bond argument Settle is ignored.

6-600

optbndbyhjm

Description [Price, PriceTree] = optbndbyhjm(HJMTree, OptSpec, Strike,
ExerciseDates, AmericanOpt, CouponRate, Settle, Maturity,
Period, Basis, EndMonthRule, IssueDate, FirstCouponDate,
LastCouponDate, StartDate, Face, Options) computes the price of
a bond option from an HJM forward-rate tree.

Price is an NINST-by-1 matrix of expected prices at time 0.

PriceTree is a tree structure with a vector of instrument prices at
each node.

Examples Using the HJM forward-rate tree in the deriv.mat file, price a
European call option on a 4% bond with a strike of 96. The exercise date
for the option is Jan. 01, 2003. The settle date for the bond is Jan. 01,
2000, and the maturity date is Jan. 01, 2004.

Load the file deriv.mat, which provides HJMTree. The HJMTree
structure contains the time and forward-rate information needed to
price the bond.

load deriv.mat;

Use optbondbyhjm to compute the price of the option.

Price = optbndbyhjm(HJMTree,'Call',96,'01-Jan-2003',...

0,0.04,'01-Jan-2000','01-Jan-2004')

Warning: Not all cash flows are aligned with the tree. Result will

be approximated.

Price =

2.2410

See Also hjmprice | hjmtree | instoptbnd

6-601

optbndbyhw

Purpose Price bond option from Hull-White interest-rate tree

Syntax [Price, PriceTree] = optbndbyhw(HWTree, OptSpec, Strike,
ExerciseDates, AmericanOpt, CouponRate, Settle, Maturity,
Period, Basis, EndMonthRule, IssueDate, FirstCouponDate,
LastCouponDate, StartDate, Face, Options)

Arguments

HWTree Forward-rate tree structure created by
hwtree.

OptSpec Number of instruments (NINST)-by-1 cell
array of string values 'Call' or 'Put'.

Strike European option: NINST-by-1 vector of
strike price values.

Bermuda option: NINST by number of
strikes (NSTRIKES) matrix of strike price
values.

Each row is the schedule for one option.
If an option has fewer than NSTRIKES
exercise opportunities, the end of the row
is padded with NaNs.

For an American option:

NINST-by-1 vector of strike price values
for each option.

6-602

optbndbyhw

ExerciseDates NINST-by-1 (European option) or
NINST-by-NSTRIKES (Bermuda option)
matrix of exercise dates. Each row is the
schedule for one option. For a European
option, there is only one exercise date, the
option expiry date.

For an American option:

NINST-by-2 vector of exercise date
boundaries. For each instrument, the
option can be exercised on any coupon
date between or including the pair of
dates on that row. If only one non-NaN
date is listed, or if ExerciseDates is
NINST-by-1, the option can be exercised
between the underlying bond Settle and
the single listed exercise date.

AmericanOpt NINST-by-1 vector of flags: 0
(European/Bermuda) or 1 (American).

CouponRate Decimal annual rate. CouponRate is a
NINST-by-1 vector.

Settle Settlement date. A vector of serial date
numbers or date strings. Settle must be
earlier than Maturity.

Maturity Maturity date. A vector of serial date
numbers or date strings.

Period (Optional) Coupons per year of the bond.
A vector of integers. Allowed values are 1,
2, 3, 4, 6, and 12. Default = 2.

6-603

optbndbyhw

Basis (Optional) Day-count basis of the
instrument. A vector of integers.

• 0 = actual/actual (default)

• 1 = 30/360 (SIA)

• 2 = actual/360

• 3 = actual/365

• 4 = 30/360 (BMA)

• 5 = 30/360 (ISDA)

• 6 = 30/360 (European)

• 7 = actual/365 (Japanese)

• 8 = actual/actual (ICMA)

• 9 = actual/360 (ICMA)

• 10 = actual/365 (ICMA)

• 11 = 30/360E (ICMA)

• 12 = actual/actual (ISDA)

• 13 = BUS/252
For more information, see basis.

EndMonthRule (Optional) End-of-month rule. A vector.
This rule applies only when Maturity is
an end-of-month date for a month having
30 or fewer days. 0 = ignore rule, meaning
that a bond’s coupon payment date is
always the same numerical day of the
month. 1 = set rule on (default), meaning
that a bond’s coupon payment date is
always the last actual day of the month.

IssueDate (Optional) Date when a bond was issued.

6-604

optbndbyhw

FirstCouponDate (Optional) Date when a bond makes its
first coupon payment; used when bond has
an irregular first coupon period. When
FirstCouponDate and LastCouponDate
are both specified, FirstCouponDate
takes precedence in determining the
coupon payment structure. If you do not
specify a FirstCouponDate, the cash flow
payment dates are determined from other
inputs.

LastCouponDate (Optional) Last coupon date of a bond
before the maturity date; used when bond
has an irregular last coupon period. In the
absence of a specified FirstCouponDate,
a specified LastCouponDate determines
the coupon structure of the bond. The
coupon structure of a bond is truncated at
the LastCouponDate, regardless of where
it falls, and is followed only by the bond’s
maturity cash flow date. If you do not
specify a LastCouponDate, the cash flow
payment dates are determined from other
inputs.

StartDate (Optional) Date when a bond actually
starts (the date from which a bond
cash flow is considered). To make an
instrument forward-starting, specify this
date as a future date. If you do not specify
StartDate, the effective start date is the
Settle date.

Face (Optional) Face or par value. Face is a
NINST-by-1 vector. Default = 100.

Options (Optional) Derivatives pricing options
structure created with derivset.

6-605

optbndbyhw

The Settle date for every bond is set to the ValuationDate of the HW
tree. The bond argument Settle is ignored.

Description [Price, PriceTree] = optbndbyhw(HWTree, OptSpec, Strike,
ExerciseDates, AmericanOpt, CouponRate, Settle, Maturity,
Period, Basis, EndMonthRule, IssueDate, FirstCouponDate,
LastCouponDate, StartDate, Face, Options) computes the price of
a bond option from a Hull-White interest rate tree.

Price is an NINST-by-1 matrix of expected prices at time 0.

PriceTree is a tree structure with a vector of instrument prices at
each node.

Examples Example 1. Using the HW interest rate tree in the deriv.mat file,
price a European call option on a 4% bond with a strike of 96. The
exercise date for the option is Jan. 01, 2006. The settle date for the
bond is Jan. 01, 2005, and the maturity date is Jan. 01, 2009.

Load the file deriv.mat, which provides HWTree. The HWTree structure
contains the time and forward-rate information needed to price the
bond.

load deriv.mat;

Use optbondbyhw to compute the price of the option.

Price = optbndbyhw(HWTree,'Call',96,'01-Jan-2006',...

0,0.04,'01-Jan-2005','01-Jan-2009')

Warning: OptBonds are valued at Tree ValuationDate rather than Settle

Warning: Not all cash flows are aligned with the tree. Result will

be approximated.

Price =

1.1556

6-606

optbndbyhw

Example 2. Now use optbondbyhw to compute the price of a put option
on the same bond.

Price = optbndbyhw(HWTree,'Put',96,'01-Jan-2006',...

0,0.04,'01-Jan-2005','01-Jan-2009')

Warning: OptBonds are valued at Tree ValuationDate rather than Settle

Warning: Not all cash flows are aligned with the tree. Result will

be approximated.

Price =

1.0150

See Also hwprice | hwtree | instoptbnd

6-607

optembndbybdt

Purpose Price bonds with embedded options by Black-Derman-Toy interest-rate
tree

Syntax [Price, PriceTree] = optembndbybdt(BDTTree, CouponRate,
Settle, Maturity, OptSpec, Strike, ExerciseDates,
'Name1', Value1, 'Name2', Value2, ...)

Arguments

BDTTree Interest-rate tree structure created by
bdttree.

CouponRate Decimal annual rate. CouponRate is a
NINST-by-1 vector or NINST-by-1 cell array of
decimal annual rates, or decimal annual rate
schedules. For the latter case of a variable
coupon schedule, each element of the cell
array is a NumDates-by-2 cell array, where the
first column is dates and the second column
is its associated rate. The date indicates the
last day that the coupon rate is valid.

Settle NINST-by-1 matrix for the settlement date. A
vector of serial date numbers or date strings.
Settle must be earlier than Maturity.

Maturity NINST-by-1 matrix for the maturity date. A
vector of serial date numbers or date strings.

OptSpec NINST-by-1 cell array of strings 'call' or
'put'.

6-608

optembndbybdt

Strike European option: NINST-by-1 vector of strike
price values.

Bermuda option: NINST by number of strikes
(NSTRIKES) matrix of strike price values.

Each row is the schedule for one option. If
an option has fewer than NSTRIKES exercise
opportunities, the end of the row is padded
with NaNs.

For an American option:

NINST-by-1 vector of strike price values for
each option.

ExerciseDates NINST-by-1 (European option) or
NINST-by-NSTRIKES (Bermuda option)
matrix of exercise dates. Each row is the
schedule for one option. For a European
option, there is only one exercise date, the
option expiry date.

For an American option:

NINST-by-2 vector of exercise date boundaries.
For each instrument, the option can be
exercised on any coupon date between or
including the pair of dates on that row.
If only one non-NaN date is listed, or if
ExerciseDates is NINST-by-1, the option can
be exercised between the underlying bond
Settle and the single listed exercise date.

'Name1',
'Value1' 'Name2',
'Value2'...

(Optional) The name/value pairs are a
variable length list of parameters. All
optional inputs are specified as matching
parameter name/value pairs. The parameter
name is specified as a character string,
followed by the corresponding parameter
value. Parameter name/value pairs may

6-609

optembndbybdt

be specified in any order; names are case
insensitive and partial string matches are
allowed provided no ambiguities exist. Valid
parameter names are as follows:

• AmericanOpt is a NINST-by-1 matrix for
flags options: 0 (European/Bermuda) or 1
(American). Default is 0.

• Period is a NINST-by-1 matrix for coupons
per year. The default value is 2.

• Basis is a day-count basis of the
instrument. Basis is a vector of integers
with the following possible values:

- 0 = actual/actual (default)

- 1 = 30/360 (SIA)

- 2 = actual/360

- 3 = actual/365

- 4 = 30/360 (BMA)

- 5 = 30/360 (ISDA)

- 6 = 30/360 (European)

- 7 = actual/365 (Japanese)

- 8 = actual/actual (ICMA)

- 9 = actual/360 (ICMA)

- 10 = actual/365 (ICMA)

- 11 = 30/360E (ICMA)

- 12 = actual/actual (ISDA)

- 13 = BUS/252
For more information, see basis.

6-610

optembndbybdt

• EndMonthRule is a NINST-by-1 matrix for
the end-of-month rule. This rule applies
only when Maturity is an end-of-month
date for a month having 30 or fewer days.
When the value is 0 the end-of-month
rule is ignored; this means that a bond’s
coupon payment date is always the same
numerical day of the month. Use 1 to set
the rule on; this is the default value and
means that a bond’s coupon payment date
is always the last actual day of the month.

• IssueDate is a NINST-by-1 matrix for the
bond issue date.

• FirstCouponDate is a NINST-by-1 matrix
for a date when a bond makes its first
coupon payment; used when bond has
an irregular first coupon period. When
FirstCouponDate and LastCouponDate
are both specified, FirstCouponDate takes
precedence in determining the coupon
payment structure. If you do not specify a
FirstCouponDate, the cash flow payment
dates are determined from other inputs.

• LastCouponDate is a NINST-by-1 matrix
for a last coupon date of a bond before
the maturity date; used when bond has
an irregular last coupon period. In the
absence of a specified FirstCouponDate, a
specified LastCouponDate determines the
coupon structure of the bond. The coupon
structure of a bond is truncated at the
LastCouponDate, regardless of where it
falls, and is followed only by the bond’s
maturity cash flow date. If you do not
specify a LastCouponDate, the cash flow

6-611

optembndbybdt

payment dates are determined from other
inputs.

• StartDate is a NINST-by-1 matrix for date
when a bond actually starts (the date from
which a bond cash flow is considered). To
make an instrument forward-starting,
specify this date as a future date. If you do
not specify StartDate, the effective start
date is the Settle date.

• Face value. Face is a NINST-by-1 vector
or NINST-by-1 cell array of face values,
or face value schedules. For the latter
case, each element of the cell array is a
NumDates-by-2 cell array, where the first
column is dates and the second column
is its associated face value. The date
indicates the last day that the face value
is valid. Default is 100.

• Options is a derivatives pricing options
structure created with derivset.

Note The Settle date for every bond with an embedded option is set
to the ValuationDate of the BDT tree; the bond’s argument for Settle
date is ignored.

Description [Price, PriceTree] = optembndbybdt(BDTTree,
CouponRate,Settle, Maturity, OptSpec, Strike,
ExerciseDates,'Name1', Value1, 'Name2', Value2, ...) prices
bonds with embedded options using a BDT interest-rate tree.

Price is a number of instruments (NINST)-by-1 matrix of expected
prices at time 0.

6-612

optembndbybdt

PriceTree is a MATLAB structure of trees containing vectors of
instrument prices and accrued interest, and a vector of observation
times for each node. Within PriceTree

• PriceTree.PTree contains the clean prices.

• PriceTree.AITree contains the accrued interest.

• PriceTree.tObs contains the observation times.

optembndbybdt computes prices of vanilla bonds with embedded
options, stepped coupon bonds with embedded options, and bonds with
sinking fund option provisions.

Definitions Vanilla Bond with Embedded Option

A vanilla coupon bond is a security representing an obligation to repay
a borrowed amount at a designated time and to make periodic interest
payments until that time. The issuer of a bond makes the periodic
interest payments until the bond matures. At maturity, the issuer pays
to the holder of the bond the principal amount owed (face value) and
the last interest payment. A vanilla bond with an embedded option is
where an option contract has an underlying asset of a vanilla bond.

Stepped Coupon Bond with Callable and Puttable Features

A step-up and step-down bond is a debt security with a predetermined
coupon structure over time. With these instruments, coupons increase
(step up) or decrease (step down) at specific times during the life of the
bond. Stepped coupon bonds can have options features (call and puts).

Sinking Fund Bond with Embedded Option

A sinking fund bond is a coupon bond with a sinking fund provision.
This provision obligates the issuer to amortize portions of the principal
prior to maturity, affecting bond prices since the time of the principal
repayment changes. This means that investors receive the coupon
and a portion of the principal paid back over time. These types of
bonds reduce credit risk, since it lowers the probability of investors not
receiving their principal payment at maturity.

6-613

optembndbybdt

The bond may have a sinking fund option provision allowing the issuer
to retire the sinking fund obligation either by purchasing the bonds to
be redeemed from the market or by calling the bond via a sinking fund
call, whichever is cheaper. If interest rates are high, then the issuer will
buy back the requirement amount of bonds from the market since bonds
will be cheap, but if interest rates are low (bond prices are high), then
most likely the issuer will be buying the bonds at the call price. Unlike
a call feature, however, if a bond has a sinking fund option provision, it
is an obligation, not an option, for the issuer to buy back the increments
of the issue as stated. Because of this, a sinking fund bond trades at a
lower price than a non-sinking fund bond.

Examples To price a callable bond using the BDT model, create a BDTTree with
the following data:

ZeroRates = [0.035;0.04;0.045];
Compounding = 1;
StartDates = ['jan-1-2007';'jan-1-2008';'jan-1-2009'];
EndDates = ['jan-1-2008';'jan-1-2009';'jan-1-2010'];
ValuationDate = 'jan-1-2007';

Create a RateSpec:

RateSpec = intenvset('Rates', ZeroRates, 'StartDates', ValuationDate, 'EndDates', ...

EndDates, 'Compounding', Compounding, 'ValuationDate', ValuationDate);

Specify a VolSpec:

Volatility = 0.10 * ones (3,1);
VolSpec = bdtvolspec(ValuationDate, EndDates, Volatility);

Specify a TimeSpec:

TimeSpec = bdttimespec(ValuationDate, EndDates, Compounding);

Build the BDTTree:

BDTTree = bdttree(VolSpec, RateSpec, TimeSpec);

6-614

optembndbybdt

To compute the price of an American callable bond that pays a 5.25%
annual coupon, matures in Jan-1-2010, and is callable on Jan-1-2008
and 01-Jan-2010:

BondSettlement = 'jan-1-2007';

BondMaturity = 'jan-1-2010';

CouponRate = 0.0525;

Period = 1;

OptSpec = 'call';

Strike = [100];

ExerciseDates = {'jan-1-2008' '01-Jan-2010'};

AmericanOpt = 1;

PriceCallBond = optembndbybdt(BDTTree, CouponRate, BondSettlement, BondMaturity,...

OptSpec, Strike, ExerciseDates, 'Period', 1,'AmericanOp', 1)

PriceCallBond =

101.4750

Price the following single stepped callable bonds using the following
data:

% The data for the interest rate term structure is as follows:

Rates = [0.035; 0.042147; 0.047345; 0.052707];

ValuationDate = 'Jan-1-2010';

StartDates = ValuationDate;

EndDates = {'Jan-1-2011'; 'Jan-1-2012'; 'Jan-1-2013'; 'Jan-1-2014'};

Compounding = 1;

% Create RateSpec

RS = intenvset('ValuationDate', ValuationDate, 'StartDates', StartDates,...

'EndDates', EndDates,'Rates', Rates, 'Compounding', Compounding);

% Instrument

Settle = '01-Jan-2010';

6-615

optembndbybdt

Maturity = {'01-Jan-2013';'01-Jan-2014'};

CouponRate = {{'01-Jan-2012' .0425;'01-Jan-2014' .0750}};

OptSpec='call';

Strike=100;

ExerciseDates='01-Jan-2012'; %Callable in two years

% Build the tree

% Assume the volatility to be 10%

Sigma = 0.1;

BDTTimeSpec = bdttimespec(ValuationDate, EndDates, Compounding);

BDTVolSpec = bdtvolspec(ValuationDate, EndDates, Sigma*ones(1, length(EndDates))');

BDTT = bdttree(BDTVolSpec, RS, BDTTimeSpec);

% The first row corresponds to the price of the callable bond with maturity

% of three years. The second row corresponds to the price of the callable bond

% with maturity of four years.

PBDT= optembndbybdt(BDTT, CouponRate, Settle, Maturity ,OptSpec, Strike,...

ExerciseDates, 'Period', 1)

PBDT =

100.0945

100.0297

A corporation issues a three year bond with a sinking fund obligation
requiring the company to sink 1/3 of face value after the first year and
1/3 after the second year. The company has the option to buy the bonds
in the market or call them at $98. The following data describes the
details needed for pricing the sinking fund bond:

% The data for the interest rate term structure is as follows:

Rates = [0.1;0.1;0.1;0.1];

ValuationDate = 'Jan-1-2011';

StartDates = ValuationDate;

EndDates = {'Jan-1-2012'; 'Jan-1-2013'; 'Jan-1-2014'; 'Jan-1-2015'};

Compounding = 1;

6-616

optembndbybdt

% Create RateSpec

RateSpec = intenvset('ValuationDate', ValuationDate, 'StartDates',...

StartDates, 'EndDates', EndDates, 'Rates', Rates, 'Compounding', Compounding);

% Build the BDT tree

% Assume the volatility to be 10%

Sigma = 0.1;

BDTTimeSpec = bdttimespec(ValuationDate, EndDates);

BDTVolSpec = bdtvolspec(ValuationDate, EndDates, Sigma*ones(1, length(EndDates))');

BDTT = bdttree(BDTVolSpec, RateSpec, BDTTimeSpec);

% Instrument

% The bond has a coupon rate of 9%, a period of one year and matures in

% 1-Jan-2014. Face decreases 1/3 after the first year and 1/3 after the

% second year.

CouponRate = 0.09;

Settle = 'Jan-1-2011';

Maturity = 'Jan-1-2014';

Period = 1;

Face = { ...

{'Jan-1-2012' 100; ...

'Jan-1-2013' 66.6666; ...

'Jan-1-2014' 33.3333};

};

% Option provision

OptSpec = 'call';

Strike = [98 98];

ExerciseDates ={'Jan-1-2012', 'Jan-1-2013'};

% Price of non-sinking fund bond.

PNSF = bondbybdt(BDTT, CouponRate, Settle, Maturity, Period)

PNSF =

97.5131

6-617

optembndbybdt

% Price of the bond with the option sinking provision.

PriceSF = optembndbybdt(BDTT, CouponRate, Settle, Maturity,...

OptSpec, Strike, ExerciseDates,'Period', Period, 'Face', Face)

PriceSF =

96.8364

See Also bdtprice | bdttree | cfamounts | instoptembnd

6-618

optembndbybk

Purpose Price bonds with embedded options by Black-Karasinski interest-rate
tree

Syntax [Price, PriceTree] = optembndybk(BKTree, CouponRate,
Settle, Maturity, OptSpec, Strike, Strike, ExerciseDates,
'Name1', Value1, 'Name2', Value2, ...)

Arguments

BKTree Interest-rate tree structure created by
bktree.

CouponRate Decimal annual rate. CouponRate is a
NINST-by-1 vector or NINST-by-1 cell array of
decimal annual rates, or decimal annual rate
schedules. For the latter case of a variable
coupon schedule, each element of the cell
array is a NumDates-by-2 cell array, where the
first column is dates and the second column
is its associated rate. The date indicates the
last day that the coupon rate is valid.

Settle NINST-by-1 matrix for the settlement date. A
vector of serial date numbers or date strings.
Settle must be earlier than Maturity.

Maturity NINST-by-1 matrix for the maturity date. A
vector of serial date numbers or date strings.

OptSpec NINST-by-1 cell array of strings 'call' or
'put'.

6-619

optembndbybk

Strike European option: NINST-by-1 vector of strike
price values.

Bermuda option: NINST by number of strikes
(NSTRIKES) matrix of strike price values.

Each row is the schedule for one option. If
an option has fewer than NSTRIKES exercise
opportunities, the end of the row is padded
with NaNs.

For an American option:

NINST-by-1 vector of strike price values for
each option.

ExerciseDates NINST-by-1 (European option) or
NINST-by-NSTRIKES (Bermuda option)
matrix of exercise dates. Each row is the
schedule for one option. For a European
option, there is only one exercise date, the
option expiry date.

For an American option:

NINST-by-2 vector of exercise date boundaries.
For each instrument, the option can be
exercised on any coupon date between or
including the pair of dates on that row.
If only one non-NaN date is listed, or if
ExerciseDates is NINST-by-1, the option can
be exercised between the underlying bond
Settle and the single listed exercise date.

'Name1', Value1,
'Name2', Value2
...

(Optional) The name/value pairs are a
variable length list of parameters. All
optional inputs are specified as matching
parameter name/value pairs. The parameter
name is specified as a character string,
followed by the corresponding parameter
value. Parameter name/value pairs may

6-620

optembndbybk

be specified in any order; names are case
insensitive and partial string matches are
allowed provided no ambiguities exist. Valid
parameter names are as follows:

• AmericanOpt is a NINST-by-1 matrix for
flags options: 0 (European/Bermuda) or 1
(American). Default is 0.

• Period is a NINST-by-1 matrix for coupons
per year. Default is 2.

• Basis is a day-count basis of the
instrument. Basis is a vector of integers
with the following supported values:

- 0 = actual/actual (default)

- 1 = 30/360 (SIA)

- 2 = actual/360

- 3 = actual/365

- 4 = 30/360 (BMA)

- 5 = 30/360 (ISDA)

- 6 = 30/360 (European)

- 7 = actual/365 (Japanese)

- 8 = actual/actual (ICMA)

- 9 = actual/360 (ICMA)

- 10 = actual/365 (ICMA)

- 11 = 30/360E (ICMA)

- 12 = actual/actual (ISDA)

- 13 = BUS/252
For more information, see basis.

6-621

optembndbybk

• EndMonthRule is a NINST-by-1 matrix for
the end-of-month rule. This rule applies
only when Maturity is an end-of-month
date for a month having 30 or fewer days.
When the value is 0, the end-of-month
rule is ignored, meaning that a bond’s
coupon payment date is always the same
numerical day of the month. When the
value is 1, the end-of-month rule is set on
(default), meaning that a bond’s coupon
payment date is always the last actual day
of the month.

• IssueDate is a NINST-by-1 matrix for the
bond issue date.

• FirstCouponDate is a NINST-by-1 matrix
for a date when a bond makes its first
coupon payment; used when bond has
an irregular first coupon period. When
FirstCouponDate and LastCouponDate
are both specified, FirstCouponDate takes
precedence in determining the coupon
payment structure. If you do not specify a
FirstCouponDate, the cash flow payment
dates are determined from other inputs.

• LastCouponDate is a NINST-by-1 matrix
for a last coupon date of a bond before
the maturity date; used when bond has
an irregular last coupon period. In the
absence of a specified FirstCouponDate, a
specified LastCouponDate determines the
coupon structure of the bond. The coupon
structure of a bond is truncated at the
LastCouponDate, regardless of where it
falls, and is followed only by the bond’s
maturity cash flow date. If you do not

6-622

optembndbybk

specify a LastCouponDate, the cash flow
payment dates are determined from other
inputs.

• StartDate is a NINST-by-1 matrix for date
when a bond actually starts (the date from
which a bond cash flow is considered). To
make an instrument forward-starting,
specify this date as a future date. If you do
not specify StartDate, the effective start
date is the Settle date.

• Face value. Face is a NINST-by-1 vector
or NINST-by-1 cell array of face values,
or face value schedules. For the latter
case, each element of the cell array is a
NumDates-by-2 cell array, where the first
column is dates and the second column
is its associated face value. The date
indicates the last day that the face value
is valid. Default is 100.

• Options is a derivatives pricing options
structure created with derivset.

Note The Settle date for every bond with embedded option is set to
the ValuationDate of the BKTree; the bond’s argument for Settle
date is ignored.

Description [Price, PriceTree] = optembndybk(BKTree, CouponRate,
Settle, Maturity, OptSpec, Strike, Strike, ExerciseDates,
'Name1', Value1, 'Name2', Value2, ...) prices bonds with
embedded options by a BK interest-rate tree.

6-623

optembndbybk

Price is a number of instruments (NINST)-by-1 matrix of expected
prices at time 0.

PriceTree is a structure of trees containing vectors of instrument
prices and accrued interest, and a vector of observation times for each
node. Within PriceTree:

• PriceTree.PTree contains the clean prices.

• PriceTree.AITree contains the accrued interest.

• PriceTree.tObs contains the observation times.

optembndbybk computes prices of vanilla bonds with embedded options,
stepped coupon bonds with embedded options, and bonds with sinking
fund option provisions.

Definitions Vanilla Bond with Embedded Option

A vanilla coupon bond is a security representing an obligation to repay
a borrowed amount at a designated time and to make periodic interest
payments until that time. The issuer of a bond makes the periodic
interest payments until the bond matures. At maturity, the issuer pays
to the holder of the bond the principal amount owed (face value) and
the last interest payment. A vanilla bond with an embedded option is
where an option contract has an underlying asset of a vanilla bond.

Stepped Coupon Bond with Callable and Puttable Features

A step-up and step-down bond is a debt security with a predetermined
coupon structure over time. With these instruments, coupons increase
(step up) or decrease (step down) at specific times during the life of the
bond. Stepped coupon bonds can have options features (call and puts).

Sinking Fund Bond with Embedded Option

A sinking fund bond is a coupon bond with a sinking fund provision.
This provision obligates the issuer to amortize portions of the principal
prior to maturity, affecting bond prices since the time of the principal
repayment changes. This means that investors receive the coupon
and a portion of the principal paid back over time. These types of

6-624

optembndbybk

bonds reduce credit risk, since it lowers the probability of investors not
receiving their principal payment at maturity.

The bond may have a sinking fund option provision allowing the issuer
to retire the sinking fund obligation either by purchasing the bonds to
be redeemed from the market or by calling the bond via a sinking fund
call, whichever is cheaper. If interest rates are high, then the issuer will
buy back the requirement amount of bonds from the market since bonds
will be cheap, but if interest rates are low (bond prices are high), then
most likely the issuer will be buying the bonds at the call price. Unlike
a call feature, however, if a bond has a sinking fund option provision, it
is an obligation, not an option, for the issuer to buy back the increments
of the issue as stated. Because of this, a sinking fund bond trades at a
lower price than a non-sinking fund bond.

Examples Create a BKTree with the following data:

ZeroRates = [0.035;0.04;0.045];
Compounding = 1;
StartDates = ['jan-1-2007';'jan-1-2008';'jan-1-2009'];
EndDates = ['jan-1-2008';'jan-1-2009';'jan-1-2010'];
ValuationDate = 'jan-1-2007';

Create a RateSpec:

RateSpec = intenvset('Rates', ZeroRates, 'StartDates', ValuationDate, 'EndDates', ...

EndDates, 'Compounding', Compounding, 'ValuationDate', ValuationDate);

Specify a TimeSpec:

BKTimeSpec = bktimespec(ValuationDate, EndDates, Compounding);

Specify a VolSpec:

VolDates = ['jan-1-2008';'jan-1-2009';'jan-1-2010'];

VolCurve = 0.01;

AlphaDates = 'jan-1-2010';

AlphaCurve = 0.1;

BKVolSpec = bkvolspec(ValuationDate, VolDates, VolCurve, AlphaDates, AlphaCurve);

6-625

optembndbybk

Build a BKTree:

BKTree = bktree(BKVolSpec, RateSpec, BKTimeSpec);

To compute the price of an American puttable bond that pays an annual
coupon of 5.25% , matures on January 1, 2010, and is callable on
January 1, 2008 and January 1, 2010:

BondSettlement = 'jan-1-2007';

BondMaturity = 'jan-1-2010';

CouponRate = 0.0525;

Period = 1;

OptSpec = 'put';

Strike = [100];

ExerciseDates = {'jan-1-2008' '01-Jan-2010'};

AmericanOpt = 1;

PricePutBondBK = optembndbybk(BKTree, CouponRate, BondSettlement, BondMaturity,...

OptSpec, Strike, ExerciseDates,'Period', 1, 'AmericanOpt', 1)

PricePutBondBK =

102.3820

Price the following single stepped callable bonds using the following
data:

% The data for the interest rate term structure is as follows:

Rates = [0.035; 0.042147; 0.047345; 0.052707];

ValuationDate = 'Jan-1-2010';

StartDates = ValuationDate;

EndDates = {'Jan-1-2011'; 'Jan-1-2012'; 'Jan-1-2013'; 'Jan-1-2014'};

Compounding = 1;

% Create RateSpec

RS = intenvset('ValuationDate', ValuationDate, 'StartDates', StartDates,...

6-626

optembndbybk

'EndDates', EndDates,'Rates', Rates, 'Compounding', Compounding);

% Instrument

Settle = '01-Jan-2010';

Maturity = {'01-Jan-2013';'01-Jan-2014'};

CouponRate = {{'01-Jan-2012' .0425;'01-Jan-2014' .0750}};

OptSpec='call';

Strike=100;

ExerciseDates='01-Jan-2012'; %Callable in two years

% Build the tree with the following data

VolDates = ['1-Jan-2011'; '1-Jan-2012'; '1-Jan-2013'; '1-Jan-2014'];

VolCurve = 0.01;

AlphaDates = '01-01-2014';

AlphaCurve = 0.1;

BKVolSpec = bkvolspec(RS.ValuationDate, VolDates, VolCurve,...

AlphaDates, AlphaCurve);

BKTimeSpec = bktimespec(RS.ValuationDate, VolDates, Compounding);

BKT = bktree(BKVolSpec, RS, BKTimeSpec);

% The first row corresponds to the price of the callable bond with maturity

% of three years. The second row corresponds to the price of the callable bond

% with maturity of four years.

PBK= optembndbybk(BKT, CouponRate, Settle, Maturity ,OptSpec, Strike,...

ExerciseDates, 'Period', 1)

PBK =

100.0945

100.0945

See Also bkprice | cfamounts | bktree | instoptembnd

6-627

optembndbyhjm

Purpose Price bonds with embedded options by Heath-Jarrow-Morton
interest-rate tree

Syntax [Price, PriceTree] = optembndbyhjm(HJMTree, CouponRate,
Settle, Maturity, OptSpec, Strike, ExerciseDates,
'Name1', Value1, 'Name2', Value2, ...)

Arguments

HJMTree Interest-rate tree structure created by
hjmtree.

CouponRate Decimal annual rate. CouponRate is a
NINST-by-1 vector or NINST-by-1 cell array of
decimal annual rates, or decimal annual rate
schedules. For the latter case of a variable
coupon schedule, each element of the cell
array is a NumDates-by-2 cell array, where the
first column is dates and the second column
is its associated rate. The date indicates the
last day that the coupon rate is valid.

Settle NINST-by-1 matrix for the settlement date. A
vector of serial date numbers or date strings.
Settle must be earlier than Maturity.

Maturity NINST-by-1 matrix for the maturity date. A
vector of serial date numbers or date strings.

OptSpec NINST-by-1 cell array of strings 'call' or
'put'.

6-628

optembndbyhjm

Strike European option: NINST-by-1 vector of strike
price values.

Bermuda option: NINST by number of strikes
(NSTRIKES) matrix of strike price values.

Each row is the schedule for one option. If
an option has fewer than NSTRIKES exercise
opportunities, the end of the row is padded
with NaNs.

For an American option:

NINST-by-1 vector of strike price values for
each option.

ExerciseDates NINST-by-1 (European option) or
NINST-by-NSTRIKES (Bermuda option)
matrix of exercise dates. Each row is the
schedule for one option. For a European
option, there is only one exercise date, the
option expiry date.

For an American option:

NINST-by-2 vector of exercise date boundaries.
For each instrument, the option can be
exercised on any coupon date between or
including the pair of dates on that row.
If only one non-NaN date is listed, or if
ExerciseDates is NINST-by-1, the option can
be exercised between the underlying bond
Settle and the single listed exercise date.

'Name1', Value1,
'Name2', Value2
...

(Optional) The name/value pairs are a
variable length list of parameters. All
optional inputs are specified as matching
parameter name/value pairs. The parameter
name is specified as a character string,
followed by the corresponding parameter
value. Parameter name/value pairs may

6-629

optembndbyhjm

be specified in any order; names are case
insensitive and partial string matches are
allowed provided no ambiguities exist. Valid
parameter names are as follows:

• AmericanOpt is a NINST-by-1 matrix for
flags options: 0 (European/Bermuda) or 1
(American). Default is 0.

• Period is a NINST-by-1 matrix for coupons
per year. Default is 2.

• Basis is a day-count basis of the
instrument. Basis is a vector of integers
with the following supported values:

- 0 = actual/actual (default)

- 1 = 30/360 (SIA)

- 2 = actual/360

- 3 = actual/365

- 4 = 30/360 (BMA)

- 5 = 30/360 (ISDA)

- 6 = 30/360 (European)

- 7 = actual/365 (Japanese)

- 8 = actual/actual (ICMA)

- 9 = actual/360 (ICMA)

- 10 = actual/365 (ICMA)

- 11 = 30/360E (ICMA)

- 12 = actual/actual (ISDA)

- 13 = BUS/252
For more information, see basis.

6-630

optembndbyhjm

• EndMonthRule is a NINST-by-1 matrix for
the end-of-month rule. This rule applies
only when Maturity is an end-of-month
date for a month having 30 or fewer days.
When the value is 0, the end-of-month
rule is ignored, meaning that a bond’s
coupon payment date is always the same
numerical day of the month. When the
value is 1, the end-of-month rule is set on
(default), meaning that a bond’s coupon
payment date is always the last actual day
of the month.

• IssueDate is a NINST-by-1 matrix for the
bond issue date.

• FirstCouponDate is a NINST-by-1 matrix
for a date when a bond makes its first
coupon payment; used when bond has
an irregular first coupon period. When
FirstCouponDate and LastCouponDate
are both specified, FirstCouponDate takes
precedence in determining the coupon
payment structure. If you do not specify a
FirstCouponDate, the cash flow payment
dates are determined from other inputs.

• LastCouponDate is a NINST-by-1 matrix
for a last coupon date of a bond before
the maturity date; used when bond has
an irregular last coupon period. In the
absence of a specified FirstCouponDate, a
specified LastCouponDate determines the
coupon structure of the bond. The coupon
structure of a bond is truncated at the
LastCouponDate, regardless of where it
falls, and is followed only by the bond’s
maturity cash flow date. If you do not

6-631

optembndbyhjm

specify a LastCouponDate, the cash flow
payment dates are determined from other
inputs.

• StartDate is a NINST-by-1 matrix for date
when a bond actually starts (the date from
which a bond cash flow is considered). To
make an instrument forward-starting,
specify this date as a future date. If you do
not specify StartDate, the effective start
date is the Settle date.

• Face value. Face is a NINST-by-1 vector
or NINST-by-1 cell array of face values,
or face value schedules. For the latter
case, each element of the cell array is a
NumDates-by-2 cell array, where the first
column is dates and the second column
is its associated face value. The date
indicates the last day that the face value
is valid. Default is 100.

• Options is a derivatives pricing options
structure created with derivset.

Note The Settle date for every bond with embedded option is set to
the ValuationDate of the HJM tree; the bond’s argument for Settle
date is ignored.

Description [Price, PriceTree] = optembndbyhjm(HJMTree,
CouponRate,Settle, Maturity, OptSpec, Strike,
ExerciseDates,'Name1', Value1, 'Name2', Value2, ...) prices
bonds with embedded options by an HJM interest-rate tree.

6-632

optembndbyhjm

Price is a number of instruments (NINST)-by-1 matrix of expected
prices at time 0.

PriceTree is a structure of trees containing vectors of instrument
prices and accrued interest, and a vector of observation times for each
node. Within PriceTree:

• PriceTree.PBush contains the clean prices.

• PriceTree.AIBush contains the accrued interest.

• PriceTree.tObs contains the observation times.

optembndbyhjm computes prices of vanilla bonds with embedded
options, stepped coupon bonds with embedded options, and bonds with
sinking fund option provisions.

Definitions Vanilla Bond with Embedded Option

A vanilla coupon bond is a security representing an obligation to repay
a borrowed amount at a designated time and to make periodic interest
payments until that time. The issuer of a bond makes the periodic
interest payments until the bond matures. At maturity, the issuer pays
to the holder of the bond the principal amount owed (face value) and
the last interest payment. A vanilla bond with an embedded option is
where an option contract has an underlying asset of a vanilla bond.

Stepped Coupon Bond with Callable and Puttable Features

A step-up and step-down bond is a debt security with a predetermined
coupon structure over time. With these instruments, coupons increase
(step up) or decrease (step down) at specific times during the life of the
bond. Stepped coupon bonds can have options features (call and puts).

Sinking Fund Bond with Embedded Option

A sinking fund bond is a coupon bond with a sinking fund provision.
This provision obligates the issuer to amortize portions of the principal
prior to maturity, affecting bond prices since the time of the principal
repayment changes. This means that investors receive the coupon
and a portion of the principal paid back over time. These types of

6-633

optembndbyhjm

bonds reduce credit risk, since it lowers the probability of investors not
receiving their principal payment at maturity.

The bond may have a sinking fund option provision allowing the issuer
to retire the sinking fund obligation either by purchasing the bonds to
be redeemed from the market or by calling the bond via a sinking fund
call, whichever is cheaper. If interest rates are high, then the issuer will
buy back the requirement amount of bonds from the market since bonds
will be cheap, but if interest rates are low (bond prices are high), then
most likely the issuer will be buying the bonds at the call price. Unlike
a call feature, however, if a bond has a sinking fund option provision, it
is an obligation, not an option, for the issuer to buy back the increments
of the issue as stated. Because of this, a sinking fund bond trades at a
lower price than a non-sinking fund bond.

Examples Create an HJMTree with the following data:

Rates = [0.05;0.06;0.07];
Compounding = 1;
StartDates = ['jan-1-2007';'jan-1-2008';'jan-1-2009'];
EndDates = ['jan-1-2008';'jan-1-2009';'jan-1-2010'];
ValuationDate = 'jan-1-2007';

Create a RateSpec:

RateSpec = intenvset('Rates', Rates, 'StartDates', ValuationDate, 'EndDates', ...

EndDates, 'Compounding', Compounding, 'ValuationDate', ValuationDate);

Specify a VolSpec:

VolSpec = hjmvolspec('Constant', 0.01);

Specify a TimeSpec:

TimeSpec = hjmtimespec(ValuationDate, EndDates, Compounding);

Build an HJMTree:

HJMTree = hjmtree(VolSpec, RateSpec, TimeSpec);

6-634

optembndbyhjm

To compute the price of an American callable bond that pays a 6%
annual coupon and matures and is callable on January 1, 2010:

BondSettlement = 'jan-1-2007';

BondMaturity = 'jan-1-2010';

CouponRate = 0.06;

Period = 1;

OptSpec = 'call';

Strike = [98];

ExerciseDates = '01-Jan-2010';

AmericanOpt = 1;

[PriceCallBond,PT] = optembndbyhjm(HJMTree, CouponRate, BondSettlement, BondMaturity,...

OptSpec, Strike, ExerciseDates, 'Period', 1,'AmericanOp',1)

PriceCallBond =

95.9492

PT =

FinObj: 'HJMPriceTree'

tObs: [0 1 2 3]

PBush: {[95.9492] [1x1x2 double] [1x2x2 double] [98 98 98 98]}

Price the following single stepped callable bonds using the following
data:

% The data for the interest rate term structure is as follows:

Rates = [0.035; 0.042147; 0.047345; 0.052707];

ValuationDate = 'Jan-1-2010';

StartDates = ValuationDate;

EndDates = {'Jan-1-2011'; 'Jan-1-2012'; 'Jan-1-2013'; 'Jan-1-2014'};

Compounding = 1;

6-635

optembndbyhjm

% Create RateSpec

RS = intenvset('ValuationDate', ValuationDate, 'StartDates', StartDates,...

'EndDates', EndDates,'Rates', Rates, 'Compounding', Compounding);

% Instrument

Settle = '01-Jan-2010';

Maturity = {'01-Jan-2013';'01-Jan-2014'};

CouponRate = {{'01-Jan-2012' .0425;'01-Jan-2014' .0750}};

OptSpec='call';

Strike=100;

ExerciseDates='01-Jan-2012'; %Callable in two years

% Build the tree with the following data

Volatility = [.2; .19; .18; .17];

CurveTerm = [1; 2; 3; 4];

HJMTimeSpec = hjmtimespec(ValuationDate, EndDates);

HJMVolSpec = hjmvolspec('Proportional', Volatility, CurveTerm, 1e6);

HJMT = hjmtree(HJMVolSpec, RS, HJMTimeSpec);

% The first row corresponds to the price of the callable bond with maturity

% of three years. The second row corresponds to the price of the callable

% bond with maturity of four years.

PHJM= optembndbyhjm(HJMT, CouponRate, Settle, Maturity ,OptSpec, Strike,...

ExerciseDates, 'Period', 1)

PHJM =

100.0484

99.8009

See Also hjmprice | cfamounts | hjmtree | instoptembnd

6-636

optembndbyhw

Purpose Price bonds with embedded options by Hull-White interest-rate tree

Syntax [Price, PriceTree] = optembndbyhw(HWTree, CouponRate,
Settle, Maturity, OptSpec, Strike, ExerciseDates,
'Name1', Value1, 'Name2', Value2, ...)

Arguments

HWTree Interest-rate tree structure created by
hwtree.

CouponRate Decimal annual rate. CouponRate is a
NINST-by-1 vector or NINST-by-1 cell array of
decimal annual rates, or decimal annual rate
schedules. For the latter case of a variable
coupon schedule, each element of the cell
array is a NumDates-by-2 cell array, where the
first column is dates and the second column
is its associated rate. The date indicates the
last day that the coupon rate is valid.

Settle NINST-by-1 matrix for the settlement date. A
vector of serial date numbers or date strings.
Settle must be earlier than Maturity.

Maturity NINST-by-1 matrix for the maturity date. A
vector of serial date numbers or date strings.

OptSpec NINST-by-1 cell array of strings 'call' or
'put'.

6-637

optembndbyhw

Strike European option: NINST-by-1 vector of strike
price values.

Bermuda option: NINST by number of strikes
(NSTRIKES) matrix of strike price values.

Each row is the schedule for one option. If
an option has fewer than NSTRIKES exercise
opportunities, the end of the row is padded
with NaNs.

For an American option:

NINST-by-1 vector of strike price values for
each option.

ExerciseDates NINST-by-1 (European option) or
NINST-by-NSTRIKES (Bermuda option)
matrix of exercise dates. Each row is the
schedule for one option. For a European
option, there is only one exercise date, the
option expiry date.

For an American option:

NINST-by-2 vector of exercise date boundaries.
For each instrument, the option can be
exercised on any coupon date between or
including the pair of dates on that row.
If only one non-NaN date is listed, or if
ExerciseDates is NINST-by-1, the option can
be exercised between the underlying bond
Settle and the single listed exercise date.

'Name1', Value1
'Name2', Value2
...

(Optional) The name/value pairs are a
variable length list of parameters. All
optional inputs are specified as matching
parameter name/value pairs. The parameter
name is specified as a character string,
followed by the corresponding parameter
value. Parameter name/value pairs may

6-638

optembndbyhw

be specified in any order; names are case
insensitive and partial string matches are
allowed provided no ambiguities exist. Valid
parameter names are as follows:

• AmericanOpt is a NINST-by-1 matrix for
flags options: 0 (European/Bermuda) or 1
(American). Default is 0.

• Period is a NINST-by-1 matrix for coupons
per year. Default is 2.

• Basis is a day-count basis of the
instrument. Basis is a vector of integers
with the following supported values:

- 0 = actual/actual (default)

- 1 = 30/360 (SIA)

- 2 = actual/360

- 3 = actual/365

- 4 = 30/360 (BMA)

- 5 = 30/360 (ISDA)

- 6 = 30/360 (European)

- 7 = actual/365 (Japanese)

- 8 = actual/actual (ICMA)

- 9 = actual/360 (ICMA)

- 10 = actual/365 (ICMA)

- 11 = 30/360E (ICMA)

- 12 = actual/actual (ISDA)

- 13 = BUS/252
For more information, see basis.

6-639

optembndbyhw

• EndMonthRule is a NINST-by-1 matrix for
the end-of-month rule. This rule applies
only when Maturity is an end-of-month
date for a month having 30 or fewer days.
When the value is 0, the end-of-month
rule is ignored, meaning that a bond’s
coupon payment date is always the same
numerical day of the month. When the
value is 1, the end-of-month rule is set rule
on (default), meaning that a bond’s coupon
payment date is always the last actual day
of the month.

• IssueDate is a NINST-by-1 matrix for the
bond issue date.

• FirstCouponDate is a NINST-by-1 matrix
for a date when a bond makes its first
coupon payment; used when bond has
an irregular first coupon period. When
FirstCouponDate and LastCouponDate
are both specified, FirstCouponDate takes
precedence in determining the coupon
payment structure. If you do not specify a
FirstCouponDate, the cash flow payment
dates are determined from other inputs.

• LastCouponDate is a NINST-by-1 matrix
for a last coupon date of a bond before
the maturity date; used when bond has
an irregular last coupon period. In the
absence of a specified FirstCouponDate, a
specified LastCouponDate determines the
coupon structure of the bond. The coupon
structure of a bond is truncated at the
LastCouponDate, regardless of where it
falls, and is followed only by the bond’s
maturity cash flow date. If you do not

6-640

optembndbyhw

specify a LastCouponDate, the cash flow
payment dates are determined from other
inputs.

• StartDate is a NINST-by-1 matrix for date
when a bond actually starts (the date from
which a bond cash flow is considered). To
make an instrument forward-starting,
specify this date as a future date. If you do
not specify StartDate, the effective start
date is the Settle date.

• Face value. Face is a NINST-by-1 vector
or NINST-by-1 cell array of face values,
or face value schedules. For the latter
case, each element of the cell array is a
NumDates-by-2 cell array, where the first
column is dates and the second column
is its associated face value. The date
indicates the last day that the face value
is valid. Default is 100.

• Options is a derivatives pricing options
structure created with derivset.

Note The Settle date for every bond with embedded option is set to
the ValuationDate of the HW tree; the bond’s argument for Settle
date is ignored.

Description [Price, PriceTree] = optembndbyhw(HWTree, CouponRate,
Settle, Maturity, OptSpec, Strike, ExerciseDates,'Name1',
Value1, 'Name2', Value2, ...) prices bonds with embedded options
by a HW interest-rate tree.

6-641

optembndbyhw

Price is a number of instruments (NINST)-by-1 matrix of expected
prices at time 0.

PriceTree is a structure of trees containing vectors of instrument
prices and accrued interest, and a vector of observation times for each
node. Within PriceTree:

• PriceTree.PTree contains the clean prices.

• PriceTree.AITree contains the accrued interest.

• PriceTree.tObs contains the observation times.

optembndbyhw computes prices of vanilla bonds with embedded options,
stepped coupon bonds with embedded options, and bonds with sinking
fund option provisions.

Definitions Vanilla Bond with Embedded Option

A vanilla coupon bond is a security representing an obligation to repay
a borrowed amount at a designated time and to make periodic interest
payments until that time. The issuer of a bond makes the periodic
interest payments until the bond matures. At maturity, the issuer pays
to the holder of the bond the principal amount owed (face value) and
the last interest payment. A vanilla bond with an embedded option is
where an option contract has an underlying asset of a vanilla bond.

Stepped Coupon Bond with Callable and Puttable Features

A step-up and step-down bond is a debt security with a predetermined
coupon structure over time. With these instruments, coupons increase
(step up) or decrease (step down) at specific times during the life of the
bond. Stepped coupon bonds can have options features (call and puts).

Sinking Fund Bond with Embedded Option

A sinking fund bond is a coupon bond with a sinking fund provision.
This provision obligates the issuer to amortize portions of the principal
prior to maturity, affecting bond prices since the time of the principal
repayment changes. This means that investors receive the coupon
and a portion of the principal paid back over time. These types of

6-642

optembndbyhw

bonds reduce credit risk, since it lowers the probability of investors not
receiving their principal payment at maturity.

The bond may have a sinking fund option provision allowing the issuer
to retire the sinking fund obligation either by purchasing the bonds to
be redeemed from the market or by calling the bond via a sinking fund
call, whichever is cheaper. If interest rates are high, then the issuer will
buy back the requirement amount of bonds from the market since bonds
will be cheap, but if interest rates are low (bond prices are high), then
most likely the issuer will be buying the bonds at the call price. Unlike
a call feature, however, if a bond has a sinking fund option provision, it
is an obligation, not an option, for the issuer to buy back the increments
of the issue as stated. Because of this, a sinking fund bond trades at a
lower price than a non-sinking fund bond.

Examples Create a HWTree with the following data:

ZeroRates = [0.035;0.04;0.045];
Compounding = 1;
StartDates = ['jan-1-2007';'jan-1-2008';'jan-1-2009'];
EndDates = ['jan-1-2008';'jan-1-2009';'jan-1-2010'];
ValuationDate = 'jan-1-2007';

Create a RateSpec:

RateSpec = intenvset('Rates', ZeroRates, 'StartDates', ValuationDate, 'EndDates', ...

EndDates, 'Compounding', Compounding, 'ValuationDate', ValuationDate);

Specify a TimeSpec:

HWTimeSpec = hwtimespec(ValuationDate, EndDates, Compounding);

Specify a VolSpec:

VolDates = ['jan-1-2008';'jan-1-2009';'jan-1-2010'];

VolCurve = 0.01;

AlphaDates = 'jan-1-2010';

AlphaCurve = 0.1;

HWVolSpec = hwvolspec(ValuationDate, VolDates, VolCurve, AlphaDates, AlphaCurve);

6-643

optembndbyhw

Build a HWTree:

HWTree = hwtree(HWVolSpec, RateSpec, HWTimeSpec);

Compute the price of an American puttable bond that pays an annual
coupon of 5.25%, matures on January 1, 2010, and is puttable from
January 1, 2008 to January 1, 2010:

BondSettlement = 'jan-1-2007';

BondMaturity = 'jan-1-2010';

CouponRate = 0.0525;

Period = 1;

OptSpec = 'put';

Strike = [100];

ExerciseDates = {'jan-1-2008' '01-Jan-2010'};

AmericanOpt = 1;

PricePutBondHW = optembndbyhw(HWTree, CouponRate, BondSettlement, BondMaturity,...

OptSpec, Strike, ExerciseDates,'Period', 1, 'AmericanOpt', 1)

PricePutBondHW =

102.8801

Price the following single stepped callable bonds using the following
data:

% The data for the interest rate term structure is as follows:

Rates = [0.035; 0.042147; 0.047345; 0.052707];

ValuationDate = 'Jan-1-2010';

StartDates = ValuationDate;

EndDates = {'Jan-1-2011'; 'Jan-1-2012'; 'Jan-1-2013'; 'Jan-1-2014'};

Compounding = 1;

% Create RateSpec

RS = intenvset('ValuationDate', ValuationDate, 'StartDates', StartDates,...

6-644

optembndbyhw

'EndDates', EndDates,'Rates', Rates, 'Compounding', Compounding);

% Instrument

Settle = '01-Jan-2010';

Maturity = {'01-Jan-2013';'01-Jan-2014'};

CouponRate = {{'01-Jan-2012' .0425;'01-Jan-2014' .0750}};

OptSpec='call';

Strike=100;

ExerciseDates='01-Jan-2012'; %Callable in two years

% Build the tree with the following data

VolDates = ['1-Jan-2011'; '1-Jan-2012'; '1-Jan-2013'; '1-Jan-2014'];

VolCurve = 0.01;

AlphaDates = '01-01-2014';

AlphaCurve = 0.1;

HWVolSpec = hwvolspec(RS.ValuationDate, VolDates, VolCurve,...

AlphaDates, AlphaCurve);

HWTimeSpec = hwtimespec(RS.ValuationDate, VolDates, Compounding);

HWT = hwtree(HWVolSpec, RS, HWTimeSpec);

% The first row corresponds to the price of the callable bond with maturity

% of three years. The second row corresponds to the price of the callable

% bond with maturity of four years.

PHW= optembndbyhw(HWT, CouponRate, Settle, Maturity,OptSpec, Strike,...

ExerciseDates, 'Period', 1)

PHW =

100.0521

99.8322

A corporation issues a two year bond with a sinking fund obligation
requiring the company to sink 1/3 of face value after the first year. The

6-645

optembndbyhw

company has the option to buy the bonds in the market or call them at
$99. The following data describes the details needed for pricing the
sinking fund bond:

% The data for the interest rate term structure is as follows:

Rates = [0.1;0.1;0.1;0.1];

ValuationDate = 'Jan-1-2011';

StartDates = ValuationDate;

EndDates = {'Jan-1-2012'; 'Jan-1-2013'; 'Jan-1-2014'; 'Jan-1-2015'};

Compounding = 1;

% Create RateSpec

RateSpec = intenvset('ValuationDate', ValuationDate, 'StartDates',...

StartDates, 'EndDates', EndDates,'Rates', Rates, 'Compounding', Compounding);

% Build the HW tree

% The data to build the tree is as follows:

VolDates = ['1-Jan-2012'; '1-Jan-2013'; '1-Jan-2014';'1-Jan-2015'];

VolCurve = 0.01;

AlphaDates = '01-01-2015';

AlphaCurve = 0.1;

HWVolSpec = hwvolspec(RateSpec.ValuationDate, VolDates, VolCurve,...

AlphaDates, AlphaCurve);

HWTimeSpec = hwtimespec(RateSpec.ValuationDate, VolDates, Compounding);

HWT = hwtree(HWVolSpec, RateSpec, HWTimeSpec);

% Instrument

% The bond has a coupon rate of 9%, a period of one year and matures in

% 1-Jan-2013. Face decreases 1/3 after the first year.

CouponRate = 0.09;

Settle = 'Jan-1-2011';

Maturity = 'Jan-1-2013';

Period = 1;

Face = { ...

{'Jan-1-2012' 100; ...

6-646

optembndbyhw

'Jan-1-2013' 66.6666}; ...

};

% Option provision

OptSpec = 'call';

Strike = 99;

ExerciseDates = 'Jan-1-2012';

% Price of non-sinking fund bond.

PNSF = bondbyhw(HWT, CouponRate, Settle, Maturity, Period)PNSF =

98.2645

% Price of the bond with the option sinking provision.

PriceSF = optembndbyhw(HWT, CouponRate, Settle, Maturity,...

OptSpec, Strike, ExerciseDates, 'Period', Period, 'Face', Face)

PriceSF =

98.1594

See Also hwprice | cfamounts | hwtree | instoptembnd

6-647

optstockbybjs

Purpose Price American options using Bjerksund-Stensland 2002 option pricing
model

Syntax Price = optstockbybjs(RateSpec, StockSpec, Settle, Maturity,
OptSpec, Strike)

Arguments

RateSpec The annualized continuously compounded rate
term structure. For information on the interest
rate specification, see intenvset.

StockSpec Stock specification. See stockspec.

Settle NINST-by-1 vector of settlement or trade dates.

Maturity NINST-by-1 vector of maturity dates.

OptSpec NINST-by-1 cell array of strings 'call' or 'put'.

Strike NINST-by-1 vector of strike price values.

Description Price = optstockbybjs(RateSpec, StockSpec, Settle,
Maturity, OptSpec, Strike) computes American option prices with
continuous dividend yield using the Bjerksund-Stensland 2002 option
pricing model.

Price is a NINST-by-1 vector of expected option prices.

Note optstockbybjs computes prices of American options with
continuous dividend yield using the Bjerksund-Stensland option pricing
model.

Examples Consider two American stock options (a call and a put) with an exercise
price of $100. The options expire on April 1, 2008. Assume the
underlying stock pays a continuous dividend yield of 4% as of January

6-648

optstockbybjs

1, 2008. The stock has a volatility of 20% per annum and the annualized
continuously compounded risk-free rate is 8% per annum. Using this
data, calculate the price of the American call and put, assuming the
following current prices of the stock: $90 (for the call) and $120 (for
the put):

Settle = 'Jan-1-2008';
Maturity = 'April-1-2008';
Strike = 100;
AssetPrice = [90;120];
DivYield = 0.04;
Rate = 0.08;
Sigma = 0.20;

Define StockSpec and RateSpec:

StockSpec = stockspec(Sigma, AssetPrice, {'continuous'}, DivYield);

RateSpec = intenvset('ValuationDate', Settle, 'StartDates', Settle,...

'EndDates', Maturity, 'Rates', Rate, 'Compounding', -1);

Define the option type:

OptSpec = {'call'; 'put'};

Compute the option prices using the Bjerksund-Stensland 2002 option
pricing model:

Price = optstockbybjs(RateSpec, StockSpec, Settle, Maturity, OptSpec, Strike)

Price =

0.8420

0.1108

The first element of the Price vector represents the price of the call
($0.84); the second element represents the price of the put option ($0.11).

6-649

optstockbybjs

See Also impvbybjs | intenvset | optstocksensbybjs | stockspec

6-650

optstockbyblk

Purpose Price options on futures using Black option pricing model

Syntax Price = optstockbyblk(RateSpec, StockSpec, Settle, Maturity,
OptSpec, Strike)

Arguments

RateSpec The annualized continuously compounded rate
term structure. For information on the interest
rate specification, see intenvset.

StockSpec Stock specification. See stockspec.

Settle NINST-by-1 vector of settlement or trade dates.

Maturity NINST-by-1 vector of maturity dates.

OptSpec NINST-by-1 cell array of strings 'call' or 'put'.

Strike NINST-by-1 vector of strike price values.

Description Price = optstockbyblk(RateSpec, StockSpec, Settle,
Maturity, OptSpec, Strike) computes option prices on futures using
the Black option pricing model.

Price is a NINST-by-1 vector of expected option prices.

Examples Consider two European call options on a futures contract with exercise
prices of $20 and $25 that expire on September 1, 2008. Assume that
on May 1, 2008 the contract is trading at $20, and has a volatility of
35% per annum. The risk-free rate is 4% per annum. Using this data,
calculate the price of the call futures options using the Black model:

Strike = [20; 25];
AssetPrice = 20;
Sigma = .35;
Rates = 0.04;
Settle = 'May-01-08';

6-651

optstockbyblk

Maturity = 'Sep-01-08';

Create RateSpec and StockSpec:

RateSpec = intenvset('ValuationDate', Settle, 'StartDates', Settle,...

'EndDates', Maturity, 'Rates', Rates, 'Compounding', -1);

StockSpec = stockspec(Sigma, AssetPrice);

Define the call options:

OptSpec = {'call'};

Calculate the price using the Black option pricing model:

Price = optstockbyblk(RateSpec, StockSpec, Settle, Maturity,...

OptSpec, Strike)

Price =

1.5903

0.3037

See Also impvbyblk | intenvset | optstocksensbyblk | stockspec

6-652

optstockbybls

Purpose Price options using Black-Scholes option pricing model

Syntax Price = optstockbybls(RateSpec, StockSpec, Settle, Maturity,
OptSpec, Strike)

Arguments

RateSpec The annualized continuously compounded rate
term structure. For information on the interest
rate specification, see intenvset.

StockSpec Stock specification. See stockspec.

Settle NINST-by-1 vector of settlement or trade dates.

Maturity NINST-by-1 vector of maturity dates.

OptSpec NINST-by-1 cell array of strings 'call' or 'put'.

Strike NINST-by-1 vector of strike price values.

Description Price = optstockbybls(RateSpec, StockSpec, Settle,
Maturity, OptSpec, Strike) computes option prices using the
Black-Scholes option pricing model.

Price is a NINST-by-1 vector of expected option prices.

6-653

optstockbybls

Note When using StockSpec with optstockbybls, you can modify
StockSpec to handle other types of underliers when pricing instruments
that use the Black-Scholes model.

When pricing Futures (Black model), enter the following in StockSpec:

DivType = 'Continuous';
DivAmount = RateSpec.Rates;

When pricing Foreign Currencies (Garman-Kohlhagen model), enter
the following in StockSpec:

DivType = 'Continuous';
DivAmount = ForeignRate;

where ForeignRate is the continuously compounded, annualized risk
free interest rate in the foreign country.

Examples Consider two European options, a call and a put, with an exercise price
of $29 on January 1, 2008. The options expire on May 1, 2008. Assume
that the underlying stock for the call option provides a cash dividend
of $0.50 on February 15, 2008. The underlying stock for the put option
provides a continuous dividend yield of 4.5% per annum. The stocks are
trading at $30 and have a volatility of 25% per annum. The annualized
continuously compounded risk-free rate is 5% per annum. Using this
data, compute the price of the options using the Black-Scholes model:

Strike = 29;
AssetPrice = 30;
Sigma = .25;
Rates = 0.05;
Settle = 'Jan-01-2008';
Maturity = 'May-01-2008';

Define RateSpec:

6-654

optstockbybls

RateSpec = intenvset('ValuationDate', Settle, 'StartDates', Settle, 'EndDates',...

Maturity, 'Rates', Rates, 'Compounding', -1);

Define StockSpec:

DividendType = {'cash';'continuous'};

DividendAmounts = [0.50; 0.045];

ExDividendDates = {'Feb-15-2008';NaN};

StockSpec = stockspec(Sigma, AssetPrice, DividendType, DividendAmounts,...

ExDividendDates);

Price the call and the put options using the Black-Scholes model:

OptSpec = {'call'; 'put'};

Price = optstockbybls(RateSpec, StockSpec, Settle, Maturity, OptSpec, Strike)

Price =

2.2030

1.2025

See Also impvbybls | intenvset | optstocksensbybls | stockspec

6-655

optstockbycrr

Purpose Price stock option from Cox-Ross-Rubinstein tree

Syntax [Price, PriceTree] = optstockbycrr(CRRTree, OptSpec, Strike,
Settle, ExerciseDates, AmericanOpt)

Arguments

CRRTree Stock tree structure created by crrtree.

OptSpec Number of instruments (NINST)-by-1 cell array of
strings 'call' or 'put'.

Note The interpretation of the Strike and ExerciseDates
arguments depends upon the setting of the AmericanOpt argument.
If AmericanOpt = 0, NaN, or is unspecified, the option is a European
or Bermuda option. If AmericanOpt = 1, the option is an American
option.

Strike European option: NINST-by-1 vector of strike
price values.

Bermuda option: NINST by number of strikes
(NSTRIKES) matrix of strike price values.

Each row is the schedule for one option. If
an option has fewer than NSTRIKES exercise
opportunities, the end of the row is padded with
NaNs.

American option: NINST-by-1 vector of strike
price values for each option.

6-656

optstockbycrr

Settle NINST-by-1 vector of settlement or trade dates.

ExerciseDates NINST-by-1 (European option) or
NINST-by-NSTRIKES (Bermuda option)
matrix of exercise dates. Each row is the schedule
for one option. For a European option, there is
only one exercise date, the option expiry date.

For an American option:

NINST-by-2 vector of exercise date boundaries.
For each instrument, the option can be exercised
on any coupon date between or including the pair
of dates on that row. If only one non-NaN date
is listed, or if ExerciseDates is NINST-by-1, the
option can be exercised between the underlying
bond Settle and the single listed exercise date.

Data arguments are NINST-by-1 vectors, scalar, or empty. Fill
unspecified entries in vectors with NaN. Only one data argument is
required to create the instrument. The others may be omitted or passed
as empty matrices [].

Description [Price, PriceTree] = optstockbycrr(CRRTree, OptSpec,
Strike, Settle, ExerciseDates, AmericanOpt) computes the price
of a European, Bermuda, or American stock option.

Price is a NINST-by-1 vector of expected option prices at time 0.

PriceTree is a tree structure with a vector of instrument prices at
each node.

Examples Price a stock option using a CRR binomial tree.

Load the file deriv.mat, which provides CRRTree. The CRRTree
structure contains the stock specification and time information needed
to price the option.

load deriv.mat;

6-657

optstockbycrr

Set the required values. Other arguments will use defaults.

OptSpec = 'Call';

Strike = 105;

Settle = '01-Jan-2003';

ExerciseDates = '01-Jan-2005';

Price = optstockbycrr(CRRTree, OptSpec, Strike, Settle, ...

ExerciseDates)

Price =

8.2863

See Also crrtree | instoptstock

6-658

optstockbyeqp

Purpose Price stock option from Equal Probabilities binomial tree

Syntax [Price, PriceTree] = optstockbyeqp(EQPTree, OptSpec, Strike,
Settle, ExerciseDates, AmericanOpt)

Arguments

EQPTree Stock tree structure created by eqptree.

OptSpec Number of instruments (NINST)-by-1 cell array of
strings 'call' or 'put'.

Note The interpretation of the Strike and ExerciseDates
arguments depends upon the setting of the AmericanOpt argument.
If AmericanOpt = 0, NaN, or is unspecified, the option is a European
or Bermuda option. If AmericanOpt = 1, the option is an American
option.

Strike European option: NINST-by-1 vector of strike
price values.

Bermuda option: NINST by number of strikes
(NSTRIKES) matrix of strike price values.

Each row is the schedule for one option. If
an option has fewer than NSTRIKES exercise
opportunities, the end of the row is padded with
NaNs.

American option: NINST-by-1 vector of strike
price values for each option.

6-659

optstockbyeqp

Settle NINST-by-1 vector of settlement or trade dates.

ExerciseDates NINST-by-1 (European option) or
NINST-by-NSTRIKES (Bermuda option)
matrix of exercise dates. Each row is the
schedule for one option. For a European option,
there is only one exercise date, the option expiry
date.

For an American option:

NINST-by-2 vector of exercise date boundaries.
For each instrument, the option can be exercised
on any coupon date between or including the pair
of dates on that row. If only one non-NaN date
is listed, or if ExerciseDates is NINST-by-1, the
option can be exercised between the underlying
bond Settle and the single listed exercise date.

Data arguments are NINST-by-1 vectors, scalar, or empty. Fill
unspecified entries in vectors with NaN. Only one data argument is
required to create the instrument. The others may be omitted or passed
as empty matrices [].

Description [Price, PriceTree] = optstockbyeqp(EQPTree, OptSpec,
Strike, Settle, ExerciseDates, AmericanOpt) computes the price
of a European/Bermuda or American stock option.

Price is a NINST-by-1 vector of expected option prices at time 0.

PriceTree is a tree structure with a vector of instrument prices at
each node.

Examples Price a stock option using an EQP equity tree.

Load the file deriv.mat, which provides EQPTree. The EQPTree
structure contains the stock specification and time information needed
to price the option.

6-660

optstockbyeqp

load deriv.mat

Set the required values. Other arguments will use defaults.

OptSpec = 'Call';

Strike = 105;

Settle = '01-Jan-2003';

ExerciseDates = '01-Jan-2005';

Price = optstockbyeqp(EQPTree, OptSpec, Strike, Settle, ...

ExerciseDates)

Price =

8.4791

See Also eqptree | instoptstock

6-661

optstockbyitt

Purpose Price options on stocks using implied trinomial tree (ITT)

Syntax [Price, PriceTree] = optstockbyitt(ITTTree, OptSpec, Strike,
Settle, ExerciseDates, AmericanOpt)

Arguments

ITTTree Stock tree structure created by itttree.

OptSpec Number of instruments (NINST)-by-1 cell array of
strings 'call' or 'put'.

Note The interpretation of the Strike and ExerciseDates
arguments depends on the setting of the AmericanOpt argument. If
AmericanOpt = 0, NaN, or is unspecified, the option is a European or
Bermuda option. If AmericanOpt = 1, the option is an American
option.

Strike European option: NINST-by-1 vector of strike
price values.

Bermuda option: NINST by number of strikes
(NSTRIKES) matrix of strike price values.

Each row is the schedule for one option. If
an option has fewer than NSTRIKES exercise
opportunities, the end of the row is padded with
NaNs.

American option: NINST-by-1 vector of strike
price values for each option.

Settle NINST-by-1 vector of settlement or trade dates.

6-662

optstockbyitt

ExerciseDates For a European or Bermuda option:

NINST-by-1 (European option) or
NINST-by-NSTRIKES (Bermuda option)
matrix of exercise dates. Each row is the
schedule for one option. For a European option,
there is only one exercise date, the option expiry
date.

For an American option:

NINST-by-2 vector of exercise date boundaries.
For each instrument, the option can be exercised
on any coupon date between or including the pair
of dates on that row. If only one non-NaN date
is listed, or if ExerciseDates is NINST-by-1, the
option can be exercised between the underlying
bond Settle and the single listed exercise date.

AmericanOpt (Optional) If AmericanOpt = 0, NaN, or is
unspecified, the option is a European or Bermuda
option. If AmericanOpt = 1, the option is an
American option.

Note Data arguments for optstockbyitt are NINST-by-1 vectors,
scalar, or empty. Fill unspecified entries in vectors with NaN. Only one
data argument is required to create the instrument; the others may be
omitted or passed as empty matrices [].

Description [Price, PriceTree] = optstockbyitt(ITTTree, OptSpec,
Strike, Settle, ExerciseDates, AmericanOpt) computes the price
of a European/Bermuda or American stock option.

Price is a NINST-by-1 vector of expected option prices at time 0.

6-663

optstockbyitt

PriceTree is a tree structure with a vector of instrument prices at
each node.

Note The Settle date for every option is set to the ValuationDate of
the stock tree. The option argument, Settle, is ignored.

Examples Price a stock option using an ITT equity tree.

Load the file deriv.mat which provides the ITTTree. The ITTTree
structure contains the stock specification and time information needed
to price the option.

load deriv.mat

Set the required values. Other arguments will use defaults.

OptSpec = 'Put';

Strike = 80;

Settle = '01-Jan-2006';

ExerciseDates = ' 01-Jan-2010 ';

Price = optstockbyitt(ITTTree, OptSpec, Strike, Settle,ExerciseDates)

Price =

10.68

References Chriss, Neil A., E. Derman, and I. Kani, “Implied trinomial trees of the
volatility smile,” Journal of Derivatives, 1996.

See Also instoptstock | itttree | stockoptspec

6-664

optstockbylr

Purpose Price options on stocks using Leisen-Reimer binomial tree model

Syntax [Price, PriceTree] = optstockbylr(LRTree, OptSpec, Strike,
Settle, ExerciseDates)
[Price, PriceTree] = optstockbylr(LRTree, OptSpec, Strike,
Settle, ExerciseDates, Name,Value)

Description [Price, PriceTree] = optstockbylr(LRTree, OptSpec, Strike,
Settle, ExerciseDates) computes option prices on stocks using the
Leisen-Reimer binomial tree model.

[Price, PriceTree] = optstockbylr(LRTree, OptSpec, Strike,
Settle, ExerciseDates, Name,Value) computes option prices on
stocks using the Leisen-Reimer binomial tree model with additional
options specified by one or more Name,Value pair arguments.

Input
Arguments

LRTree

Stock tree structure created by lrtree.

OptSpec

NINST-by-1 cell array of strings 'call' or 'put'.

Strike

NINST-by-1 (European/American) or NINST-by-NSTRIKES (Bermuda)
matrix of strike price values. Each row is the schedule for one option. If
an option has fewer than NSTRIKES exercise opportunities, the end of
the row is padded with NaNs.

Settle

NINST-by-1 matrix of settlement or trade dates.

Note The settle date for every option is set to the ValuationDate of
the stock tree. The option argument, Settle, is ignored.

6-665

optstockbylr

ExerciseDates

NINST-by-1 (European/American) or NINST-by-NSTRIKEDATES (Bermuda)
matrix of exercise dates. Each row is the schedule for one option. For a
European option, there is only one ExerciseDate on the option expiry
date. For the American type, the option can be exercised on any tree
data between the ValuationDate and tree maturity. The last element
of each row must be the same as the maturity of the tree.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments,
where Name is the argument name and Value is the corresponding
value. Name must appear inside single quotes (' '). You can
specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

AmericanOpt

NINST-by-1 flags with a value of 0 (European/Bermuda) or 1 (American).

Default: 0

Output
Arguments

Price

NINST-by-1 expected prices at time 0.

PriceTree

Tree structure with a vector of instrument prices at each node.

Examples Consider European call and put options with an exercise price of $95
that expire on July 1, 2010. The underlying stock is trading at $100 on
January 1, 2010, provides a continuous dividend yield of 3% per annum
and has a volatility of 20% per annum. The annualized continuously
compounded risk-free rate is 8% per annum. Using this data, compute
the price of the options using the Leisen-Reimer model with a tree of 15
and 55 time steps.

AssetPrice = 100;

6-666

optstockbylr

Strike = 95;

ValuationDate = 'Jan-1-2010';

Maturity = 'July-1-2010';

% Define StockSpec

Sigma = 0.2;

DividendType = 'continuous';

DividendAmounts = 0.03;

StockSpec = stockspec(Sigma, AssetPrice, DividendType, DividendAmounts);

% Define RateSpec

Rates = 0.08;

Settle = ValuationDate;

Basis = 1;

Compounding = -1;

RateSpec = intenvset('ValuationDate', ValuationDate, 'StartDates', Settle, ...

'EndDates', Maturity, 'Rates', Rates, 'Compounding', Compounding, 'Basis', Basis);

% Build the Leisen-Reimer (LR) tree with 15 and 55 time steps

LRTimeSpec15 = lrtimespec(ValuationDate, Maturity, 15);

LRTimeSpec55 = lrtimespec(ValuationDate, Maturity, 55);

% Use the PP2 method

LRMethod = 'PP2';

LRTree15 = lrtree(StockSpec, RateSpec, LRTimeSpec15, Strike, 'method', LRMethod);

LRTree55 = lrtree(StockSpec, RateSpec, LRTimeSpec55, Strike, 'method', LRMethod);

% Price the call and the put options using the LR model:

OptSpec = {'call'; 'put'};

PriceLR15 = optstockbylr(LRTree15, OptSpec, Strike, Settle, Maturity);

6-667

optstockbylr

PriceLR55 = optstockbylr(LRTree55, OptSpec, Strike, Settle, Maturity);

% Calculate price using the Black-Scholes model (BLS) to compare values with

% the LR model:

PriceBLS = optstockbybls(RateSpec, StockSpec, Settle, Maturity, OptSpec, Strike);

% Compare values of BLS and LR

[PriceBLS PriceLR15 PriceLR55]

ans =

9.7258 9.7252 9.7257

2.4896 2.4890 2.4895

Use treeviewer to display the LRTree of 15 time steps:

treeviewer(LRTree15)

6-668

optstockbylr

References Leisen D.P., M. Reimer, “Binomial Models for Option Valuation –
Examining and Improving Convergence,” Applied Mathematical
Finance, Number 3, 1996, pp. 319-346.

See Also | instoptstock | lrtree | optstocksensbylr

6-669

optstockbyrgw

Purpose Determine American call option prices using Roll-Geske-Whaley option
pricing model

Syntax Price = optstockbyrgw(RateSpec, StockSpec, Settle,
Maturity, Strike)

Arguments

RateSpec The annualized continuously compounded rate
term structure. For information on the interest
rate specification, see intenvset.

StockSpec Stock specification. See stockspec.

Settle NINST-by-1 vector of settlement or trade dates.

Maturity NINST-by-1 vector of maturity dates.

Strike NINST-by-1 vector of strike price values.

Description Price = optstockbyrgw(RateSpec, StockSpec, Settle,
Maturity, Strike) computes the American call option prices using the
Roll-Geske-Whaley option pricing model.

Price is a NINST-by-1 vector of expected call option prices.

Note optstockbyrgw computes prices of American calls with a single
cash dividend using the Roll-Geske-Whaley option pricing model.

Examples Consider an American call option with an exercise price of $22 that
expires on February 1, 2009. The underlying stock is trading at $20 on
June 1, 2008 and has a volatility of 20% per annum. The annualized
continuously compounded risk-free rate is 6.77% per annum. The stock
pays a single dividend of $2 on September 1, 2008. Using this data,

6-670

optstockbyrgw

compute price of the American call option using the Roll-Geske-Whaley
option pricing model:

Settle = 'Jun-01-2008';
Maturity = 'Feb-01-2009';
AssetPrice = 20;
Strike = 22;
Sigma = 0.2;
Rate = 0.0677;
DivAmount = 2;
DivDate = 'Sep-01-2008';

Define StockSpec and RateSpec:

RateSpec = intenvset('ValuationDate', Settle, 'StartDates', Settle, 'EndDates',...

Maturity, 'Rates', Rate, 'Compounding', -1, 'Basis', 0);

StockSpec = stockspec(Sigma, AssetPrice, {'cash'}, DivAmount, DivDate);

Compute the price of the American call :

Price = optstockbyrgw(RateSpec, StockSpec, Settle, Maturity,Strike)

Price =

0.3359

See Also impvbyrgw | intenvset | optstocksensbyrgw | stockspec

6-671

optstocksensbybjs

Purpose Determine American option prices and sensitivities using
Bjerksund-Stensland 2002 option pricing model

Syntax PriceSens = optstocksensbybjs(RateSpec, StockSpec, Settle,
Maturity, OptSpec, Strike, 'Name1', Value1...)

Arguments

RateSpec The annualized continuously compounded rate
term structure. For information on the interest
rate specification, see intenvset.

StockSpec Stock specification. See stockspec.

Settle NINST-by-1 vector of settlement or trade dates.

Maturity NINST-by-1 vector of maturity dates.

OptSpec NINST-by-1 cell array of strings 'call' or 'put'.

Strike NINST-by-1 vector of strike price values.

OutSpec (Optional) All optional inputs are specified as
matching parameter name/value pairs. The
parameter name is specified as a character string,
followed by the corresponding parameter value.
Parameter name/value pairs may be specified
in any order; names are case-insensitive and
partial string matches are allowed provided no
ambiguities exist. Valid parameter names are:

• NOUT-by-1 or 1-by-NOUT cell array of strings
indicating the nature and order of the outputs
for the function. Possible values are: 'Price',
'Delta', 'Gamma', 'Vega', 'Lambda', 'Rho',
'Theta', or 'All'.

For example, OutSpec = {'Price'; 'Lamba';
'Rho'} specifies that the output should be
Price, Lambda, and Rho, in that order.

6-672

optstocksensbybjs

To invoke from a function: [Price,
Lambda, Rho] = optstocksensbybjs(...,
'OutSpec', {'Price', 'Lamba', 'Rho'})

OutSpec = {'All'} specifies that the output
should be Delta, Gamma, Vega, Lambda, Rho,
Theta, and Price, in that order. This is the
same as specifying OutSpec as OutSpec =
{'Delta', 'Gamma', 'Vega', 'Lambda',
'Rho', 'Theta', 'Price'};.

• Default is OutSpec = {'Price'}.

Description PriceSens = optstocksensbybjs(RateSpec, StockSpec, Settle,
Maturity, OptSpec, Strike, 'Name1', Value1...) computes
American option prices and sensitivities using the Bjerksund-Stensland
2002 option pricing model.

optstocksensbybjs can be used to compute six sensitivities for the
Bjerksund-Stensland 2002 model: delta, gamma, vega, lambda, rho, and
theta. This function is also capable of returning the price of the option.
The selection of output parameters and their order is determined by the
optional input parameter OutSpec. This parameter is a cell array of
strings, each one specifying a desired output parameter. The order in
which these output parameters are returned by the function is the same
as the order of the strings contained in OutSpec.

PriceSens is a NINST-by-1 vector of expected prices or sensitivities
values.

6-673

optstocksensbybjs

Note optstocksensbybjs computes prices of American options with
continuous dividend yield using the Bjerksund-Stensland option
pricing model. All sensitivities are evaluated by computing a discrete
approximation of the partial derivative. This means that the option
is revalued with a fractional change for each relevant parameter,
and the change in the option value divided by the increment, is the
approximated sensitivity value.

Examples Consider four American put options with an exercise price of $100.
The options expire on October 1, 2008. Assume the underlying stock
pays a continuous dividend yield of 4% and has a volatility of 40% per
annum. The annualized continuously compounded risk-free rate is 8%
per annum. Using this data, calculate the delta, gamma, and price of
the American put options, assuming the following current prices of the
stock on July 1, 2008: $90, $100, $110 and $120:

Settle = 'July-1-2008';
Maturity = 'October-1-2008';
Strike = 100;
AssetPrice = [90;100;110;120];
Rate = 0.08;
Sigma = 0.40;
DivYield = 0.04;

Define StockSpec and RateSpec:

StockSpec = stockspec(Sigma, AssetPrice, {'continuous'}, DivYield);

RateSpec = intenvset('ValuationDate', Settle, 'StartDates', Settle,...

'EndDates', Maturity, 'Rates', Rate, 'Compounding', -1);

Define the option type:

OptSpec = {'put'};

6-674

optstocksensbybjs

Compute delta, gamma, and price of the put options using the
Bjerksund-Stensland 2002 option pricing model:

OutSpec = {'Delta', 'Gamma', 'Price'};

[Delta, Gamma, Price] = optstocksensbybjs(RateSpec, StockSpec, Settle, Maturity,...

OptSpec, Strike, 'OutSpec', OutSpec)

Delta =

-0.6572

-0.4434

-0.2660

-0.1442

Gamma =

0.0217

0.0202

0.0150

0.0095

Price =

12.9467

7.4571

3.9539

1.9495

See Also impvbybjs | intenvset | optstockbybjs | stockspec

6-675

optstocksensbyblk

Purpose Determine option prices and sensitivities on futures using Black pricing
model

Syntax PriceSens = optstocksensbyblk(RateSpec, StockSpec, Settle,
Maturity, OptSpec, Strike, 'Name1', Value1...)

Arguments

RateSpec The annualized continuously compounded rate
term structure. For information on the interest
rate specification, see intenvset.

StockSpec Stock specification. See stockspec.

Settle NINST-by-1 vector of settlement or trade dates.

Maturity NINST-by-1 vector of maturity dates.

OptSpec NINST-by-1 cell array of strings 'call' or 'put'.

Strike NINST-by-1 vector of strike price values.

OutSpec (Optional) All optional inputs are specified as
matching parameter name/value pairs. The
parameter name is specified as a character string,
followed by the corresponding parameter value.
Parameter name/value pairs may be specified
in any order; names are case-insensitive and
partial string matches are allowed provided no
ambiguities exist. Valid parameter names are:

• NOUT-by-1 or 1-by-NOUT cell array of strings
indicating the nature and order of the outputs
for the function. Possible values are: 'Price',
'Delta', 'Gamma', 'Vega', 'Lambda', 'Rho',
'Theta', or 'All'.

For example, OutSpec = {'Price'; 'Lamba';
'Rho'} specifies that the output should be
Price, Lambda, and Rho, in that order.

6-676

optstocksensbyblk

To invoke from a function: [Price,
Lambda, Rho] = optstocksensbyblk(...,
'OutSpec', {'Price', 'Lamba', 'Rho'})

OutSpec = {'All'} specifies that the output
should be Delta, Gamma, Vega, Lambda, Rho,
Theta, and Price, in that order. This is the
same as specifying OutSpec as OutSpec =
{'Delta', 'Gamma', 'Vega', 'Lambda',
'Rho', 'Theta', 'Price'};.

• Default is OutSpec = {'Price'}.

Description PriceSens = optstocksensbyblk(RateSpec, StockSpec, Settle,
Maturity, OptSpec, Strike, 'Name1', Value1...) computes
option prices and sensitivities on futures using the Black pricing model.

PriceSens is a NINST-by-1 vector of expected future prices or
sensitivities values.

Examples Consider a European put option on a futures contract with an exercise
price of $60 that expires on June 30, 2008. On April 1, 2008 the
underlying stock is trading at $58 and has a volatility of 9.5% per
annum. The annualized continuously compounded risk-free rate is 5%
per annum. Using this data, compute delta, gamma, and the price of
the put option.

AssetPrice = 58;
Strike = 60;
Sigma = .095;
Rates = 0.05;
Settle = 'April-01-08';
Maturity = 'June-30-08';

Create RateSpec and StockSpec:

RateSpec = intenvset('ValuationDate', Settle, 'StartDates', Settle, 'EndDates',...

6-677

optstocksensbyblk

Maturity, 'Rates', Rates, 'Compounding', -1, 'Basis', 1);

StockSpec = stockspec(Sigma, AssetPrice);

Define the options:

OptSpec = {'put'};

Compute Delta, Gamma and Price for the European put option:

OutSpec = {'Delta','Gamma','Price'};

[Delta, Gamma, Price] = optstocksensbyblk(RateSpec, StockSpec, Settle,...

Maturity, OptSpec, Strike,'OutSpec', OutSpec)

Delta =

-0.7469

Gamma =

0.1130

Price =

2.3569

See Also impvbyblk | intenvset | optstockbyblk | stockspec

6-678

optstocksensbybls

Purpose Determine option prices and sensitivities using Black-Scholes option
pricing model

Syntax PriceSens = optstocksensbybls(RateSpec, StockSpec, Settle,
Maturity, OptSpec, Strike, 'Name1', Value1...)

Arguments

RateSpec The annualized continuously compounded rate
term structure. For information on the interest
rate specification, see intenvset.

StockSpec Stock specification. See stockspec.

Settle NINST-by-1 vector of settlement or trade dates.

Maturity NINST-by-1 vector of maturity dates.

OptSpec NINST-by-1 cell array of strings 'call' or 'put'.

Strike NINST-by-1 vector of strike price values.

OutSpec (Optional) All optional inputs are specified as
matching parameter name/value pairs. The
parameter name is specified as a character string,
followed by the corresponding parameter value.
Parameter name/value pairs may be specified
in any order; names are case-insensitive and
partial string matches are allowed provided no
ambiguities exist. Valid parameter names are:

• NOUT-by-1 or 1-by-NOUT cell array of strings
indicating the nature and order of the outputs
for the function. Possible values are: 'Price',
'Delta', 'Gamma', 'Vega', 'Lambda', 'Rho',
'Theta', or 'All'.

For example, OutSpec = {'Price'; 'Lamba';
'Rho'} specifies that the output should be
Price, Lambda, and Rho, in that order.

6-679

optstocksensbybls

To invoke from a function: [Price,
Lambda, Rho] = optstocksensbybls(...,
'OutSpec', {'Price', 'Lamba', 'Rho'})

OutSpec = {'All'} specifies that the output
should be Delta, Gamma, Vega, Lambda, Rho,
Theta, and Price, in that order. This is the
same as specifying OutSpec as OutSpec =
{'Delta', 'Gamma', 'Vega', 'Lambda',
'Rho', 'Theta', 'Price'};.

• Default is OutSpec = {'Price'}.

Description PriceSens = optstocksensbybls(RateSpec, StockSpec, Settle,
Maturity, OptSpec, Strike, 'Name1', Value1...) computes
option prices and sensitivities using the Black-Scholes option pricing
model.

PriceSens is a NINST-by-1 vector of expected prices or sensitivities
values.

6-680

optstocksensbybls

Note When using StockSpec with optstocksensbybls, you can
modify StockSpec to handle other types of underliers when pricing
instruments that use the Black-Scholes model.

When pricing Futures (Black model), enter the following in StockSpec:

DivType = 'Continuous';
DivAmount = RateSpec.Rates;

When pricing Foreign Currencies (Garman-Kohlhagen model), enter
the following in StockSpec:

DivType = 'Continuous';
DivAmount = ForeignRate;

where ForeignRate is the continuously compounded, annualized risk
free interest rate in the foreign country.

Examples Consider a European call and put options with an exercise price of $30
that expires on June 1, 2008. The underlying stock is trading at $30 on
January 1, 2008 and has a volatility of 30% per annum. The annualized
continuously compounded risk-free rate is 5% per annum. Using this
data, compute the delta, gamma, and price of the options using the
Black-Scholes model.

AssetPrice = 30;
Strike = 30;
Sigma = .30;
Rates = 0.05;
Settle = 'January-01-2008';
Maturity = 'June -01-2008';

Define RateSpec and StockSpec :

RateSpec = intenvset('ValuationDate', Settle, 'StartDates', Settle, 'EndDates',...

6-681

optstocksensbybls

Maturity, 'Rates', Rates, 'Compounding',-1, 'Basis', 1);

StockSpec = stockspec(Sigma, AssetPrice);

Define the options:

OptSpec = {'call', 'put'};

Compute delta, gamma, and price for the European options:

OutSpec = {'Delta','Gamma','Price'};

[Delta, Gamma, Price] = optstocksensbybls(RateSpec, StockSpec, Settle,...

Maturity, OptSpec, Strike,'OutSpec', OutSpec)

Delta =

0.5810

-0.4190

Gamma =

0.0673

0.0673

Price =

2.6126

1.9941

See Also impvbybls | intenvset | optstockbybls | stockspec

6-682

optstocksensbylr

Purpose Determine option prices and sensitivities using Leisen-Reimer binomial
tree model

Syntax PriceSens = optstocksensbylr(LRTree, OptSpec, Strike, Settle,
ExerciseDates)
PriceSens = optstocksensbylr(LRTree, OptSpec, Strike, Settle,
ExerciseDates, Name,Value)

Description PriceSens = optstocksensbylr(LRTree, OptSpec, Strike,
Settle, ExerciseDates) calculates option prices and sensitivities
using a Leisen-Reimer binomial tree model.

PriceSens = optstocksensbylr(LRTree, OptSpec, Strike,
Settle, ExerciseDates, Name,Value) constructs a Leisen-Reimer
stock tree with additional options specified by one or more Name,Value
pair arguments.

Input
Arguments

LRTree

Stock tree structure created by lrtree.

OptSpec

NINST-by-1 cell array of strings 'call' or 'put'.

Strike

NINST-by-1 (European/American) or NINST-by-NSTRIKES (Bermuda)
matrix of strike price values. Each row is the schedule for one option. If
an option has fewer than NSTRIKES exercise opportunities, the end of
the row is padded with NaNs.

Settle

NINST-by-1 matrix of settlement or trade dates.

ExerciseDates

6-683

optstocksensbylr

NINST-by-1(European/American) or NINST-by-NSTRIKEDATES (Bermuda)
matrix of exercise dates. Each row is the schedule for one option. For a
European option, there is only one ExerciseDate on the option expiry
date. For the American type, the option can be exercised on any tree
data between the ValuationDate and tree maturity. The last element
of each row must be the same as the maturity of the tree.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments,
where Name is the argument name and Value is the corresponding
value. Name must appear inside single quotes (' '). You can
specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

AmericanOpt

NINST-by-1 flags with values of 0 (European/Bermuda) or 1 (American).

Default: 0

OutSpec

NOUT-by-1 or 1-by-NOUT cell array of strings indicating the nature and
order of the outputs for the function. Possible values are Price, Delta,
Gamma, Vega, Lambda, Rho, and All.

Default: Price

Output
Arguments

PriceSens

NINST-by-1 expected prices or sensitivities values.

Examples Consider European call and put options with an exercise price of $100
that expire on December 1, 2010. The underlying stock is trading at
$100 on June 1, 2010 and has a volatility of 30% per annum. The
annualized continuously compounded risk-free rate is 7% per annum.
Using this data, compute the price, delta and gamma of the options

6-684

optstocksensbylr

using the Leisen-Reimer model with a tree of 25 time steps and the
PP2 method.

AssetPrice = 100;

Strike = 100;

ValuationDate = 'June-1-2010';

Maturity = 'December-1-2010';

%Define StockSpec

Sigma = 0.3;

StockSpec = stockspec(Sigma, AssetPrice);

% Define RateSpec

Rates = 0.07;

Settle = ValuationDate;

Basis = 1;

Compounding = -1;

RateSpec = intenvset('ValuationDate', ValuationDate, 'StartDates', Settle, ...

'EndDates', Maturity, 'Rates', Rates, 'Compounding', Compounding, 'Basis', Basis);

%Build the Leisen-Reimer (LR) tree with 25 time steps

LRTimeSpec = lrtimespec(ValuationDate, Maturity, 25);

% Use the PP2 method

LRMethod = 'PP2';

TreeLR = lrtree(StockSpec, RateSpec, LRTimeSpec, Strike, 'method', LRMethod);

%Compute prices and sensitivities using the LR model:

OptSpec = {'call'; 'put'};

OutSpec = {'Price', 'Delta', 'Gamma'};

[Price, Delta, Gamma] = optstocksensbylr(TreeLR, OptSpec, Strike, Settle, ...

Maturity, 'OutSpec', OutSpec)

6-685

optstocksensbylr

Price =

10.1332

6.6937

Delta =

0.6056

-0.3944

Gamma =

0.0185

0.0185

References Leisen D.P., M. Reimer, “Binomial Models for Option Valuation –
Examining and Improving Convergence,” Applied Mathematical
Finance, Number 3, 1996, pp. 319-346.

See Also | optstockbylr | lrtree

6-686

optstocksensbyrgw

Purpose Determine American call option prices and sensitivities using
Roll-Geske-Whaley option pricing model

Syntax PriceSens = optstocksensbyrgw(RateSpec, StockSpec, Settle,
Maturity, OptSpec, Strike, 'Name1', Value1...)

Arguments

RateSpec The annualized continuously compounded rate
term structure. For information on the interest
rate specification, see intenvset.

StockSpec Stock specification. See stockspec.

Settle NINST-by-1 vector of settlement or trade dates.

Maturity NINST-by-1 vector of maturity dates.

OptSpec NINST-by-1 cell array of strings 'call' or 'put'.

Strike NINST-by-1 vector of strike price values.

OutSpec (Optional) All optional inputs are specified as
matching parameter name/value pairs. The
parameter name is specified as a character string,
followed by the corresponding parameter value.
Parameter name/value pairs may be specified
in any order; names are case-insensitive and
partial string matches are allowed provided no
ambiguities exist. Valid parameter names are:

• NOUT-by-1 or 1-by-NOUT cell array of strings
indicating the nature and order of the outputs
for the function. Possible values are: 'Price',
'Delta', 'Gamma', 'Vega', 'Lambda', 'Rho',
'Theta', or 'All'.

For example, OutSpec = {'Price'; 'Lamba';
'Rho'} specifies that the output should be
Price, Lambda, and Rho, in that order.

6-687

optstocksensbyrgw

To invoke from a function: [Price,
Lambda, Rho] = optstocksensbyrgw(...,
'OutSpec', {'Price', 'Lamba', 'Rho'})

OutSpec = {'All'} specifies that the output
should be Delta, Gamma, Vega, Lambda, Rho,
Theta, and Price, in that order. This is the
same as specifying OutSpec as OutSpec =
{'Delta', 'Gamma', 'Vega', 'Lambda',
'Rho', 'Theta', 'Price'};.

• Default is OutSpec = {'Price'}.

Description PriceSens = optstocksensbyrgw(RateSpec, StockSpec,
Settle, Maturity, OptSpec, Strike, 'Name1', Value1...)
computes American call option prices and sensitivities using the
Roll-Geske-Whaley option pricing model.

PriceSens is a NINST-by-1 vector of expected prices or sensitivities
values.

Note optstocksensbyrgw computes prices of American calls with a
single cash dividend using the Roll-Geske-Whaley option pricing model.
All sensitivities are evaluated by computing a discrete approximation of
the partial derivative. This means that the option is revalued with a
fractional change for each relevant parameter, and the change in the
option value divided by the increment, is the approximated sensitivity
value.

Examples Consider an American stock option with an exercise price of $82 on
January 1, 2008 that expires on May 1, 2008. Assume the underlying
stock pays dividends of $4 on April 1, 2008. The stock is trading at $80
and has a volatility of 30% per annum. The risk-free rate is 6% per
annum. Using this data, calculate the price and the value of delta

6-688

optstocksensbyrgw

and gamma of the American call using the Roll-Geske-Whaley option
pricing model:

AssetPrice = 80;
Settle = 'Jan-01-2008';
Maturity = 'May-01-2008';
Strike = 82;
Rate = 0.06;
Sigma = 0.3;
DivAmount = 4;
DivDate = 'Apr-01-2008';

Define StockSpec and RateSpec:

StockSpec = stockspec(Sigma, AssetPrice, {'cash'}, DivAmount, DivDate);

RateSpec = intenvset('ValuationDate', Settle, 'StartDates', Settle,...

'EndDates', Maturity, 'Rates', Rate, 'Compounding', -1, 'Basis', 1);

Define OutSpec:

OutSpec = {'Price', 'Delta', 'Gamma'};

Calculate the call Price, Delta, and Gamma:

[Price, Delta, Gamma] = optstocksensbyrgw(RateSpec, StockSpec, Settle,...

Maturity, Strike,'OutSpec', OutSpec)

Price =

4.3860

Delta =

0.5022

6-689

optstocksensbyrgw

Gamma =

0.0336

See Also impvbyrgw | intenvset | optstockbyrgw | stockspec

6-690

rangefloatbybdt

Purpose Price range floating note using Black-Derman-Toy tree

Syntax Price = rangefloatbybdt(BDTTree,Spread,Settle,Maturity,
RateSched)
[Price,PriceTree] = rangefloatbybdt(BDTTree,Spread,Settle,
Maturity,RateSched, Name,Value)

Description Price = rangefloatbybdt(BDTTree,Spread,Settle,Maturity,
RateSched) calculates the price of the range note instrument at the
valuation date using a BDT model.

[Price,PriceTree] = rangefloatbybdt(BDTTree,Spread,Settle,
Maturity,RateSched, Name,Value) calculates the price of the range
note instrument at the valuation date and the price evolution for one
or more range instruments using a BDT model with additional options
specified by one or more Name,Value pair arguments.

Input
Arguments

BDTTree

Interest-rate tree structure created by bdttree.

Spread

NINST-by-1 vector of the number of basis points over the reference rate.

Settle

NINST-by-1 vector of dates representing the settle date of the range
floating note.

Note The Settle date for every range floating instrument is set to the
ValuationDate of the BDT tree. The range floating note argument
Settle is ignored.

Maturity

6-691

rangefloatbybdt

NINST-by-1 vector of dates representing the maturity date of the
floating-rate note.

RateSched

NINST-by-1 vector of structures representing the range of rates within
which cash flows are nonzero. Each element of the structure array
contains two fields:

• RateSched.Dates— NDates-by-1 cell array of dates corresponding to
the range schedule.

• RateSched.Rates — NDates-by-2 array with the first column
containing the lower bound of the range and the second
column containing the upper bound of the range. Cash flow
for date RateSched.Dates(n) is nonzero for rates in the range
RateSched.Rates(n,1) < Rate < RateSched.Rate (n,2).

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments,
where Name is the argument name and Value is the corresponding
value. Name must appear inside single quotes (' '). You can
specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

Basis

NINST-by-1 vector representing the day-count basis used when
annualizing the input forward rate tree.

• 0 = actual/actual

• 1 = 30/360 (SIA)

• 2 = actual/360

• 3 = actual/365

• 4 = 30/360 (BMA)

• 5 = 30/360 (ISDA)

6-692

rangefloatbybdt

• 6 = 30/360 (European)

• 7 = actual/365 (Japanese)

• 8 = actual/actual (ICMA)

• 9 = actual/360 (ICMA)

• 10 = actual/365 (ICMA)

• 11 = 30/360E (ICMA)

• 12 = actual/actual (ISDA)

• 13 = BUS/252
For more information, see basis.

Default: 0 (actual/actual)

EndMonthRule

NINST-by-1 vector for end-of-month rule. Values are 1 (in effect) and
0 (not in effect).

Default: 1 (in effect)

Options

Structure created with derivset containing derivatives pricing options.

Default: None

Principal

NINST-by-1 vector of the notional principal amount.

Default: 100

Reset

NINST-by-1 vector representing the frequency of payments per year.

6-693

rangefloatbybdt

Default: 1

Output
Arguments

Price

NINST-by-1 vector for expected prices at time 0.

PriceTree

Structure containing trees of vectors of instrument prices and accrued
interest, and a vector of observation times for each node. Values are:

• PriceTree.PTree contains the clean prices.

• PriceTree.AITree contains the accrued interest.

• PriceTree.tObs contains the observation times.

Definitions Range Note Instrument

A range note is a structured (market-linked) security whose coupon rate
is equal to the reference rate as long as the reference rate is within a
certain range. If the reference rate is outside of the range, the coupon
rate is 0 for that period. This type of instrument entitles the holder
to cash flows that depend on the level of some reference interest rate
and are floored to be positive. The note holder gets directs exposure to
the reference rate. In return for the drawback that no interest will be
paid for the time the range is left, they offer higher coupon rates than
comparable standard products, like vanilla floating notes.

Examples Compute the price of a range note:

% The data for the interest rate term structure is as follows:

Rates = [0.035; 0.042147; 0.047345; 0.052707];

ValuationDate = 'Jan-1-2011';

StartDates = ValuationDate;

EndDates = {'Jan-1-2012'; 'Jan-1-2013'; 'Jan-1-2014'; 'Jan-1-2015'};

Compounding = 1;

% Create RateSpec

RS = intenvset('ValuationDate', ValuationDate, 'StartDates', StartDates,...

6-694

rangefloatbybdt

'EndDates', EndDates, 'Rates', Rates, 'Compounding', Compounding);

% Instrument

% The range note matures in Jan-1-2014 and has the following RateSchedule:

Spread = 100;

Settle = 'Jan-1-2011';

Maturity = 'Jan-1-2014';

RateSched(1).Dates = {'Jan-1-2012'; 'Jan-1-2013' ; 'Jan-1-2014'};

RateSched(1).Rates = [0.045 0.055 ; 0.0525 0.0675; 0.06 0.08];

% The data to build the tree is as follows:

% Assume the volatility to be 10%.

Sigma = 0.1;

BDTTS = bdttimespec(ValuationDate, EndDates, Compounding);

BDTVS = bdtvolspec(ValuationDate, EndDates, Sigma*ones(1, length(EndDates))');

BDTT = bdttree(BDTVS, RS, BDTTS);

%Price the instrument

Price = rangefloatbybdt(BDTT, Spread, Settle, Maturity, RateSched)

Price =

97.5267

References Jarrow, Robert, Modelling Fixed Income Securities and Interest Rate
Options, Stanford Economics and Finance, 2nd edition, 2002.

See Also | bdttree | cfbybdt | floatbybdt | swapbybdt | floorbybdt |
fixedbybdt | bondbybdt | rangefloatbyhjm | rangefloatbybk |
instrangefloat | rangefloatbyhw |

6-695

rangefloatbybk

Purpose Price range floating note using Black-Karasinski tree

Syntax Price = rangefloatbybk(BKTree,Spread,Settle,Maturity,
RateSched)
[Price,PriceTree] = rangefloatbybk(BKTree,Spread,Settle,
Maturity,RateSched,Name,Value)

Description Price = rangefloatbybk(BKTree,Spread,Settle,Maturity,
RateSched) calculates the price of the range note instrument at the
valuation date using a BK model.

[Price,PriceTree] = rangefloatbybk(BKTree,Spread,Settle,
Maturity,RateSched,Name,Value) calculates the price of the range
note instrument at the valuation date and the price evolution for one
or more range instruments using a BK model with additional options
specified by one or more Name,Value pair arguments.

Input
Arguments

BKTree

Interest-rate tree structure created by bktree.

Spread

NINST-by-1 vector of the number of basis points over the reference rate.

Settle

NINST-by-1 vector of dates representing the settle date of the range
floating note.

Note The Settle date for every range floating instrument is set to
the ValuationDate of the BK tree. The range floating note argument
Settle is ignored.

Maturity

6-696

rangefloatbybk

NINST-by-1 vector of dates representing the maturity date of the
floating-rate note.

RateSched

NINST-by-1 vector of structures representing the range of rates within
which cash flows are nonzero. Each element of the structure array
contains two fields:

• RateSched.Dates— NDates-by-1 cell array of dates corresponding to
the range schedule.

• RateSched.Rates — NDates-by-2 array with the first column
containing the lower bound of the range and the second
column containing the upper bound of the range. Cash flow
for date RateSched.Dates(n) is nonzero for rates in the range
RateSched.Rates(n,1) < Rate < RateSched.Rate (n,2).

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments,
where Name is the argument name and Value is the corresponding
value. Name must appear inside single quotes (' '). You can
specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

Basis

NINST-by-1 vector representing the day-count basis used when
annualizing the input forward rate tree.

• 0 = actual/actual

• 1 = 30/360 (SIA)

• 2 = actual/360

• 3 = actual/365

• 4 = 30/360 (BMA)

• 5 = 30/360 (ISDA)

6-697

rangefloatbybk

• 6 = 30/360 (European)

• 7 = actual/365 (Japanese)

• 8 = actual/actual (ICMA)

• 9 = actual/360 (ICMA)

• 10 = actual/365 (ICMA)

• 11 = 30/360E (ICMA)

• 12 = actual/actual (ISDA)

• 13 = BUS/252
For more information, see basis.

Default: 0 (actual/actual)

EndMonthRule

NINST-by-1 vector for end-of-month rule. Values are 1 (in effect) and
0 (not in effect).

Default: 1 (in effect)

Options

Structure created with derivset containing derivatives pricing options.

Default: None

Principal

NINST-by-1 vector of the notional principal amount.

Default: 100

Reset

NINST-by-1 vector representing the frequency of payments per year.

6-698

rangefloatbybk

Default: 1

Output
Arguments

Price

NINST-by-1 vector for expected prices at time 0.

PriceTree

Structure containing trees of vectors of instrument prices and accrued
interest, and a vector of observation times for each node. Values are:

• PriceTree.PTree contains the clean prices.

• PriceTree.AITree contains the accrued interest.

• PriceTree.tObs contains the observation times.

Definitions Range Note Instrument

A range note is a structured (market-linked) security whose coupon rate
is equal to the reference rate as long as the reference rate is within a
certain range. If the reference rate is outside of the range, the coupon
rate is 0 for that period. This type of instrument entitles the holder
to cash flows that depend on the level of some reference interest rate
and are floored to be positive. The note holder gets directs exposure to
the reference rate. In return for the drawback that no interest will be
paid for the time the range is left, they offer higher coupon rates than
comparable standard products, like vanilla floating notes.

Examples Compute the price of a range note:

% The data for the interest rate term structure is as follows:

Rates = [0.035; 0.042147; 0.047345; 0.052707];

ValuationDate = 'Jan-1-2011';

StartDates = ValuationDate;

EndDates = {'Jan-1-2012'; 'Jan-1-2013'; 'Jan-1-2014'; 'Jan-1-2015'};

Compounding = 1;

% Create RateSpec

RS = intenvset('ValuationDate', ValuationDate, 'StartDates', StartDates,...

6-699

rangefloatbybk

'EndDates', EndDates, 'Rates', Rates, 'Compounding', Compounding);

% Instrument

% The range note matures in Jan-1-2014 and has the following RateSchedule:

Spread = 100;

Settle = 'Jan-1-2011';

Maturity = 'Jan-1-2014';

RateSched(1).Dates = {'Jan-1-2012'; 'Jan-1-2013' ; 'Jan-1-2014'};

RateSched(1).Rates = [0.045 0.055 ; 0.0525 0.0675; 0.06 0.08];

% The data to build the tree is as follows:

VolDates = ['1-Jan-2012'; '1-Jan-2013'; '1-Jan-2014';'1-Jan-2015'];

VolCurve = 0.01;

AlphaDates = '01-01-2015';

AlphaCurve = 0.1;

BKVS = bkvolspec(RS.ValuationDate, VolDates, VolCurve,...

AlphaDates, AlphaCurve);

BKTS = bktimespec(RS.ValuationDate, VolDates, Compounding);

BKT = bktree(BKVS, RS, BKTS);

%Price the instrument

Price = rangefloatbybk(BKT, Spread, Settle, Maturity, RateSched)

Price =

102.7574

References Jarrow, Robert, Modelling Fixed Income Securities and Interest Rate
Options, Stanford Economics and Finance, 2nd edition, 2002.

See Also | bktree | cfbybk | capbybk | swapbybk | floorbybk | fixedbybk |
bondbybk | rangefloatbyhjm | rangefloatbybdt | rangefloatbyhw |
instrangefloat |

6-700

rangefloatbyhjm

Purpose Price range floating note using Heath-Jarrow-Morton tree

Syntax Price = rangefloatbyhjm(HJMTree,Spread,Settle,Maturity,
RateSched)
[Price,PriceTree] = rangefloatbyhjm(HJMTree,Spread,Settle,
Maturity,RateSched,Name,Value)

Description Price = rangefloatbyhjm(HJMTree,Spread,Settle,Maturity,
RateSched) calculates the price of the range note instrument at the
valuation date using an HJM model.

[Price,PriceTree] = rangefloatbyhjm(HJMTree,Spread,Settle,
Maturity,RateSched,Name,Value) calculates the price of the range
note instrument at the valuation date and the price evolution for one or
more range instruments using an HJM model with additional options
specified by one or more Name,Value pair arguments.

Input
Arguments

HJMTree

Interest-rate tree structure created by hjmtree.

Spread

NINST-by-1 vector of the number of basis points over the reference rate.

Settle

NINST-by-1 vector of dates representing the settle date of the range
floating note.

Note The Settle date for every range floating instrument is set to the
ValuationDate of the HJM tree. The range floating note argument
Settle is ignored.

Maturity

6-701

rangefloatbyhjm

NINST-by-1 vector of dates representing the maturity date of the
floating-rate note.

RateSched

NINST-by-1 vector of structures representing the range of rates within
which cash flows are nonzero. Each element of the structure array
contains two fields:

• RateSched.Dates— NDates-by-1 cell array of dates corresponding to
the range schedule.

• RateSched.Rates — NDates-by-2 array with the first column
containing the lower bound of the range and the second
column containing the upper bound of the range. Cash flow
for date RateSched.Dates(n) is nonzero for rates in the range
RateSched.Rates(n,1) < Rate < RateSched.Rate (n,2).

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments,
where Name is the argument name and Value is the corresponding
value. Name must appear inside single quotes (' '). You can
specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

Basis

NINST-by-1 vector representing the day-count basis used when
annualizing the input forward rate tree.

• 0 = actual/actual

• 1 = 30/360 (SIA)

• 2 = actual/360

• 3 = actual/365

• 4 = 30/360 (BMA)

• 5 = 30/360 (ISDA)

6-702

rangefloatbyhjm

• 6 = 30/360 (European)

• 7 = actual/365 (Japanese)

• 8 = actual/actual (ICMA)

• 9 = actual/360 (ICMA)

• 10 = actual/365 (ICMA)

• 11 = 30/360E (ICMA)

• 12 = actual/actual (ISDA)

• 13 = BUS/252
For more information, see basis.

Default: 0 (actual/actual)

EndMonthRule

NINST-by-1 vector for end-of-month rule. Values are 1 (in effect) and
0 (not in effect).

Default: 1 (in effect)

Options

Structure created with derivset containing derivatives pricing options.

Default: None

Principal

NINST-by-1 vector of the notional principal amount.

Default: 100

Reset

NINST-by-1 vector representing the frequency of payments per year.

6-703

rangefloatbyhjm

Default: 1

Output
Arguments

Price

NINST-by-1 vector for expected prices at time 0.

PriceTree

Structure containing trees of vectors of instrument prices and accrued
interest, and a vector of observation times for each node. Values are:

• PriceTree.PTree contains the clean prices.

• PriceTree.AITree contains the accrued interest.

• PriceTree.tObs contains the observation times.

Definitions Range Note Instrument

A range note is a structured (market-linked) security whose coupon rate
is equal to the reference rate as long as the reference rate is within a
certain range. If the reference rate is outside of the range, the coupon
rate is 0 for that period. This type of instrument entitles the holder
to cash flows that depend on the level of some reference interest rate
and are floored to be positive. The note holder gets directs exposure to
the reference rate. In return for the drawback that no interest will be
paid for the time the range is left, they offer higher coupon rates than
comparable standard products, like vanilla floating notes.

Examples Compute the price of a range note:

% The data for the interest rate term structure is as follows:

Rates = [0.035; 0.042147; 0.047345; 0.052707];

ValuationDate = 'Jan-1-2011';

StartDates = ValuationDate;

EndDates = {'Jan-1-2012'; 'Jan-1-2013'; 'Jan-1-2014'; 'Jan-1-2015'};

Compounding = 1;

% Create RateSpec

RS = intenvset('ValuationDate', ValuationDate, 'StartDates', StartDates,...

6-704

rangefloatbyhjm

'EndDates', EndDates, 'Rates', Rates, 'Compounding', Compounding);

% Instrument

% The range note matures in Jan-1-2014 and has the following RateSchedule:

Spread = 100;

Settle = 'Jan-1-2011';

Maturity = 'Jan-1-2014';

RateSched(1).Dates = {'Jan-1-2012'; 'Jan-1-2013' ; 'Jan-1-2014'};

RateSched(1).Rates = [0.045 0.055 ; 0.0525 0.0675; 0.06 0.08];

% The data to build the tree is as follows:

Volatility = [.2; .19; .18; .17];

CurveTerm = [1; 2; 3; 4];

MaTree = {'Jan-1-2012'; 'Jan-1-2013'; 'Jan-1-2014'; 'Jan-1-2015'};

HJMTS = hjmtimespec(ValuationDate, MaTree);

HJMVS = hjmvolspec('Proportional', Volatility, CurveTerm, 1e6);

HJMT = hjmtree(HJMVS, RS, HJMTS);

%Price the instrument

Price = rangefloatbyhjm(HJMT, Spread, Settle, Maturity, RateSched)

Price =

90.2348

References Jarrow, Robert, Modelling Fixed Income Securities and Interest Rate
Options, Stanford Economics and Finance, 2nd edition, 2002.

See Also | hjmtree | cfbyhjm | floatbyhjm | swapbyhjm | floorbyhjm |
fixedbyhjm | bondbyhjm | rangefloatbybk | rangefloatbybdt |
rangefloatbyhw | instrangefloat |

6-705

rangefloatbyhw

Purpose Price range floating note using Hull-White tree

Syntax Price = rangefloatbyhw(HWTree,Spread,Settle,Maturity,
RateSched)
[Price,PriceTree] = rangefloatbyhw(HWTree,Spread,Settle,
Maturity,RateSched,Name,Value)

Description Price = rangefloatbyhw(HWTree,Spread,Settle,Maturity,
RateSched) calculates the price of the range note instrument at the
valuation date using an HW model.

[Price,PriceTree] = rangefloatbyhw(HWTree,Spread,Settle,
Maturity,RateSched,Name,Value) calculates the price of the range
note instrument at the valuation date and the price evolution for one or
more range instruments using an HW model with additional options
specified by one or more Name,Value pair arguments.

Input
Arguments

HWTree

Interest-rate tree structure created by hwtree.

Spread

NINST-by-1 vector of the number of basis points over the reference rate.

Settle

NINST-by-1 vector of dates representing the settle date of the range
floating note.

Note The Settle date for every range floating instrument is set to
the ValuationDate of the HW tree. The range floating note argument
Settle is ignored.

Maturity

6-706

rangefloatbyhw

NINST-by-1 vector of dates representing the maturity date of the
floating-rate note.

RateSched

NINST-by-1 vector of structures representing the range of rates within
which cash flows are nonzero. Each element of the structure array
contains two fields:

• RateSched.Dates— NDates-by-1 cell array of dates corresponding to
the range schedule.

• RateSched.Rates — NDates-by-2 array with the first column
containing the lower bound of the range and the second
column containing the upper bound of the range. Cash flow
for date RateSched.Dates(n) is nonzero for rates in the range
RateSched.Rates(n,1) < Rate < RateSched.Rate (n,2).

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments,
where Name is the argument name and Value is the corresponding
value. Name must appear inside single quotes (' '). You can
specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

Basis

NINST-by-1 vector representing the day-count basis used when
annualizing the input forward rate tree.

• 0 = actual/actual

• 1 = 30/360 (SIA)

• 2 = actual/360

• 3 = actual/365

• 4 = 30/360 (BMA)

• 5 = 30/360 (ISDA)

6-707

rangefloatbyhw

• 6 = 30/360 (European)

• 7 = actual/365 (Japanese)

• 8 = actual/actual (ICMA)

• 9 = actual/360 (ICMA)

• 10 = actual/365 (ICMA)

• 11 = 30/360E (ICMA)

• 12 = actual/actual (ISDA)

• 13 = BUS/252
For more information, see basis.

Default: 0 (actual/actual)

EndMonthRule

NINST-by-1 vector for end-of-month rule. Values are 1 (in effect) and
0 (not in effect).

Default: 1 (in effect)

Options

Structure created with derivset containing derivatives pricing options.

Default: None

Principal

NINST-by-1 vector of the notional principal amount.

Default: 100

Reset

NINST-by-1 vector representing the frequency of payments per year.

6-708

rangefloatbyhw

Default: 1

Output
Arguments

Price

NINST-by-1 vector for expected prices at time 0.

PriceTree

Structure containing trees of vectors of instrument prices and accrued
interest, and a vector of observation times for each node. Values are:

• PriceTree.PTree contains the clean prices.

• PriceTree.AITree contains the accrued interest.

• PriceTree.tObs contains the observation times.

Definitions Range Note Instrument

A range note is a structured (market-linked) security whose coupon rate
is equal to the reference rate as long as the reference rate is within a
certain range. If the reference rate is outside of the range, the coupon
rate is 0 for that period. This type of instrument entitles the holder
to cash flows that depend on the level of some reference interest rate
and are floored to be positive. The note holder gets directs exposure to
the reference rate. In return for the drawback that no interest will be
paid for the time the range is left, they offer higher coupon rates than
comparable standard products, like vanilla floating notes.

Examples Compute the price of a range note:

% The data for the interest rate term structure is as follows:

Rates = [0.035; 0.042147; 0.047345; 0.052707];

ValuationDate = 'Jan-1-2011';

StartDates = ValuationDate;

EndDates = {'Jan-1-2012'; 'Jan-1-2013'; 'Jan-1-2014'; 'Jan-1-2015'};

Compounding = 1;

% Create RateSpec

RS = intenvset('ValuationDate', ValuationDate, 'StartDates', StartDates,...

6-709

rangefloatbyhw

'EndDates', EndDates, 'Rates', Rates, 'Compounding', Compounding);

% Instrument

% The range note matures in Jan-1-2014 and has the following RateSchedule:

Spread = 100;

Settle = 'Jan-1-2011';

Maturity = 'Jan-1-2014';

RateSched(1).Dates = {'Jan-1-2012'; 'Jan-1-2013' ; 'Jan-1-2014'};

RateSched(1).Rates = [0.045 0.055 ; 0.0525 0.0675; 0.06 0.08];

% The data to build the tree is as follows:

VolDates = ['1-Jan-2012'; '1-Jan-2013'; '1-Jan-2014';'1-Jan-2015'];

VolCurve = 0.01;

AlphaDates = '01-01-2015';

AlphaCurve = 0.1;

HWVS = hwvolspec(RS.ValuationDate, VolDates, VolCurve,...

AlphaDates, AlphaCurve);

HWTS = hwtimespec(RS.ValuationDate, VolDates, Compounding);

HWT = hwtree(HWVS, RS, HWTS);

%Price the instrument

Price = rangefloatbyhw(HWT, Spread, Settle, Maturity, RateSched)

Price =

96.6501

References Jarrow, Robert, Modelling Fixed Income Securities and Interest Rate
Options, Stanford Economics and Finance, 2nd edition, 2002.

See Also | hwtree | cfbyhw | capbyhw | swapbyhw | floorbyhw | fixedbyhw |
bondbyhw | rangefloatbybk | rangefloatbybdt | rangefloatbyhjm |
instrangefloat |

6-710

rate2disc

Purpose Discount factors from interest rates

Syntax Usage 1: Interval points are input as times in periodic units.
Disc = rate2disc(Compounding, Rates, EndTimes)
Disc = rate2disc(Compounding, Rates, EndTimes, StartTimes)

Usage 2: ValuationDate is passed and interval points are input as
dates.
[Disc, EndTimes, StartTimes] = rate2disc(Compounding, Rates,
EndDates, StartDates, ValuationDate)
[Disc, EndTimes, StartTimes] = rate2disc(Compounding, Rates,
EndDates, StartDates, ValuationDate, Basis, EndMonthRule)

Arguments

Compounding Scalar value representing the rate at which
the input zero rates were compounded when
annualized. This argument determines the
formula for the discount factors:

Compounding = 1, 2, 3, 4, 6, 12

Disc = (1 + Z/F)^(-T), where F is the
compounding frequency, Z is the zero rate, and
T is the time in periodic units; for example, T =
F is 1 year.

Compounding = 365

Disc = (1 + Z/F)^(-T), where F is the number
of days in the basis year and T is a number of
days elapsed computed by basis.

Compounding = -1

Disc = exp(-T*Z), where T is time in years.

Rates Number of points (NPOINTS) by number of
curves (NCURVES) matrix of rates in decimal
form. For example, 5% is 0.05 in Rates. Rates
are the yields over investment intervals from

6-711

rate2disc

StartTimes, when the cash flow is valued, to
EndTimes, when the cash flow is received.

EndTimes NPOINTS-by-1 vector or scalar of times in periodic
units ending the interval to discount over.

Note When ValuationDate is not passed, the
third and fourth arguments (EndTimes and
StartTimes) are interpreted as times.

StartTimes (Optional) NPOINTS-by-1 vector or scalar of times
in periodic units starting the interval to discount
over. Default = 0.

EndDates NPOINTS-by-1 vector or scalar of serial maturity
dates ending the interval to discount over.

Note : When ValuationDate is passed, the
third and fourth arguments (EndDates and
StartDates) are interpreted as dates. The date
ValuationDate is used as the zero point for
computing the times.

StartDates (Optional) NPOINTS-by-1 vector or scalar of serial
dates starting the interval to discount over.
StartDates must be earlier than EndDates.

Default = ValuationDate.

ValuationDate Scalar value in serial date number form
representing the observation date of the
investment horizons entered in StartDates and
EndDates. Required in Usage 2. Omitted or
passed as an empty matrix to invoke Usage 1.

6-712

rate2disc

Basis (Optional) Day-count basis of the instrument
when using Usage 2. A vector of integers.

• 0 = actual/actual (default)

• 1 = 30/360 (SIA)

• 2 = actual/360

• 3 = actual/365

• 4 = 30/360 (BMA)

• 5 = 30/360 (ISDA)

• 6 = 30/360 (European)

• 7 = actual/365 (Japanese)

• 8 = actual/actual (ICMA)

• 9 = actual/360 (ICMA)

• 10 = actual/365 (ICMA)

• 11 = 30/360E (ICMA)

• 12 = actual/actual (ISDA)

• 13 = BUS/252
For more information, see basis.

EndMonthRule (Optional) End-of-month rule when using
Usage 2. A vector. This rule applies only when
Maturity is an end-of-month date for a month
having 30 or fewer days. 0 = ignore rule, meaning
that a bond’s coupon payment date is always the
same numerical day of the month. 1 = set rule on
(default), meaning that a bond’s coupon payment
date is always the last actual day of the month.

6-713

rate2disc

Description Usage 1: Disc = rate2disc(Compounding, Rates, EndTimes)
or Disc = rate2disc(Compounding, Rates, EndTimes,
StartTimes)where interval points are input as times in periodic units.

Usage 2: [Disc, EndTimes, StartTimes] =
rate2disc(Compounding, Rates, EndDates, StartDates,
ValuationDate) or [Disc, EndTimes, StartTimes] =
rate2disc(Compounding, Rates, EndDates, StartDates,
ValuationDate, Basis, EndMonthRule) where ValuationDate is
passed and interval points are input as dates.

rate2disc computes the discounts over a series of NPOINTS time
intervals given the annualized yield over those intervals. NCURVES
different rate curves can be translated at once if they have the same
time structure. The time intervals can represent a zero curve or a
forward curve.

The output Disc is an NPOINTS-by-NCURVES column vector of discount
factors in decimal form representing the value at time StartTime of a
unit cash flow received at time EndTime.

You can specify the investment intervals either with input times
(Usage 1) or with input dates (Usage 2). Entering ValuationDate
invokes the date interpretation; omitting ValuationDate invokes the
default time interpretations.

For Usage 1:

• StartTimes is an NPOINTS-by-1 column vector of times starting the
interval to discount over, measured in periodic units.

• EndTimes is an NPOINTS-by-1 column vector of times ending the
interval to discount over, measured in periodic units.

For Usage 2:

• StartDates is an NPOINTS-by-1 column vector of serial dates starting
the interval to discount over, measured in days.

• EndDates is an NPOINTS-by-1 column vector of serial dates ending
the interval to discount over, measured in days.

6-714

rate2disc

If Compounding = 365 (daily), StartDates and EndDates are measured
in days as in Usage 2. Otherwise, in Usage 1, the arguments contain
values, T, computed from SIA semiannual time factors, Tsemi, by the
formula T = Tsemi/2*F, where F is the compounding frequency.

Examples Example 1 demonstrates Usage 1. Compute discounts from a zero
curve at 6 months, 12 months, and 24 months. The times to the cash
flows are 1, 2, and 4. You are computing the present value (at time
0) of the cash flows.

Compounding = 2;
Rates = [0.05; 0.06; 0.065];
EndTimes = [1; 2; 4];
Disc = rate2disc(Compounding, Rates, EndTimes)

Disc =
0.9756
0.9426
0.8799

Example 2 demonstrates Usage 2. Compute discounts from a zero
curve at 6 months, 12 months, and 24 months. Use dates to specify
the ending time horizon.

Compounding = 2;

Rates = [0.05; 0.06; 0.065];

EndDates = ['10/15/97'; '04/15/98'; '04/15/99'];

ValuationDate = '4/15/97';

Disc = rate2disc(Compounding, Rates, EndDates, [], ValuationDate)

Disc =

0.9756

0.9426

0.8799

Example 3 demonstrates Usage 1. Compute discounts from the 1-year
forward rates beginning now, in 6 months, and in 12 months. Use

6-715

rate2disc

monthly compounding. The times to the cash flows are 12, 18, 24, and
the forward times are 0, 6, 12.

Compounding = 12;
Rates = [0.05; 0.04; 0.06];
EndTimes = [12; 18; 24];
StartTimes = [0; 6; 12];
Disc = rate2disc(Compounding, Rates, EndTimes, StartTimes)
Disc =

0.9513
0.9609
0.9419

See Also disc2rate | ratetimes

6-716

ratetimes

Purpose Change time intervals defining interest-rate environment

Syntax [Rates, EndTimes, StartTimes] = ratetimes(Compounding,
RefRates, RefEndTimes, RefStartTimes, EndTimes, StartTimes)
[Rates, EndTimes, StartTimes] = ratetimes(Compounding,
RefRates, RefEndDates, RefStartDates, EndDates, StartDates,
ValuationDate)

Usage 1: ValuationDate not passed; third through sixth arguments
are interpreted as times.
[Rates, EndTimes, StartTimes] = ratetimes(Compounding,
RefRates, RefEndTimes, RefStartTimes, EndTimes, StartTimes)

Usage 2: ValuationDate passed and interval points input as dates.
[Rates, EndTimes, StartTimes] = ratetimes(Compounding,
RefRates, RefEndDates, RefStartDates, EndDates, StartDates,
ValuationDate)

Arguments

Compounding Scalar value representing the rate at which
the input zero rates were compounded when
annualized. This argument determines the
formula for the discount factors:

Compounding = 1, 2, 3, 4, 6, 12

Disc = (1 + Z/F)^(-T), where F is the
compounding frequency, Z is the zero rate, and
T is the time in periodic units; for example, T =
F is 1 year.

Compounding = 365

Disc = (1 + Z/F)^(-T), where F is the number
of days in the basis year and T is a number of
days elapsed computed by basis.

Compounding = -1

6-717

ratetimes

Disc = exp(-T*Z), where T is time in years.

RefRates NREFPTS-by-NCURVES matrix of reference rates
in decimal form. RefRates are the yields over
investment intervals from RefStartTimes, when
the cash flow is valued, to RefEndTimes, when
the cash flow is received.

RefEndTimes NREFPTS-by-1 vector or scalar of times in periodic
units ending the intervals corresponding to
RefRates.

RefStartTimes (Optional) NREFPTS-by-1 vector or scalar of
times in periodic units starting the intervals
corresponding to RefRates. Default = 0.

EndTimes NPOINTS-by-1 vector or scalar of times in periodic
units ending the interval to discount over.

StartTimes (Optional) NPOINTS-by-1 vector or scalar of times
in periodic units starting the interval to discount
over. Default = 0.

RefEndDates NREFPTS-by-1 vector or scalar of serial dates
ending the intervals corresponding to RefRates.

RefStartDates (Optional) NREFPTS-by-1 vector or scalar of
serial dates starting the intervals corresponding
to RefRates. Default = ValuationDate.

EndDates NPOINTS-by-1 vector or scalar of serial maturity
dates ending the interval to discount over.

6-718

ratetimes

StartDates (Optional) NPOINTS-by-1 vector or scalar of serial
dates starting the interval to discount over.
StartDates must be earlier than EndDates.

Default = ValuationDate.

ValuationDate Scalar value in serial date number form
representing the observation date of the
investment horizons entered in StartDates and
EndDates. Required in Usage 2. Omitted or
passed as an empty matrix to invoke Usage 1.

Description [Rates, EndTimes, StartTimes] = ratetimes(Compounding,
RefRates, RefEndTimes, RefStartTimes, EndTimes, StartTimes)
and [Rates, EndTimes, StartTimes] = ratetimes(Compounding,
RefRates, RefEndDates, RefStartDates, EndDates, StartDates,
ValuationDate) change time intervals defining an interest-rate
environment.

ratetimes takes an interest-rate environment defined by yields over
one collection of time intervals and computes the yields over another
set of time intervals. The zero rate is assumed to be piece-wise linear
in time.

Rates is an NPOINTS-by-NCURVES matrix of rates implied by the
reference interest-rate structure and sampled at new intervals.

StartTimes is an NPOINTS-by-1 column vector of times starting the new
intervals where rates are desired, measured in periodic units.

EndTimes is an NPOINTS-by-1 column vector of times ending the new
intervals, measured in periodic units.

If Compounding = 365 (daily), StartTimes and EndTimes are measured
in days. The arguments otherwise contain values, T, computed from
SIA semiannual time factors, Tsemi, by the formula T = Tsemi/2 * F,
where F is the compounding frequency.

6-719

ratetimes

You can specify the investment intervals either with input times (Usage
1) or with input dates (Usage 2). Entering the argument ValuationDate
invokes the date interpretation; omitting ValuationDate invokes the
default time interpretations.

Examples Example 1. The reference environment is a collection of zero rates
at 6, 12, and 24 months. Create a collection of 1-year forward rates
beginning at 0, 6, and 12 months.

RefRates = [0.05; 0.06; 0.065];

RefEndTimes = [1; 2; 4];

StartTimes = [0; 1; 2];

EndTimes = [2; 3; 4];

Rates = ratetimes(2, RefRates, RefEndTimes, 0, EndTimes,...

StartTimes)

Rates =

0.0600

0.0688

0.0700

Example 2. Interpolate a zero yield curve to different dates. Zero
curves start at the default date of ValuationDate.

RefRates = [0.04; 0.05; 0.052];
RefDates = [729756; 729907; 730121];
Dates = [730241; 730486];
ValuationDate = 729391;
Rates = ratetimes(2, RefRates, RefDates, [], Dates, [],...
ValuationDate)
Rates =
0.0520
0.0520

See Also disc2rate | rate2disc

6-720

stockoptspec

Purpose Specify European stock option structure

Syntax [StockOptSpec] = stockoptspec(OptPrice, Strike, Settle,
Maturity, OptSpec, InterpMethod)

Arguments

OptPrice NINST-by-1 vector of European option prices.

Strike NINST-by-1 vector of strike prices.

Settle Scalar date marking the settlement date.

Maturity NINST-by-1 vector of maturity dates.

OptSpec NINST-by-1 cell array of strings 'call' or 'put'.

InterpMethod (Optional) Method of interpolation to use for option
prices. InterpMethod is [{'price'} | 'vol']. The
default is 'price'. By specifying 'vol', implied
volatilities will be used for interpolation purposes.
The interpolated values will then be used to calculate
the implicit interpolated prices.

Description [StockOptSpec] = stockoptspec(OptPrice, Strike, Settle,
Maturity, OptSpec, InterpMethod) creates a structure encapsulating
the properties of a stock option structure.

Examples Consider the following data quoted from liquid options in the market
with varying strikes and maturity. You specify these parameters in
MATLAB as follows:

Settle = '01/01/06';

Maturity = ['07/01/06';

'07/01/06';

'07/01/06';

'07/01/06';

6-721

stockoptspec

'01/01/07';

'01/01/07';

'01/01/07';

'01/01/07';

'07/01/07';

'07/01/07';

'07/01/07';

'07/01/07';

'01/01/08';

'01/01/08';

'01/01/08';

'01/01/08'];

Strike = [113;

101;

100;

88;

128;

112;

100;

78;

144;

112;

100;

69;

162;

112;

100;

61];

OptPrice =[0;

4.807905472659144;

1.306321897011867;

0.048039195057173;

0;

2.310953054191461;

1.421950392866235;

6-722

stockoptspec

0.020414826276740;

0;

5.091986935627730;

1.346534812295291;

0.005101325584140;

0;

8.047628153217246;

1.219653432150932;

0.001041436654748];

OptSpec = { 'call';

'call';

'put';

'put';

'call';

'call';

'put';

'put';

'call';

'call';

'put';

'put';

'call';

'call';

'put';

'put'};

StockOptSpec = stockoptspec(OptPrice, Strike, Settle, Maturity, OptSpec)

StockOptSpec =

FinObj: 'StockOptSpec'

OptPrice: [16x1 double]

Strike: [16x1 double]

Settle: 732678

Maturity: [16x1 double]

6-723

stockoptspec

OptSpec: {16x1 cell}

InterpMethod: 'price'

See Also ittprice | itttree | stockspec

6-724

stockspec

Purpose Create stock structure

Syntax StockSpec = stockspec(Sigma, AssetPrice, DividendType,
DividendAmounts, ExDividendDates)

Arguments

Sigma NINST-by-1 decimal annual price volatility of
underlying security.

AssetPrice NINST-by-1 vector of underlying asset price
values at time 0.

DividendType (Optional) NINST-by-1 cell array of strings
specifying each stock’s dividend type.
Dividend type must be either cash for actual
dollar dividends, constant for constant
dividend yield, or continuous for continuous
dividend yield. This function does not handle
stock option dividends.

Note Dividends are assumed to be paid in
cash. Noncash dividends (stock) are not
allowed. When combining two or more type
of dividends, shorter rows should be padded
with the value NaN.

6-725

stockspec

DividendAmounts (Optional) NINST-by-NDIV matrix of cash
dividends or NINST-by-1 vector representing
a constant or continuous annualized dividend
yield.

ExDividendDates (Optional) NINST-by-NDIV matrix of
ex-dividend dates for cash type or NINST-by-1
vector of ex-dividend dates for constant
dividend type. For continuous dividend
type, this argument should be ignored.

Description StockSpec = stockspec(Sigma, AssetPrice, DividendType,
DividendAmounts, ExDividendDates) creates a MATLAB structure
containing the properties of a stock.

Examples Example 1. Consider a stock that provides four cash dividends of $0.50
on January 3, 2008, April 1, 2008, July 5, 2008 and October 1, 2008.
The stock is trading at $50, and has a volatility of 20% per annum.
Using this data, create the structure StockSpec:

AssetPrice = 50;

Sigma = 0.20;

DividendType = {'cash'};

DividendAmounts = [0.50, 0.50, 0.50, 0.50];

ExDividendDates = {'03-Jan-2008', '01-Apr-2008', '05-July-2008', '01-Oct-2008'};

StockSpec = stockspec(Sigma, AssetPrice, DividendType, DividendAmounts, ExDividendDates)

StockSpec =

FinObj: 'StockSpec'

Sigma: 0.2000

AssetPrice: 50

DividendType: {'cash'}

DividendAmounts: [0.5000 0.5000 0.5000 0.5000]

6-726

stockspec

ExDividendDates: [733410 733499 733594 733682]

Examine the StockSpec structure:

datedisp(StockSpec.ExDividendDates)
03-Jan-2008 01-Apr-2008 05-Jul-2008 01-Oct-2008

StockSpec.DividendType

ans =

'cash'

The StockSpec structure encapsulates the information of the stock
and its four cash dividends.

Example 2. Consider two stocks that are trading at $40 and $35. The
first one provides two cash dividends of $0.25 on March 1, 2008 and
June 1, 2008. The second stock provides a continuous dividend yield of
3%. The stocks have a volatility of 30% per annum. Using this data,
create the structure StockSpec:

AssetPrice = [40; 35];

Sigma = .30;

DividendType = {'cash'; 'continuous'};

DividendAmount = [0.25, 0.25 ; 0.03 NaN];

DividendDate1 = 'March-01-2008';

DividendDate2 = 'Jun-01-2008';

StockSpec = stockspec(Sigma, AssetPrice, DividendType, DividendAmount,...

{ DividendDate1, DividendDate2 ; NaN NaN})

StockSpec =

FinObj: 'StockSpec'

Sigma: [2x1 double]

AssetPrice: [2x1 double]

6-727

stockspec

DividendType: {2x1 cell}

DividendAmounts: [2x2 double]

ExDividendDates: [2x2 double]

Examine the StockSpec structure:

datedisp(StockSpec.ExDividendDates)
01-Mar-2008 01-Jun-2008

NaN NaN

StockSpec.DividendType

ans =

'cash'
'continuous'

The StockSpec structure encapsulates the information of the two stocks
and their dividends.

See Also crrprice | crrtree | intenvset | optstockbybjs | optstockbyblk |
optstockbybls | optstockbyrgw

6-728

supersharebybls

Purpose Calculate price of supershare digital options using Black-Scholes model

Syntax Price = supersharebybls(RateSpec, StockSpec, Settle, Maturity,
OptSpec, StrikeLow, StrikeHigh)

Arguments

RateSpec The annualized, continuously compounded rate
term structure. For information on the interest
rate specification, see intenvset.

StockSpec Stock specification. See stockspec.

Settle NINST-by-1 vector of settlement or trade dates.

Maturity NINST-by-1 vector of maturity dates.

StrikeLow NINST-by-1 vector of low strike price values.

StrikeHigh NINST-by-1 vector of high strike price values.

Description Price = supersharebybls(RateSpec, StockSpec, Settle,
Maturity, OptSpec, StrikeLow, StrikeHigh) computes supershare
digital option prices using the Black-Scholes model.

Price is a NINST-by-1 vector of expected option prices.

Examples Consider a supershare based on a portfolio of nondividend paying stocks
with a lower strike of 350 and an upper strike of 450. The value of the
portfolio on November 1, 2008 is 400. The risk-free rate is 4.5% and the
volatility is 18%. Using this data, calculate the price of the supershare
option on February 1, 2009.

Create the RateSpec:

Settle = 'Nov-1-2008';

Maturity = 'Feb-1-2009';

6-729

supersharebybls

Rates = 0.045;

Basis = 1;

Compounding = -1;

RateSpec = intenvset('ValuationDate', Settle, 'StartDates', Settle,...

'EndDates', Maturity, 'Rates', Rates, 'Compounding', Compounding, 'Basis', Basis);

Define the StockSpec:

AssetPrice = 400;
Sigma = .18;
StockSpec = stockspec(Sigma, AssetPrice);

Define the high and low strike points:

StrikeLow = 350;
StrikeHigh = 450;

Calculate the price:

Pssh = supersharebybls(RateSpec, StockSpec, Settle, Maturity,...
StrikeLow, StrikeHigh)

Pssh =

0.9411

See Also assetbybls | cashbybls | gapbybls | supersharesensbybls

6-730

supersharesensbybls

Purpose Calculate price and sensitivities of supershare digital options using
Black-Scholes model

Syntax PriceSens = supersharesensbybls(RateSpec, StockSpec, Settle,
Maturity, StrikeLow, StrikeHigh)
PriceSens = supersharesensbybls(RateSpec, StockSpec, Settle,
Maturity, StrikeLow, StrikeHigh, OutSpec)

Arguments

RateSpec The annualized, continuously compounded rate
term structure. For information on the interest
rate specification, see intenvset.

StockSpec Stock specification. See stockspec.

Settle NINST-by-1 vector of settlement or trade dates.

Maturity NINST-by-1 vector of maturity dates.

StrikeLow NINST-by-1 vector of low strike price values.

StrikeHigh NINST-by-1 vector of high strike price values.

OutSpec (Optional) All optional inputs are specified as
matching parameter name/value pairs. The
parameter name is specified as a character string,
followed by the corresponding parameter value.
You can specify parameter name/value pairs
in any order. Names are case-insensitive and
partial string matches are allowed provided no
ambiguities exist. Valid parameter names are:

• NOUT-by-1 or 1-by-NOUT cell array of strings
indicating the nature and order of the outputs
for the function. Possible values are 'Price',
'Delta', 'Gamma', 'Vega', 'Lambda', 'Rho',
'Theta', or 'All'.

6-731

supersharesensbybls

For example, OutSpec = {'Price'; 'Lamba';
'Rho'} specifies that the output should be
Price, Lambda, and Rho, in that order.

To invoke from a function: [Price, Lambda,
Rho] = supersharesensbybls(...,
'OutSpec', {'Price', 'Lamba', 'Rho'})

OutSpec = {'All'} specifies that the output
should be Delta, Gamma, Vega, Lambda, Rho,
Theta, and Price, in that order. This is the
same as specifying OutSpec as OutSpec =
{'Delta', 'Gamma', 'Vega', 'Lambda',
'Rho', 'Theta', 'Price'};.

• Default is OutSpec = {'Price'}.

Description PriceSens = supersharesensbybls(RateSpec, StockSpec,
Settle, Maturity, StrikeLow, StrikeHigh) computes supershare
option prices using the Black-Scholes option pricing model.

PriceSens = supersharesensbybls(RateSpec, StockSpec,
Settle, Maturity, StrikeLow, StrikeHigh, OutSpec) includes an
OutSpec argument defined as parameter/value pairs, and computes
supershare option prices and sensitivities using the Black-Scholes
option pricing model.

PriceSens is a NINST-by-1 vector of expected option prices and
sensitivities.

Examples Consider a supershare based on a portfolio of nondividend paying stocks
with a lower strike of 350 and an upper strike of 450. The value of the
portfolio on November 1, 2008 is 400. The risk-free rate is 4.5% and the
volatility is 18%. Using this data, calculate the price and sensitivity of
the supershare option on February 1, 2009.

Create the RateSpec:

6-732

supersharesensbybls

Settle = 'Nov-1-2008';

Maturity = 'Feb-1-2009';

Rates = 0.045;

Basis = 1;

Compounding = -1;

RateSpec = intenvset('ValuationDate', Settle, 'StartDates', Settle,...

'EndDates', Maturity, 'Rates', Rates, 'Compounding', Compounding, 'Basis', Basis);

Define the StockSpec:

AssetPrice = 400;
Sigma = .18;
StockSpec = stockspec(Sigma, AssetPrice);

Define the high and low strike points:

StrikeLow = 350;
StrikeHigh = 450;

Calculate the price:

Pssh = supersharebybls(RateSpec, StockSpec, Settle, Maturity,...

StrikeLow, StrikeHigh)

Pssh =

0.9411

Compute the delta and theta of the supershare option:

OutSpec = { 'delta';'theta'};

[Delta, Theta]= supersharesensbybls(RateSpec, StockSpec, Settle,...

Maturity, StrikeLow, StrikeHigh, 'OutSpec', OutSpec)

Delta =

-0.0010

6-733

supersharesensbybls

Theta =

-1.0102

See Also supersharebybls

6-734

swapbybdt

Purpose Price swap instrument from Black-Derman-Toy interest-rate tree

Syntax [Price, PriceTree, CFTree, SwapRate] = swapbybdt(BDTTree,
LegRate, Settle, Maturity)
[Price, PriceTree, CFTree, SwapRate] = swapbybdt(BDTTree,
LegRate, Settle, Maturity, LegReset, Basis, Principal,
LegType, EndMonthRule)
[Price, PriceTree, CFTree, SwapRate] = swapbybdt(BDTTree,
LegRate, Settle, Maturity, Name,Value)

Input
Arguments

BDTTree Interest-rate tree structure created by bdttree.

LegRate Number of instruments (NINST)-by-2 matrix, with
each row defined as:

[CouponRate Spread] or [Spread CouponRate]

CouponRate is the decimal annual rate. Spread is the
number of basis points over the reference rate. The
first column represents the receiving leg, while the
second column represents the paying leg.

Settle Settlement date. NINST-by-1 vector of serial date
numbers or date strings. Settle must be earlier than
Maturity.

Maturity Maturity date. NINST-by-1 vector of dates
representing the maturity date for each swap.

The Settle date for every swap is set to the ValuationDate of the BDT
tree. The swap argument Settle is ignored.

This function also calculates the SwapRate (fixed rate) so that the value
of the swap is initially 0. To do this, enter CouponRate as NaN.

6-735

swapbybdt

Ordered Input or Name-Value Pair Arguments

Enter the following optional inputs using an ordered syntax or as
name-value pair arguments. You cannot mix ordered syntax with
name-value pair arguments.

LegReset

NINST-by-2 matrix representing the reset frequency per year for each
swap. NINST-by-1 vector representing the frequency of payments per
year.

Default: [1 1]

Basis

Day-count basis of the instrument. A vector of integers.

• 0 = actual/actual

• 1 = 30/360 (SIA)

• 2 = actual/360

• 3 = actual/365

• 4 = 30/360 (PSA)

• 5 = 30/360 (ISDA)

• 6 = 30/360 (European)

• 7 = actual/365 (Japanese)

• 8 = actual/actual (ISMA)

• 9 = actual/360 (ISMA)

• 10 = actual/365 (ISMA)

• 11 = 30/360E (ISMA)

• 12 = actual/365 (ISDA)

• 13 = BUS/252

6-736

swapbybdt

For more information, see basis.

Default: 0 (actual/actual)

Principal

NINST-by-1 vector or NINST-by-1 cell array of the notional principal
amounts or principal value schedules. For the latter case, each element
of the cell array is a NumDates-by-2 call array where the first column is
dates and the second column is its associated notional principal value.
The date indicates the last day that the principal value is valid.

Default: 100

LegType

NINST-by-2 matrix. Each row represents an instrument. Each column
indicates if the corresponding leg is fixed (1) or floating (0). This matrix
defines the interpretation of the values entered in LegRate.

Default: [1 0] for each instrument

Options

Derivatives pricing options structure created with derivset.

EndMonthRule

End-of-month rule. NINST-by-1 vector. This rule applies only when
Maturity is an end-of-month date for a month having 30 or fewer days.

• 0 = Ignore rule, meaning that a bond coupon payment date is always
the same numerical day of the month.

• 1 = Set rule on, meaning that a bond coupon payment date is always
the last actual day of the month.

Default: 1

6-737

swapbybdt

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments,
where Name is the argument name and Value is the corresponding
value. Name must appear inside single quotes (' '). You can
specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

AdjustCashFlowsBasis

Adjust the cash flows based on the actual period day count. NINST-by-1
of logicals.

Default: false

BusinessDayConvention

Require payment dates to be business dates. NINST-by-1 cell array with
possible choices of business day convention:

• actual

• follow

• modifiedfollow

• previous

• modifiedprevious

Default: actual

Holidays

Holidays used for business day convention. NHOLIDAYS-by-1 of MATLAB
date numbers.

Default: If no dates are specified, holidays.m is used.

6-738

swapbybdt

Description [Price, PriceTree, CFTree, SwapRate] = swapbybdt(BDTTree,
LegRate, Settle, Maturity)computes the price of a swap instrument
from a BDT interest-rate tree.

[Price, PriceTree, CFTree, SwapRate] = swapbybdt(BDTTree,
LegRate, Settle, Maturity, LegReset, Basis,
Principal,LegType, EndMonthRule) computes the price of a
swap instrument from a BDT interest-rate tree using optional input
arguments.

[Price, PriceTree, CFTree, SwapRate] = swapbybdt(BDTTree,
LegRate, Settle, Maturity, Name,Value) computes the price of a
swap instrument from a BDT interest-rate tree with additional options
specified by one or more Name,Value pair arguments.

Price is number of instruments (NINST)-by-1 expected prices of the
swap at time 0.

PriceTree is a tree structure with a vector of the swap values at each
node.

CFTree is a tree structure with a vector of the swap cash flows at
each node. This structure contains only NaNs because with binomial
recombining trees, cash flows cannot be computed accurately at each
node of a tree.

SwapRate is a NINST-by-1 vector of rates applicable to the fixed leg
such that the swaps’ values are zero at time 0. This rate is used in
calculating the swaps’ prices when the rate specified for the fixed leg in
LegRate is NaN. SwapRate is padded with NaN for those instruments in
which CouponRate is not set to NaN.

Definitions Amortizing Swap

In an amortizing swap, the notional principal decreases periodically
because it is tied to an underlying financial instrument with a declining
(amortizing) principal balance, such as a mortgage.

6-739

swapbybdt

Examples Price Interest-Rate Swap

Price an interest-rate swap with a fixed receiving leg and a floating
paying leg. Payments are made once a year, and the notional principal
amount is $100. The values for the remaining arguments are:

• Coupon rate for fixed leg: 0.15 (15%)

• Spread for floating leg: 10 basis points

• Swap settlement date: Jan. 01, 2000

• Swap maturity date: Jan. 01, 2003

Based on the information above, set the required arguments and build
the LegRate, LegType, and LegReset matrices:

Settle = '01-Jan-2000';
Maturity = '01-Jan-2003';
Basis = 0;
Principal = 100;
LegRate = [0.15 10]; % [CouponRate Spread]
LegType = [1 0]; % [Fixed Float]
LegReset = [1 1]; % Payments once per year

Price the swap using the BDTTree included in the MAT-file deriv.mat.
BDTTree contains the time and forward-rate information needed to price
the instrument.

load deriv.mat;

Use swapbybdt to compute the price of the swap.

Price = swapbybdt(BDTTree, LegRate, Settle, Maturity,...
LegReset, Basis, Principal, LegType)

Price =

7.4222

6-740

swapbybdt

Using the previous data, calculate the swap rate, the coupon rate for
the fixed leg, such that the swap price at time = 0 is zero.

LegRate = [NaN 20];

[Price, PriceTree, CFTree, SwapRate] = swapbybdt(BDTTree,...
LegRate, Settle, Maturity, LegReset, Basis, Principal, LegType)

Price =

-1.4211e-014

PriceTree =

FinObj: 'BDTPriceTree'
tObs: [0 1 2 3 4]

PTree: {1x5 cell}
CFTree =

FinObj: 'BDTCFTree'
tObs: [0 1 2 3 4]

CFTree: {[NaN] [NaN NaN] [NaN NaN NaN] [NaN NaN NaN NaN] ...}

SwapRate =

0.1205

Price an Amortizing Swap

Price an amortizing swap using the Principal input argument to
define the amortization schedule.

Create the RateSpec.

Rates = 0.035;

ValuationDate = '1-Jan-2011';

StartDates = ValuationDate;

EndDates = '1-Jan-2017';

6-741

swapbybdt

Compounding = 1;

RateSpec = intenvset('ValuationDate', ValuationDate,'StartDates', StartDates,...

'EndDates', EndDates,'Rates', Rates, 'Compounding', Compounding)

RateSpec =

FinObj: 'RateSpec'
Compounding: 1

Disc: 0.8135
Rates: 0.0350

EndTimes: 6
StartTimes: 0

EndDates: 736696
StartDates: 734504

ValuationDate: 734504
Basis: 0

EndMonthRule: 1

Create the swap instrument using the following data:

Settle ='1-Jan-2011';
Maturity = '1-Jan-2017';
Period = 1;
Spread = 0;
LegRate = [0.04 10];

Define the swap amortizing schedule.

Principal ={{'1-Jan-2013' 100;'1-Jan-2014' 80;'1-Jan-2015' 60;'1-Jan-2016' 40; '1-Jan-2017' 20}};

Build the BDT tree and assume volatility is 10%.

MatDates = {'1-Jan-2012'; '1-Jan-2013';'1-Jan-2014';'1-Jan-2015';'1-Jan-2016';'1-Jan-2017'};

BDTTimeSpec = bdttimespec(ValuationDate, MatDates);

Volatility = 0.10;

6-742

swapbybdt

BDTVolSpec = bdtvolspec(ValuationDate, MatDates, Volatility*ones(1,length(MatDates))');

BDTT = bdttree(BDTVolSpec, RateSpec, BDTTimeSpec);

Compute the price of the amortizing swap.

Price = swapbybdt(BDTT, LegRate, Settle, Maturity, 'Principal' , Principal)

Price =

1.4574

See Also bdttree | capbybdt | cfbybdt | floorbybdt

6-743

swapbybk

Purpose Price swap instrument from Black-Karasinski interest-rate tree

Syntax [Price, PriceTree, SwapRate] = swapbybk(BKTree,
LegRate, Settle, Maturity)
[Price, PriceTree, SwapRate] = swapbybk(BKTree,
LegRate, Settle, Maturity, LegReset, Basis, Principal,
LegType, EndMonthRule)
[Price, PriceTree, SwapRate] = swapbybk(BKTree,
LegRate, Settle, Maturity, Name,Value)

Input
Arguments

BKTree Interest-rate tree structure created by bktree.

LegRate Number of instruments (NINST)-by-2 matrix, with
each row defined as:

[CouponRate Spread] or [Spread CouponRate]

CouponRate is the decimal annual rate. Spread is the
number of basis points over the reference rate. The
first column represents the receiving leg, while the
second column represents the paying leg.

Settle Settlement date. NINST-by-1 vector of serial date
numbers or date strings. Settle must be earlier than
Maturity.

Maturity Maturity date. NINST-by-1 vector of dates
representing the maturity date for each swap.

The Settle date for every swap is set to the ValuationDate of the BK
tree. The swap argument Settle is ignored.

This function also calculates the SwapRate (fixed rate) so that the value
of the swap is initially zero. To do this, enter CouponRate as NaN.

6-744

swapbybk

Ordered Input or Name-Value Pair Arguments

Enter the following optional inputs using an ordered syntax or as
name-value pair arguments. You cannot mix ordered syntax with
name-value pair arguments.

LegReset

NINST-by-2 matrix representing the reset frequency per year for each
swap. NINST-by-1 vector representing the frequency of payments per
year.

Default: [1 1]

Basis

Day-count basis of the instrument. A vector of integers.

• 0 = actual/actual

• 1 = 30/360 (SIA)

• 2 = actual/360

• 3 = actual/365

• 4 = 30/360 (PSA)

• 5 = 30/360 (ISDA)

• 6 = 30/360 (European)

• 7 = actual/365 (Japanese)

• 8 = actual/actual (ISMA)

• 9 = actual/360 (ISMA)

• 10 = actual/365 (ISMA)

• 11 = 30/360E (ISMA)

• 12 = actual/365 (ISDA)

• 13 = BUS/252

6-745

swapbybk

For more information, see basis.

Default: 0 (actual/actual)

Principal

NINST-by-1 vector or NINST-by-1 cell array of the notional principal
amounts or principal value schedules. For the latter case, each element
of the cell array is a NumDates-by-2 call array where the first column is
dates and the second column is its associated notional principal value.
The date indicates the last day that the principal value is valid.

Default: 100

LegType

NINST-by-2 matrix. Each row represents an instrument. Each column
indicates if the corresponding leg is fixed (1) or floating (0). This matrix
defines the interpretation of the values entered in LegRate.

Default: [1 0] for each instrument

Options

Derivatives pricing options structure created with derivset.

EndMonthRule

End-of-month rule. A NINST-by-1 vector. This rule applies only when
Maturity is an end-of-month date for a month having 30 or fewer days.

• 0 = Ignore rule, meaning that a bond coupon payment date is always
the same numerical day of the month.

• 1 = Set rule on, meaning that a bond coupon payment date is always
the last actual day of the month.

Default: 1

6-746

swapbybk

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments,
where Name is the argument name and Value is the corresponding
value. Name must appear inside single quotes (' '). You can
specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

AdjustCashFlowsBasis

Adjust the cash flows based on the actual period day count. NINST-by-1
of logicals.

Default: false

BusinessDayConvention

Require payment dates to be business dates. NINST-by-1 cell array with
possible choices of business day convention:

• actual

• follow

• modifiedfollow

• previous

• modifiedprevious

Default: actual

Holidays

Holidays used for business day convention. NHOLIDAYS-by-1 of MATLAB
date numbers.

Default: If no dates are specified, holidays.m is used.

6-747

swapbybk

Description [Price, PriceTree, SwapRate] = swapbybk(BKTree, LegRate,
Settle, Maturity) computes the price of a swap instrument from a
Black-Karasinski interest-rate tree.

[Price, PriceTree, SwapRate] = swapbybk(BKTree, LegRate,
Settle, Maturity, LegReset, Basis, Principal, LegType,
EndMonthRule) computes the price of a swap instrument from a
Black-Karasinski interest-rate tree using optional input arguments.

[Price, PriceTree, SwapRate] = swapbybk(BKTree, LegRate,
Settle, Maturity, Name,Value) computes the price of a swap
instrument from a Black-Karasinski interest-rate tree with additional
options specified by one or more Name,Value pair arguments.

Price is the number of instruments (NINST)-by-1 expected prices of
the swap at time 0.

PriceTree is the tree structure with a vector of the swap values at
each node.

SwapRate is a NINST-by-1 vector of rates applicable to the fixed leg
such that the swaps’ values are zero at time 0. This rate is used in
calculating the swaps’ prices when the rate specified for the fixed leg
in LegRate is NaN. The SwapRate output is padded with NaN for those
instruments in which CouponRate is not set to NaN.

Definitions Amortizing Swap

In an amortizing swap, the notional principal decreases periodically
because it is tied to an underlying financial instrument with a declining
(amortizing) principal balance, such as a mortgage.

Examples Price Interest-Rate Swap

Price an interest-rate swap with a fixed receiving leg and a floating
paying leg. Payments are made once a year, and the notional principal
amount is $100. The values for the remaining arguments are:

• Coupon rate for fixed leg: 0.15 (15%)

• Spread for floating leg: 10 basis points

6-748

swapbybk

• Swap settlement date: Jan. 01, 2005

• Swap maturity date: Jan. 01, 2008

Based on the information above, set the required arguments and build
the LegRate, LegType, and LegReset matrices:

Settle = '01-Jan-2005';
Maturity = '01-Jan-2008';
Basis = 0;
Principal = 100;
LegRate = [0.15 10]; % [CouponRate Spread]
LegType = [1 0]; % [Fixed Float]
LegReset = [1 1]; % Payments once per year

Price the swap using the BKTree included in the MAT-file deriv.mat.
The BKTree structure contains the time and forward-rate information
needed to price the instrument.

load deriv.mat;

Use swapbybk to compute the price of the swap.

Price = swapbybk(BKTree, LegRate, Settle, Maturity, LegReset,...
Basis, Principal, LegType)

Price =

39.1827

Using the previous data, calculate the swap rate, which is the coupon
rate for the fixed leg, such that the swap price at time = 0 is zero.

LegRate = [NaN 20];

[Price, PriceTree, SwapRate] = swapbybk(BKTree, LegRate, ...
Settle, Maturity, LegReset, Basis, Principal, LegType)

Price =

6-749

swapbybk

0

PriceTree =

FinObj: 'BKPriceTree'
PTree: {1x5 cell}
tObs: [0 1 2 3 4]

Connect: {[2] [2 3 4] [2 2 3 4 4]}
Probs: {[3x1 double] [3x3 double] [3x5 double]}

SwapRate =

0.0438

Price an Amortizing Swap

Price an amortizing swap using the Principal input argument to
define the amortization schedule.

Create the RateSpec.

Rates = 0.035;

ValuationDate = '1-Jan-2011';

StartDates = ValuationDate;

EndDates = '1-Jan-2017';

Compounding = 1;

RateSpec = intenvset('ValuationDate', ValuationDate,'StartDates', StartDates,...

'EndDates', EndDates,'Rates', Rates, 'Compounding', Compounding)

RateSpec =

FinObj: 'RateSpec'
Compounding: 1

Disc: 0.8135
Rates: 0.0350

EndTimes: 6

6-750

swapbybk

StartTimes: 0
EndDates: 736696

StartDates: 734504
ValuationDate: 734504

Basis: 0
EndMonthRule: 1

Create the swap instrument using the following data:

Settle ='1-Jan-2011';
Maturity = '1-Jan-2017';
Period = 1;
Spread = 0;
LegRate = [0.04 10];

Define the swap amortizing schedule.

Principal ={{'1-Jan-2013' 100;'1-Jan-2014' 80;'1-Jan-2015' 60;'1-Jan-2016' 40; '1-Jan-2017' 20}};

Build the BK tree and assume volatility is 10%.

MatDates = {'1-Jan-2012'; '1-Jan-2013';'1-Jan-2014';'1-Jan-2015';'1-Jan-2016';'1-Jan-2017'};

BKTimeSpec = bktimespec(ValuationDate, MatDates);

Volatility = 0.10;

AlphaDates = '01-01-2017';

AlphaCurve = 0.1;

BKVolSpec = bkvolspec(ValuationDate, MatDates, Volatility*ones(1,length(MatDates))', AlphaDates, Alp

BKT = bktree(BKVolSpec, RateSpec, BKTimeSpec);

Compute the price of the amortizing swap.

Price = swapbybk(BKT, LegRate, Settle, Maturity, 'Principal' , Principal)

Price =

1.4574

See Also bktree | bondbybk | capbybk | fixedbybk | floorbybk

6-751

swapbyhjm

Purpose Price swap instrument from Heath-Jarrow-Morton interest-rate tree

Syntax [Price, PriceTree, CFTree, SwapRate] = swapbyhjm(HJMTree,
LegRate, Settle, Maturity)
[Price, PriceTree, CFTree, SwapRate] = swapbyhjm(HJMTree,
LegRate, Settle, Maturity, LegReset, Basis, Principal,
LegType, EndMonthRule)
[Price, PriceTree, CFTree, SwapRate] = swapbyhjm(HJMTree,
LegRate, Settle, Maturity, Name,Value)

Input
Arguments

HJMTree Forward-rate tree structure created by hjmtree.

LegRate Number of instruments (NINST)-by-2 matrix, with
each row defined as:

[CouponRate Spread] or [Spread CouponRate]

CouponRate is the decimal annual rate. Spread is the
number of basis points over the reference rate. The
first column represents the receiving leg, while the
second column represents the paying leg.

Settle Settlement date. NINST-by-1 vector of serial date
numbers or date strings. Settle must be earlier than
Maturity.

Maturity Maturity date. NINST-by-1 vector of dates
representing the maturity date for each swap.

The Settle date for every swap is set to the ValuationDate of the HJM
tree. The swap argument Settle is ignored.

This function also calculates the SwapRate (fixed rate) so that the value
of the swap is initially zero. To do this, enter CouponRate as NaN.

6-752

swapbyhjm

Ordered Input or Name-Value Pair Arguments

Enter the following optional inputs using an ordered syntax or as
name-value pair arguments. You cannot mix ordered syntax with
name-value pair arguments.

LegReset

NINST-by-2 matrix representing the reset frequency per year for each
swap. NINST-by-1 vector representing the frequency of payments per
year.

Default: [1 1]

Basis

Day-count basis of the instrument. A vector of integers.

• 0 = actual/actual

• 1 = 30/360 (SIA)

• 2 = actual/360

• 3 = actual/365

• 4 = 30/360 (PSA)

• 5 = 30/360 (ISDA)

• 6 = 30/360 (European)

• 7 = actual/365 (Japanese)

• 8 = actual/actual (ISMA)

• 9 = actual/360 (ISMA)

• 10 = actual/365 (ISMA)

• 11 = 30/360E (ISMA)

• 12 = actual/365 (ISDA)

• 13 = BUS/252

6-753

swapbyhjm

For more information, see basis.

Default: 0 (actual/actual)

Principal

NINST-by-1 vector or NINST-by-1 cell array of the notional principal
amounts or principal value schedules. For the latter case, each element
of the cell array is a NumDates-by-2 call array where the first column is
dates and the second column is its associated notional principal value.
The date indicates the last day that the principal value is valid.

Default: 100

LegType

NINST-by-2 matrix. Each row represents an instrument. Each column
indicates if the corresponding leg is fixed (1) or floating (0). This matrix
defines the interpretation of the values entered in LegRate.

Default: [1 0] for each instrument

Options

Derivatives pricing options structure created with derivset.

EndMonthRule

End-of-month rule. A NINST-by-1 vector. This rule applies only when
Maturity is an end-of-month date for a month having 30 or fewer days.

• 0 = Ignore rule, meaning that a bond coupon payment date is always
the same numerical day of the month.

• 1 = Set rule on, meaning that a bond coupon payment date is always
the last actual day of the month.

Default: 1

6-754

swapbyhjm

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments,
where Name is the argument name and Value is the corresponding
value. Name must appear inside single quotes (' '). You can
specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

AdjustCashFlowsBasis

Adjust the cash flows based on the actual period day count. NINST-by-1
of logicals.

Default: false

BusinessDayConvention

Require payment dates to be business dates. NINST-by-1 cell array with
possible choices of business day convention:

• actual

• follow

• modifiedfollow

• previous

• modifiedprevious

Default: actual

Holidays

Holidays used for business day convention. NHOLIDAYS-by-1 of MATLAB
date numbers.

Default: If no dates are specified, holidays.m is used.

6-755

swapbyhjm

Description [Price, PriceTree, CFTree, SwapRate] = swapbyhjm(HJMTree,
LegRate, Settle, Maturity) computes the price of a swap instrument
from an HJM interest-rate tree.

[Price, PriceTree, CFTree, SwapRate] = swapbyhjm(HJMTree,
LegRate, Settle, Maturity, LegReset, Basis, Principal,
LegType, EndMonthRule) computes the price of a swap instrument
from an HJM interest-rate tree with optional input arguments.

[Price, PriceTree, CFTree, SwapRate] = swapbyhjm(HJMTree,
LegRate, Settle, Maturity, Name,Value) computes the price of
a swap instrument from an HJM interest-rate tree with additional
options specified by one or more Name,Value pair arguments.

Price is the number of instruments (NINST-by-1) expected prices of
the swap at time 0.

PriceTree is the tree structure with a vector of the swap values at
each node.

CFTree is the tree structure with a vector of the swap cash flows at
each node.

SwapRate is a NINST-by-1 vector of rates applicable to the fixed leg
such that the swaps’ values are zero at time 0. This rate is used in
calculating the swaps’ prices when the rate specified for the fixed leg
in LegRate is NaN. The SwapRate output is padded with NaN for those
instruments in which CouponRate is not set to NaN.

Definitions Amortizing Swap

In an amortizing swap, the notional principal decreases periodically
because it is tied to an underlying financial instrument with a declining
(amortizing) principal balance, such as a mortgage.

Examples Price an Interest-Rate Swap

Price an interest-rate swap with a fixed receiving leg and a floating
paying leg. Payments are made once a year, and the notional principal
amount is $100. The values for the remaining arguments are:

6-756

swapbyhjm

• Coupon rate for fixed leg: 0.06 (6%)

• Spread for floating leg: 20 basis points

• Swap settlement date: Jan. 01, 2000

• Swap maturity date: Jan. 01, 2003

Based on the information above, set the required arguments and build
the LegRate, LegType, and LegReset matrices:

Settle = '01-Jan-2000';
Maturity = '01-Jan-2003';
Basis = 0;
Principal = 100;
LegRate = [0.06 20]; % [CouponRate Spread]
LegType = [1 0]; % [Fixed Float]
LegReset = [1 1]; % Payments once per year

Price the swap using the HJMTree included in the MAT-file deriv.mat.
The HJMTree structure contains the time and forward-rate information
needed to price the instrument.

load deriv.mat;

Use swapbyhjm to compute the price of the swap.

[Price, PriceTree, CFTree] = swapbyhjm(HJMTree, LegRate,...
Settle, Maturity, LegReset, Basis, Principal, LegType)

Price =

3.6923

PriceTree =

FinObj: 'HJMPriceTree'
tObs: [0 1 2 3 4]

PBush: {1x5 cell}

6-757

swapbyhjm

CFTree =

FinObj: 'HJMCFTree'
tObs: [0 1 2 3 4]

CFBush: {[0] [1x1x2 double] [1x2x2 double] ... [1x8 double]}

Use treeviewer to examine CFTree graphically and see the cash flows
from the swap along both the up and the down branches. A positive
cash flow indicates an inflow (income - payments > 0), while a negative
cash flow indicates an outflow (income - payments < 0).

treeviewer(CFTree)

6-758

swapbyhjm

Note treeviewer price tree diagrams follow the convention
that increasing prices appear on the upper branch of a tree and,
consequently, decreasing prices appear on the lower branch. Conversely,
for interest-rate displays, decreasing interest rates appear on the upper
branch (prices are rising) and increasing interest rates on the lower
branch (prices are falling).

In this example, you have sold a swap (receive fixed rate and pay
floating rate). At time t = 3, if interest rates go down, your cash flow
is positive ($2.63), meaning that you will receive this amount. But if
interest rates go up, your cash flow is negative (-$1.58), meaning that
you owe this amount.

Using the previous data, calculate the swap rate, which is the coupon
rate for the fixed leg, such that the swap price at time = 0 is zero.

LegRate = [NaN 20];

[Price, PriceTree, CFTree, SwapRate] = swapbyhjm(HJMTree,...
LegRate, Settle, Maturity, LegReset, Basis, Principal, LegType)

Price =

0

PriceTree =

FinObj: 'HJMPriceTree'
tObs: [0 1 2 3 4]

PBush:{[0] [1x1x2 double] [1x2x2 double] ... [1x8 double]}

CFTree =

FinObj: 'HJMCFTree'
tObs: [0 1 2 3 4]

6-759

swapbyhjm

CFBush:{[0] [1x1x2 double] [1x2x2 double] ... [1x8 double]}

SwapRate =

0.0466

Price an Amortizing Swap

Price an amortizing swap using the Principal input argument to
define the amortization schedule.

Create the RateSpec.

Rates = 0.035;

ValuationDate = '1-Jan-2011';

StartDates = ValuationDate;

EndDates = '1-Jan-2017';

Compounding = 1;

RateSpec = intenvset('ValuationDate', ValuationDate,'StartDates', StartDates,...

'EndDates', EndDates,'Rates', Rates, 'Compounding', Compounding)

RateSpec =

FinObj: 'RateSpec'
Compounding: 1

Disc: 0.8135
Rates: 0.0350

EndTimes: 6
StartTimes: 0

EndDates: 736696
StartDates: 734504

ValuationDate: 734504
Basis: 0

EndMonthRule: 1

Create the swap instrument using the following data:

6-760

swapbyhjm

Settle ='1-Jan-2011';
Maturity = '1-Jan-2017';
Period = 1;
Spread = 0;
LegRate = [0.04 10];

Define the swap amortizing schedule.

Principal ={{'1-Jan-2013' 100;'1-Jan-2014' 80;'1-Jan-2015' 60;'1-Jan-2016' 40; '1-Jan-2017' 20}};

Build the HJM tree using the following data:

MatDates = {'1-Jan-2012'; '1-Jan-2013';'1-Jan-2014';'1-Jan-2015';'1-Jan-2016';'1-Jan-2017'};

HJMTimeSpec = hjmtimespec(RateSpec.ValuationDate, MatDates);

Volatility = [.10; .08; .06; .04];

CurveTerm = [1; 2; 3; 4];

HJMVolSpec = hjmvolspec('Proportional', Volatility, CurveTerm, 1e6);

HJMT = hjmtree(HJMVolSpec,RateSpec,HJMTimeSpec);

Compute the price of the amortizing swap.

Price = swapbyhjm(HJMT, LegRate, Settle, Maturity, 'Principal', Principal)

Price =

1.4574

See Also capbyhjm | cfbyhjm | floorbyhjm | hjmtree

6-761

swapbyhw

Purpose Price swap instrument from Hull-White interest-rate tree

Syntax [Price, PriceTree, SwapRate] = swapbyhw(HWTree,
LegRate, Settle, Maturity)
[Price, PriceTree, SwapRate] = swapbyhw(HWTree,
LegRate, Settle, Maturity, LegReset, Basis,
Principal, LegType, Options, EndMonthRule)
[Price, PriceTree, SwapRate] = swapbyhw(HWTree,
LegRate, Settle, Maturity, Name,Value)

Input
Arguments

HWTree Forward-rate tree structure created by hwtree.

LegRate Number of instruments (NINST)-by-2 matrix, with
each row defined as:

[CouponRate Spread] or [Spread CouponRate]

CouponRate is the decimal annual rate. Spread is the
number of basis points over the reference rate. The
first column represents the receiving leg, while the
second column represents the paying leg.

Settle Settlement date. NINST-by-1 vector of serial date
numbers or date strings. Settle must be earlier than
Maturity.

Maturity Maturity date. NINST-by-1 vector of dates
representing the maturity date for each swap.

The Settle date for every swap is set to the ValuationDate of the HW
tree. The swap argument Settle is ignored.

This function also calculates the SwapRate (fixed rate) so that the value
of the swap is initially zero. To do this, enter CouponRate as NaN.

6-762

swapbyhw

Ordered Input or Name-Value Pair Arguments

Enter the following optional inputs using an ordered syntax or as
name-value pair arguments. You cannot mix ordered syntax with
name-value pair arguments.

LegReset

NINST-by-2 matrix representing the reset frequency per year for each
swap. NINST-by-1 vector representing the frequency of payments per
year.

Default: [1 1]

Basis

Day-count basis of the instrument. A vector of integers.

• 0 = actual/actual

• 1 = 30/360 (SIA)

• 2 = actual/360

• 3 = actual/365

• 4 = 30/360 (PSA)

• 5 = 30/360 (ISDA)

• 6 = 30/360 (European)

• 7 = actual/365 (Japanese)

• 8 = actual/actual (ISMA)

• 9 = actual/360 (ISMA)

• 10 = actual/365 (ISMA)

• 11 = 30/360E (ISMA)

• 12 = actual/365 (ISDA)

• 13 = BUS/252

6-763

swapbyhw

For more information, see basis.

Default: 0 (actual/actual)

Principal

NINST-by-1 vector or NINST-by-1 cell array of the notional principal
amounts or principal value schedules. For the latter case, each element
of the cell array is a NumDates-by-2 call array where the first column is
dates and the second column is its associated notional principal value.
The date indicates the last day that the principal value is valid.

Default: 100

LegType

NINST-by-2 matrix. Each row represents an instrument. Each column
indicates if the corresponding leg is fixed (1) or floating (0). This matrix
defines the interpretation of the values entered in LegRate.

Default: [1 0] for each instrument

Options

Derivatives pricing options structure created with derivset.

EndMonthRule

End-of-month rule. NINST-by-1 vector. This rule applies only when
Maturity is an end-of-month date for a month having 30 or fewer days.

• 0 = Ignore rule, meaning that a bond coupon payment date is always
the same numerical day of the month.

• 1 = Set rule on, meaning that a bond coupon payment date is always
the last actual day of the month.

Default: 1

6-764

swapbyhw

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments,
where Name is the argument name and Value is the corresponding
value. Name must appear inside single quotes (' '). You can
specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

AdjustCashFlowsBasis

Adjust the cash flows based on the actual period day count. NINST-by-1
of logicals.

Default: false

BusinessDayConvention

Require payment dates to be business dates. NINST-by-1 cell array with
possible choices of business day convention:

• actual

• follow

• modifiedfollow

• previous

• modifiedprevious

Default: actual

Holidays

Holidays used for business day convention. NHOLIDAYS-by-1 of MATLAB
date numbers.

Default: If no dates are specified, holidays.m is used.

6-765

swapbyhw

Description [Price, PriceTree, SwapRate] = swapbyhw(HWTree, LegRate,
Settle, Maturity) computes the price of a swap instrument from
a Hull-White interest-rate tree.

[Price, PriceTree, SwapRate] = swapbyhw(HWTree, LegRate,
Settle, Maturity, LegReset, Basis,Principal, LegType,
Options, EndMonthRule) computes the price of a swap instrument
from a Hull-White interest-rate tree with optional input arguments.

[Price, PriceTree, SwapRate] = swapbyhw(HWTree, LegRate,
Settle, Maturity, Name,Value) computes the price of a swap
instrument from a Hull-White interest-rate tree with additional options
specified by one or more Name,Value pair arguments.

Price is number of instruments (NINST)-by-1 expected prices of the
swap at time 0.

PriceTree is the tree structure with a vector of the swap values at
each node.

SwapRate is a NINST-by-1 vector of rates applicable to the fixed leg
such that the swaps’ values are zero at time 0. This rate is used in
calculating the swaps’ prices when the rate specified for the fixed leg
in LegRate is NaN. The SwapRate output is padded with NaNs for those
instruments in which CouponRate is not set to NaN.

Definitions Amortizing Swap

In an amortizing swap, the notional principal decreases periodically
because it is tied to an underlying financial instrument with a declining
(amortizing) principal balance, such as a mortgage.

Examples Price an Interest-Rate Swap

Price an interest-rate swap with a fixed receiving leg and a floating
paying leg. Payments are made once a year, and the notional principal
amount is $100. The values for the remaining arguments are:

• Coupon rate for fixed leg: 0.06 (6%)

• Spread for floating leg: 20 basis points

6-766

swapbyhw

• Swap settlement date: Jan. 01, 2005

• Swap maturity date: Jan. 01, 2008

Based on the information above, set the required arguments and build
the LegRate, LegType, and LegReset matrices:

Settle = '01-Jan-2005';
Maturity = '01-Jan-2008';
Basis = 0;
Principal = 100;
LegRate = [0.06 20]; % [CouponRate Spread]
LegType = [1 0]; % [Fixed Float]
LegReset = [1 1]; % Payments once per year

Price the swap using the HWTree included in the MAT-file deriv.mat.
The HWTree structure contains the time and forward-rate information
needed to price the instrument.

load deriv.mat;

Use swapbyhw to compute the price of the swap.

[Price, PriceTree, SwapRate] = swapbyhw(HWTree, LegRate, ...
Settle, Maturity, LegReset, Basis, Principal, LegType)

Price =

5.9109

PriceTree =

FinObj: 'HWPriceTree'
PTree: {1x5 cell}
tObs: [0 1 2 3 4]

Connect: {[2] [2 3 4] [2 2 3 4 4]}
Probs: {[3x1 double] [3x3 double] [3x5 double]}

6-767

swapbyhw

SwapRate =

NaN

Using the previous data, calculate the swap rate, which is the coupon
rate for the fixed leg, such that the swap price at time = 0 is zero.

LegRate = [NaN 20];

[Price, PriceTree, SwapRate] = swapbyhw(HWTree, LegRate, ...
Settle, Maturity, LegReset, Basis, Principal, LegType)

Price =

1.4211e-014

PriceTree =

FinObj: 'HWPriceTree'
PTree: {1x5 cell}
tObs: [0 1 2 3 4]

Connect: {[2] [2 3 4] [2 2 3 4 4]}
Probs: {[3x1 double] [3x3 double] [3x5 double]}

SwapRate =

0.0438

Price an Amortizing Swap

Price an amortizing swap using the Principal input argument to
define the amortization schedule.

Create the RateSpec.

Rates = 0.035;

ValuationDate = '1-Jan-2011';

6-768

swapbyhw

StartDates = ValuationDate;

EndDates = '1-Jan-2017';

Compounding = 1;

RateSpec = intenvset('ValuationDate', ValuationDate,'StartDates', StartDates,...

'EndDates', EndDates,'Rates', Rates, 'Compounding', Compounding)

RateSpec =

FinObj: 'RateSpec'
Compounding: 1

Disc: 0.8135
Rates: 0.0350

EndTimes: 6
StartTimes: 0

EndDates: 736696
StartDates: 734504

ValuationDate: 734504
Basis: 0

EndMonthRule: 1

Create the swap instrument using the following data:

Settle ='1-Jan-2011';
Maturity = '1-Jan-2017';
Period = 1;
Spread = 0;
LegRate = [0.04 10];

Define the swap amortizing schedule.

Principal ={{'1-Jan-2013' 100;'1-Jan-2014' 80;'1-Jan-2015' 60;'1-Jan-2016' 40; '1-Jan-2017' 20}};

Build the HW tree using the following data:

VolDates = ['1-Jan-2012'; '1-Jan-2013';'1-Jan-2014';'1-Jan-2015';'1-Jan-2016';'1-Jan-2017'];

VolCurve = 0.1;

AlphaDates = '01-01-2017';

6-769

swapbyhw

AlphaCurve = 0.1;

HWVolSpec = hwvolspec(RateSpec.ValuationDate, VolDates, VolCurve,...

AlphaDates, AlphaCurve);

HWTimeSpec = hwtimespec(RateSpec.ValuationDate, VolDates, Compounding);

HWT = hwtree(HWVolSpec, RateSpec, HWTimeSpec);

Compute the price of the amortizing swap.

Price = swapbyhw(HWT, LegRate, Settle, Maturity, 'Principal', Principal)

Price =

1.4574

See Also bondbyhw | capbyhw | cfbyhw | floorbyhw | fixedbyhw | hwtree

6-770

swapbyzero

Purpose Price swap instrument from set of zero curves

Syntax [Price, SwapRate AI, RecCF, RecCFDates, PayCF, PayCFDates] =
swapbyzero(RateSpec, LegRate, Settle, Maturity)
[Price, SwapRate AI, RecCF, RecCFDates, PayCF, PayCFDates] =
swapbyzero(RateSpec, LegRate, Settle, Maturity,
LegReset, Basis, Principal, LegType, EndMonthRule)
[Price, SwapRate, AI, RecCF, RecCFDates, PayCF,

PayCFDates] =
swapbyzero(RateSpec, LegRate, Settle, Maturity,
Name, Value)

Description [Price, SwapRate AI, RecCF, RecCFDates, PayCF, PayCFDates]
= swapbyzero(RateSpec, LegRate, Settle, Maturity) prices a
swap instrument from a set of zero coupon bond rates. All inputs are
either scalars or NINST-by-1 vectors unless otherwise specified. Any
date can be a serial date number or date string. An optional argument
can be passed as an empty matrix [].

[Price, SwapRate AI, RecCF, RecCFDates, PayCF, PayCFDates]
= swapbyzero(RateSpec, LegRate, Settle, Maturity, LegReset,
Basis, Principal, LegType, EndMonthRule) prices a swap
instrument from a set of zero coupon bond rates with optional input
arguments. All inputs are either scalars or NINST-by-1 vectors unless
otherwise specified. Any date can be a serial date number or date
string. An optional argument can be passed as an empty matrix [].

[Price, SwapRate, AI, RecCF, RecCFDates, PayCF, PayCFDates]
= swapbyzero(RateSpec, LegRate, Settle, Maturity, Name,
Value) prices a swap instrument from a set of zero coupon bond rates
with additional options specified by one or more Name, Value pair
arguments.

Input
Arguments

RateSpec

Structure containing the properties of an interest-rate structure. See
intenvset for information on creating RateSpec.

6-771

swapbyzero

RateSpec can be a NINST-by-2 input variable of RateSpecs, with the
second input being the discount curve for the paying leg if different
than the receiving leg. If only one curve is specified, than it is used to
discount both legs.

LegRate

Number of instruments (NINST)-by-2 matrix, with each row defined as:

[CouponRate Spread] or [Spread CouponRate]

CouponRate is the decimal annual rate. Spread is the number of basis
points over the reference rate. The first column represents the receiving
leg, while the second column represents the paying leg.

Settle

Settlement date. NINST-by-1 vector of serial date numbers or date
strings representing the settlement date for each swap. Settle must
be earlier than Maturity.

Maturity

Maturity date. NINST-by-1 vector of dates representing the maturity
date for each swap.

Ordered Input or Name-Value Pair Arguments

Enter the following optional inputs using an ordered syntax or as
name-value pair arguments. You cannot mix ordered syntax with
name-value pair arguments.

LegReset

NINST-by-2 matrix representing the reset frequency per year for each
swap. NINST-by-1 vector representing the frequency of payments per
year.

Default: [1 1]

Basis

6-772

swapbyzero

Day-count basis of the instrument. A vector of integers.

• 0 = actual/actual

• 1 = 30/360 (SIA)

• 2 = actual/360

• 3 = actual/365

• 4 = 30/360 (PSA)

• 5 = 30/360 (ISDA)

• 6 = 30/360 (European)

• 7 = actual/365 (Japanese)

• 8 = actual/actual (ISMA)

• 9 = actual/360 (ISMA)

• 10 = actual/365 (ISMA)

• 11 = 30/360E (ISMA)

• 12 = actual/365 (ISDA)

• 13 = BUS/252
For more information, see basis.

Default: 0 (actual/actual)

Principal

NINST-by-1 vector or NINST-by-1 cell array of the notional principal
amounts or principal value schedules. For the latter case, each element
of the cell array is a NumDates-by-2 call array where the first column is
dates and the second column is its associated notional principal value.
The date indicates the last day that the principal value is valid.

Default: 100

LegType

6-773

swapbyzero

NINST-by-2 matrix. Each row represents an instrument. Each column
indicates if the corresponding leg is fixed (1) or floating (0). This matrix
defines the interpretation of the values entered in LegRate.

Default: [1 0] for each instrument

Options

Derivatives pricing options structure created with derivset.

EndMonthRule

End-of-month rule. NINST-by-1 vector. This rule applies only when
Maturity is an end-of-month date for a month having 30 or fewer days.

• 0 = Ignore rule, meaning that a bond coupon payment date is always
the same numerical day of the month.

• 1 = Set rule on, meaning that a bond coupon payment date is always
the last actual day of the month.

Default: 1

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments,
where Name is the argument name and Value is the corresponding
value. Name must appear inside single quotes (' '). You can
specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

AdjustCashFlowsBasis

Adjust the cash flows based on the actual period day count. NINST-by-1
of logicals.

Default: false

BusinessDayConvention

6-774

swapbyzero

Require payment dates to be business dates. NINST-by-1 cell array with
possible choices of business day convention:

• actual

• follow

• modifiedfollow

• previous

• modifiedprevious

Default: actual

ForwardRateSpec

Forward rate spec to use in generating cash flows.

Default: If not specified, then the RateSpec is used both for
discounting cash flows and generating floating cash flows.

Holidays

Holidays used for business day convention. NHOLIDAYS-by-1 of MATLAB
date numbers.

Default: If none specified, holidays.m is used.

LatestFloatingRate

Rate for the next floating payment, set at the last reset date. NINST-by-1
of scalars.

Default: If not specified, then the RateSpec must contain this
information.

6-775

swapbyzero

Output
Arguments

Price

Number of instruments (NINST) by number of curves (NUMCURVES)
matrix of swap prices. Each column arises from one of the zero curves.

SwapRate

NINST-by-NUMCURVES matrix of rates applicable to the fixed leg such that
the swap’s values are zero at time 0. This rate is used in calculating the
swaps’ prices when the rate specified for the fixed leg in LegRate is
NaN. The SwapRate output is padded with NaN for those instruments in
which CouponRate is not set to NaN.

Output cash flows, cash flow dates, and accrued interest.

AI

NINST-by-NUMCURVES matrix of accrued interest.

RecCF

NINST-by-NUMCURVES matrix of cash flows for the receiving leg.

Note If there is more than one curve specified in the RateSpec input,
then the first NCURVES row corresponds to the first swap, the second
NCURVES row correspond to the second swap, and so on.

RecCFDates

NINST-by-NUMCURVES matrix of payment dates for the receiving leg.

PayCF

NINST-by-NUMCURVES matrix of cash flows for the paying leg.

PayCFDates

6-776

swapbyzero

NINST-by-NUMCURVES matrix of payment dates for the paying leg.

Definitions Amortizing Swap

In an amortizing swap, the notional principal decreases periodically
because it is tied to an underlying financial instrument with a declining
(amortizing) principal balance, such as a mortgage.

Examples Price an Interest-Rate Swap

Price an interest-rate swap with a fixed receiving leg and a floating
paying leg. Payments are made once a year, and the notional principal
amount is $100. The values for the remaining arguments are:

• Coupon rate for fixed leg: 0.06 (6%)

• Spread for floating leg: 20 basis points

• Swap settlement date: Jan. 01, 2000

• Swap maturity date: Jan. 01, 2003

Based on the information above, set the required arguments and build
the LegRate, LegType, and LegReset matrices:

Settle = '01-Jan-2000';
Maturity = '01-Jan-2003';
Basis = 0;
Principal = 100;
LegRate = [0.06 20]; % [CouponRate Spread]
LegType = [1 0]; % [Fixed Float]
LegReset = [1 1]; % Payments once per year

Load the file deriv.mat, which provides ZeroRateSpec, the
interest-rate term structure needed to price the bond.

load deriv.mat;

6-777

swapbyzero

Use swapbyzero to compute the price of the swap.

Price = swapbyzero(ZeroRateSpec, LegRate, Settle, Maturity,...
LegReset, Basis, Principal, LegType)

Price =
3.6923

Using the previous data, calculate the swap rate, which is the coupon
rate for the fixed leg, such that the swap price at time = 0 is zero.

LegRate = [NaN 20];

[Price, SwapRate] = swapbyzero(ZeroRateSpec, LegRate, Settle,...
Maturity, LegReset, Basis, Principal, LegType)

Price =

-1.4211e-014

SwapRate =
0.0466

Use swapbyzero with name-value pair arguments for LegRate,
LegType, LatestFloatingRate, AdjustCashFlowsBasis, and
BusinessDayConvention to calculate output for Price, SwapRate, AI,
RecCF, RecCFDates, PayCF, and PayCFDates:

Settle = datenum('08-Jun-2010');

RateSpec = intenvset('Rates', [.005 .0075 .01 .014 .02 .025 .03]',...

'StartDates',Settle, 'EndDates',{'08-Dec-2010','08-Jun-2011',...

'08-Jun-2012','08-Jun-2013','08-Jun-2015','08-Jun-2017','08-Jun-2020'}');

Maturity = datenum('15-Sep-2020');

LegRate = [.025 50];

LegType = [1 0]; % fixed/floating

LatestFloatingRate = .005;

[Price, SwapRate, AI, RecCF, RecCFDates, PayCF,PayCFDates] = ...

6-778

swapbyzero

swapbyzero(RateSpec, LegRate, Settle, Maturity,'LegType',LegType,...

'LatestFloatingRate',LatestFloatingRate,'AdjustCashFlowsBasis',true,...

'BusinessDayConvention','modifiedfollow')

Price =

-3.3937

SwapRate =

NaN

AI =

1.4575

RecCF =

Columns 1 through 10

-1.8219 1.2603 1.2603 1.2740 1.2671 1.2466 1.2534 1.2603 1.2603 1.2740

Columns 11 through 12

1.2671 101.2534

RecCFDates =

Columns 1 through 8

734297 734396 734761 735129 735493 735857 736222 736588

Columns 9 through 12

736953 737320 737684 738049

6-779

swapbyzero

PayCF =

Columns 1 through 10

-0.3644 0.2521 0.7082 1.0116 1.4423 1.6380 1.9161 2.1038 2.2768 2.2766

Columns 11 through 12

2.4370 102.3432

PayCFDates =

Columns 1 through 8

734297 734396 734761 735129 735493 735857 736222 736588

Columns 9 through 12

736953 737320 737684 738049

Price Swaps By Specifying Multiple Term Structures Using
RateSpec

Price three swaps using two interest-rate curves.

Define data for the interest-rate term structure.

Settle = '01-Jan-2000';
Maturity = '01-Jan-2003';
Basis = 0;
Principal = [100;50;100]; %three notional amounts
LegRate = [0.06 20]; % [CouponRate Spread]
LegType = [1 0]; % [Fixed Float]
LegReset = [1 1]; % Payments once per year

6-780

swapbyzero

Load the data in deriv.mat.

load deriv.mat

Create the RateSpec.

ZeroRateSpecNew = intenvset(ZeroRateSpec, 'Rates', [ZeroRateSpec.Rates,ZeroRateSpec.Rates]);

ZeroRateSpecNew =

FinObj: 'RateSpec'
Compounding: 1

Disc: [4x2 double]
Rates: [4x2 double]

EndTimes: [4x1 double]
StartTimes: [4x1 double]

EndDates: [4x1 double]
StartDates: 730486

ValuationDate: 730486
Basis: 0

EndMonthRule: 1

Price three swaps using one curve.

Price = swapbyzero(ZeroRateSpec, LegRate, Settle, Maturity,...
LegReset, Basis, Principal, LegType)

Price =

3.692309149501682
1.846154574750841
3.692309149501682

Price three swaps using two curves.

Price = swapbyzero(ZeroRateSpecNew, LegRate, Settle, Maturity,...
LegReset, Basis, Principal, LegType)

Price =

6-781

swapbyzero

3.692309149501682 3.692309149501682
1.846154574750841 1.846154574750841
3.692309149501682 3.692309149501682

Price an Amortizing Swap

Price an amortizing swap using the Principal input argument to
define the amortization schedule.

Create the RateSpec.

Rates = 0.035;

ValuationDate = '1-Jan-2011';

StartDates = ValuationDate;

EndDates = '1-Jan-2017';

Compounding = 1;

RateSpec = intenvset('ValuationDate', ValuationDate,'StartDates', StartDates,...

'EndDates', EndDates,'Rates', Rates, 'Compounding', Compounding);

RateSpec =

FinObj: 'RateSpec'
Compounding: 1

Disc: 0.8135
Rates: 0.0350

EndTimes: 6
StartTimes: 0

EndDates: 736696
StartDates: 734504

ValuationDate: 734504
Basis: 0

EndMonthRule: 1

Create the swap instrument using the following data:

Settle ='1-Jan-2011';

6-782

swapbyzero

Maturity = '1-Jan-2017';
Period = 1;
Spread = 0;
LegRate = [0.04 10];

Define the swap amortizing schedule.

Principal ={{'1-Jan-2013' 100;'1-Jan-2014' 80;'1-Jan-2015' 60;'1-Jan-2016' 40; '1-Jan-2017' 20}};

Compute the price of the amortizing swap.

Price = swapbyzero(RateSpec, LegRate, Settle, Maturity, 'Principal' , Principal)

Price =

1.4574

See Also | bondbyzero | cfbyzero | fixedbyzero | floatbyzero

6-783

swaptionbybdt

Purpose Price swaption from Black-Derman-Toy interest-rate tree

Syntax [Price, PriceTree] = swaptionbybdt(BDTTree, OptSpec, Strike,
ExerciseDates, Spread, Settle, Maturity,
'Name1', Value1, 'Name2', Value2)

Arguments

BDTTree Interest-rate tree structure created by
bdttree.

OptSpec NINST-by-1 cell array of strings 'call' or
'put'. A call swaption entitles the buyer to
pay the fixed rate. A put swaption entitles
the buyer to receive the fixed rate.

Strike NINST-by-1 vector for strike swap rate values.

ExerciseDates For a European option: NINST-by-1 vector of
exercise dates. Each row is the schedule for
one option. For a European option, there is
only one ExerciseDate on the option expiry
date.

For an American option: NINST-by-2 vector
of exercise date boundaries. For each
instrument, the option can be exercised
on any coupon date between or including
the pair of dates on that row. If only one
non-NaN date is listed, or if ExerciseDates
is NINST-by-1, the option can be exercised
between the underlying swap Settle and the
single listed ExerciseDate.

Spread NINST-by-1 vector representing the number
of basis points over the reference rate.

Settle NINST-by-1 vector of dates representing the
settle date for each swap.

6-784

swaptionbybdt

Maturity NINST-by-1 vector of dates representing the
maturity date for each swap.

Note All optional inputs that follow are specified as matching
parameter name/value pairs. The parameter name is specified as
a character string, followed by the corresponding parameter value.
Parameter name/value pairs may be specified in any order; names
are case-insensitive and partial string matches are allowed provided
no ambiguities exist.

AmericanOpt (Optional) NINST-by-1 flags options:

• 0 for European options

• 1 for American options

SwapReset (Optional) NINST-by-1 vector representing the
reset frequency per year for the underlying
swap. Default is 1.

Basis (Optional) Day-count basis of the instrument.
A vector of integers.

• 0 = actual/actual (default)

• 1 = 30/360 (SIA)

• 2 = actual/360

• 3 = actual/365

• 4 = 30/360 (BMA)

• 5 = 30/360 (ISDA)

• 6 = 30/360 (European)

• 7 = actual/365 (Japanese)

• 8 = actual/actual (ICMA)

• 9 = actual/360 (ICMA)

6-785

swaptionbybdt

• 10 = actual/365 (ICMA)

• 11 = 30/360E (ICMA)

• 12 = actual/actual (ISDA)

• 13 = BUS/252
For more information, see basis.

Principal (Optional) NINST-by-1 vector of the notional
principal amounts. Default is 100.

Options (Optional) Derivatives pricing options
structure created with derivset.

Description [Price, PriceTree] = swaptionbybdt(BDTTree, OptSpec,
Strike,ExerciseDates, Spread, Settle, Maturity,'Name1',
Value1, 'Name2', Value2) computes the price of a swaption from a
BDT interest-rate tree. The swaption may be a call swaption or a put
swaption.

Note The Settle date for every swaption is set to the ValuationDate
of the BDT tree. The swap argument Settle is ignored.

A call swaption or payer swaption allows the option buyer to enter into
an interest rate swap in which the buyer of the option pays the fixed
rate and receives the floating rate.

A put swaption or receiver swaption allows the option buyer to enter
into an interest rate swap in which the buyer of the option receives the
fixed rate and pays the floating rate.

Price is a NINST-by-1 vector of expected swaption prices at time 0.

PriceTree is a MATLAB structure of trees containing vectors of
swaption instrument prices and a vector of observation times for each
node. Within PriceTree:

6-786

swaptionbybdt

• PriceTree.PTree contains the clean prices.

• PriceTree.tObs contains the observation times.

Examples Price a 5-year call swaption using a BDT interest-rate tree.

Assume that interest rate and volatility are fixed at 6% and 20%
annually between the valuation date of the tree until its maturity.
Build a tree with the following data:

Rates = 0.06 * ones (10,1);

StartDates = ['jan-1-2007';'jan-1-2008';'jan-1-2009';'jan-1-2010';'jan-1-2011';...

'jan-1-2012';'jan-1-2013';'jan-1-2014';'jan-1-2015';'jan-1-2016'];

EndDates =['jan-1-2008';'jan-1-2009';'jan-1-2010';'jan-1-2011';'jan-1-2012';...

'jan-1-2013';'jan-1-2014';'jan-1-2015';'jan-1-2016';'jan-1-2017'];

ValuationDate = 'jan-1-2007';

Compounding = 1;

Determine the RateSpec:

RateSpec = intenvset('Rates', Rates, 'StartDates', StartDates, 'EndDates', EndDates, ...

'Compounding', Compounding);

Use VolSpec to compute the interest rate volatility:

Volatility = 0.20 * ones (10,1); VolSpec = bdtvolspec(ValuationDate,...

EndDates, Volatility);

Use TimeSpec to specify the structure of the time layout for an equal
probabilities tree:

TimeSpec = bdttimespec(ValuationDate, EndDates, Compounding);

Build the BDT tree:

BDTTree = bdttree(VolSpec, RateSpec, TimeSpec);

Use the following swaption arguments:

6-787

swaptionbybdt

SwapSettlement = 'jan-1-2007';
SwapMaturity = 'jan-1-2015';
Spread = 0;
SwapReset = 1;
Principal = 100;
OptSpec = 'call';
Strike=.062;
ExerciseDates = 'jan-1-2012';
Basis=1;

Price the swaption

[Price, PriceTree] = swaptionbybdt(BDTTree, OptSpec, Strike, ExerciseDates, ...

Spread, SwapSettlement, SwapMaturity, 'SwapReset', SwapReset, ...

'Basis', Basis, 'Principal', Principal)

to return

Price = 2.0592

PriceTree =
FinObj: 'BDTPriceTree'
tObs: [0 1 2 3 4 5 6 7 8 9 10]
PTree: {1x11 cell}

See Also bdttree | instswaption | swapbybdt

6-788

swaptionbybk

Purpose Price swaption from Black-Karasinski interest-rate tree

Syntax [Price, PriceTree] = swaptionbybk(BKTTree, OptSpec, Strike,
ExerciseDates, Spread, Settle, Maturity,
'Name1', Value1, 'Name2', Value2)

Arguments

BKTree Interest-rate tree structure created by
bktree.

OptSpec NINST-by-1 cell array of strings 'call' or
'put'. A call swaption entitles the buyer to
pay the fixed rate. A put swaption entitles
the buyer to receive the fixed rate.

Strike NINST-by-1 vector for strike swap rate values.

ExerciseDates For a European option: NINST-by-1 vector of
exercise dates. Each row is the schedule for
one option. For a European option, there is
only one ExerciseDate on the option expiry
date.

For an American option: NINST-by-2 vector
of exercise date boundaries. For each
instrument, the option can be exercised
on any coupon date between or including
the pair of dates on that row. If only one
non-NaN date is listed, or if ExerciseDates
is NINST-by-1, the option can be exercised
between the underlying swap Settle and the
single listed ExerciseDate.

Spread NINST-by-1 vector representing the number
of basis points over the reference rate.

Settle NINST-by-1 vector of dates representing the
settle date for each swap.

6-789

swaptionbybk

Maturity NINST-by-1 vector of dates representing the
maturity date for each swap.

Note All optional inputs that follow are specified as matching
parameter name/value pairs. The parameter name is specified as
a character string, followed by the corresponding parameter value.
Parameter name/value pairs may be specified in any order; names
are case-insensitive and partial string matches are allowed provided
no ambiguities exist.

AmericanOpt (Optional) NINST-by-1 flags options:

• 0 for European options

• 1 for American options

SwapReset (Optional) NINST-by-1 vector representing the
reset frequency per year for the underlying
swap. Default is 1.

Basis (Optional) Day-count basis of the instrument.
A vector of integers.

• 0 = actual/actual (default)

• 1 = 30/360 (SIA)

• 2 = actual/360

• 3 = actual/365

• 4 = 30/360 (BMA)

• 5 = 30/360 (ISDA)

• 6 = 30/360 (European)

• 7 = actual/365 (Japanese)

• 8 = actual/actual (ICMA)

• 9 = actual/360 (ICMA)

6-790

swaptionbybk

• 10 = actual/365 (ICMA)

• 11 = 30/360E (ICMA)

• 12 = actual/actual (ISDA)

• 13 = BUS/252
For more information, see basis.

Principal (Optional) NINST-by-1 vector of the notional
principal amounts. Default is 100.

Options (Optional) Derivatives pricing options
structure created with derivset.

Description [Price, PriceTree] = swaptionbybk(BKTTree, OptSpec,
Strike,ExerciseDates, Spread, Settle, Maturity,'Name1',
Value1, 'Name2', Value2) computes the price of a swaption from a
BK interest-rate tree.

Note The Settle date for every swaption is set to the ValuationDate
of the BK tree. The swap argument Settle is ignored.

The swaption may be a call swaption or a put swaption.

A call swaption or payer swaption allows the option buyer to enter into
an interest rate swap in which the buyer of the option pays the fixed
rate and receives the floating rate.

A put swaption or receiver swaption allows the option buyer to enter
into an interest rate swap in which the buyer of the option receives the
fixed rate and pays the floating rate.

Price is a NINST-by-1 vector of expected swaption prices at time 0.

6-791

swaptionbybk

PriceTree is a MATLAB structure of trees containing vectors of
swaption instrument prices and a vector of observation times for each
node. Within PriceTree:

• PriceTree.PTree contains the clean prices.

• PriceTree.tObs contains the observation times.

Examples Price a 4-year call and put swaption using a BK interest-rate tree with
the following data.

Specify the RateSpec, assuming the interest rate is fixed at 7%
annually:

Rates =0.07 * ones (10,1);

Compounding = 2;

StartDates = ['jan-1-2007';'jul-1-2007';'jan-1-2008';'jul-1-2008';'jan-1-2009'; ...

'jul-1-2009'; 'jan-1-2010'; 'jul-1-2010';'jan-1-2011';'jul-1-2011'];

EndDates =['jul-1-2007';'jan-1-2008';'jul-1-2008';'jan-1-2009';'jul-1-2009'; ...

'jan-1-2010'; 'jul-1-2010';'jan-1-2011';'jul-1-2011';'jan-1-2012'];

ValuationDate = 'jan-1-2007';

RateSpec = intenvset('Rates', Rates, 'StartDates', StartDates, 'EndDates', EndDates,...

'Compounding', Compounding);

Use BKVolSpec to compute the interest rate volatility:

Volatility = 0.10*ones(10,1);

AlphaCurve = 0.05*ones(10,1);

AlphaDates = EndDates;

BKVolSpec = bkvolspec(ValuationDate, EndDates, Volatility, AlphaDates, AlphaCurve);

Use BKTimeSpec to specify the structure of the time layout for the BK
interest-rate tree.

BKTimeSpec = bktimespec(ValuationDate, EndDates, Compounding);

Build the BK tree:

BKTree = bktree(BKVolSpec, RateSpec, BKTimeSpec);

6-792

swaptionbybk

Use the following arguments for a 5-year swap and 4-year swaption:

SwapSettlement = 'jan-1-2007';
SwapMaturity = 'jan-1-2012';
Spread = 0;
SwapReset = 2 ;
Principal = 100;
OptSpec = {'call' ;'put'};
Strike= [0.07 ; 0.0725];
ExerciseDates = 'jan-1-2011';
Basis=1;

Price the swaption

PriceSwaption = swaptionbybk(BKTree, OptSpec, Strike, ExerciseDates, ...

Spread, SwapSettlement, SwapMaturity, 'SwapReset', SwapReset, 'Basis', Basis, ...

'Principal', Principal)

to return

PriceSwaption =
0.3593
0.4756

See Also bktree | instswaption | swapbybk

6-793

swaptionbyblk

Purpose Price European swaption instrument using Black model

Syntax Price = swaptionbyblk(RateSpec, OptSpec, Strike,
Settle, ExerciseDates, Maturity, Volatility)
Price = swaptionbyblk(RateSpec, OptSpec, Strike, Settle,
ExerciseDates, Maturity, Volatility, Name, Value)

Description Price = swaptionbyblk(RateSpec, OptSpec, Strike, Settle,
ExerciseDates, Maturity, Volatility) prices swaptions using the
Black option pricing model.

Price = swaptionbyblk(RateSpec, OptSpec, Strike, Settle,
ExerciseDates, Maturity, Volatility, Name, Value) prices
swaptions using the Black option pricing model with additional options
specified by one or more Name,Value pair arguments.

Note When pricing swaptions using the Black model, the underlying is
not a regular swap, but a forward on a swap.

Input
Arguments

RateSpec

Structure containing the properties of an interest-rate structure. See
intenvset for information on creating RateSpec.

RateSpec can be a NINST-by-2 input variable of RateSpecs, with the
second input being the discount curve for the paying leg if different
than the receiving leg. If only one curve is specified, than it is used to
discount both legs.

OptSpec

NINST-by-1 cell array of strings 'call' or 'put'. A call swaption
entitles the buyer to pay the fixed rate. A put swaption entitles the
buyer to receive the fixed rate.

Strike

6-794

swaptionbyblk

NINST-by-1 vector of strike swap rate values.

Settle

Settlement date. NINST-by-1 vector of serial date numbers or date
strings representing the settlement date for each swap. Settle must
be earlier than Maturity.

ExerciseDate

For a European option: NINST-by-1 vector of exercise dates. Each row is
the schedule for one option. When using an European option, there is
only one ExerciseDate on the option expiry date.

Maturity

Maturity date. NINST-by-1 vector of dates representing the maturity
date for each swap.

Volatility

Volatilities values. NINST-by-1 vector of volatilities.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments,
where Name is the argument name and Value is the corresponding
value. Name must appear inside single quotes (' '). You can
specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

Basis

Day-count basis of the instrument. A vector of integers.

• 0 = actual/actual

• 1 = 30/360 (SIA)

• 2 = actual/360

• 3 = actual/365

6-795

swaptionbyblk

• 4 = 30/360 (PSA)

• 5 = 30/360 (ISDA)

• 6 = 30/360 (European)

• 7 = actual/365 (Japanese)

• 8 = actual/actual (ISMA)

• 9 = actual/360 (ISMA)

• 10 = actual/365 (ISMA)

• 11 = 30/360E (ISMA)

• 12 = actual/365 (ISDA)

• 13 = BUS/252
For more information, see basis.

Default: 0 (actual/actual)

Principal

NINST-by-1 vector of the notional principal amount.

Default: 100

SwapReset

NINST-by-1 vector representing the reset frequency per year for the
underlying forward swap.

Default: 1

Output
Arguments

Price

NINST-by-1 vector of prices for the swaptions at time 0.

Definitions Forward Swap

A forward swap is a swap that starts at a future date.

6-796

swaptionbyblk

Examples Price a European Swaption Using the Black Model Where
the Yield Curve is Flat at 6%

Price a European swaption that gives the holder the right to enter in five
years into a three-year paying swap where a fixed-rate of 6.2% is paid
and floating is received. Assume that the yield curve is flat at 6% per
annum with continuous compounding, the volatility of the swap rate is
20%, the principal is $100, and payments are exchanged semiannually.

Create the RateSpec.

Rate = 0.06;

Compounding = -1;

ValuationDate = 'Jan-1-2010';

EndDates = 'Jan-1-2020';

Basis = 1;

RateSpec = intenvset('ValuationDate', ValuationDate,'StartDates', ValuationDate, ...

'EndDates', EndDates, 'Rates', Rate, 'Compounding', Compounding, 'Basis', Basis);

RateSpec =

FinObj: 'RateSpec'
Compounding: -1

Disc: 0.5488
Rates: 0.0600

EndTimes: 10
StartTimes: 0

EndDates: 737791
StartDates: 734139

ValuationDate: 734139
Basis: 1

EndMonthRule: 1

Price the swaption using the Black model.

Settle = 'Jan-1-2011';

ExerciseDates = 'Jan-1-2016';

6-797

swaptionbyblk

Maturity = 'Jan-1-2019';

Reset = 2;

Principal = 100;

Strike = 0.062;

Volatility = 0.2;

OptSpec = 'call';

Price= swaptionbyblk(RateSpec, OptSpec, Strike, Settle, ExerciseDates, Maturity, ...

Volatility, 'Reset', Reset, 'Principal', Principal, 'Basis', Basis)

Price =

2.0710

Price a European Swaption Using the Black Model Where
the Yield Curve Is Incrementally Increasing

Price a European swaption that gives the holder the right to enter into
a 5-year receiving swap in a year, where a fixed rate of 3% is received
and floating is paid. Assume that the 1-year, 2-year, 3-year, 4-year and
5- year zero rates are 3%, 3.4%, 3.7%, 3.9% and 4% with continuous
compounding. The swap rate volatility is 21%, the principal is $1000,
and payments are exchanged semiannually.

Create the RateSpec.

ValuationDate = 'Jan-1-2010';

EndDates = {'Jan-1-2011';'Jan-1-2012';'Jan-1-2013';'Jan-1-2014';'Jan-1-2015'};

Rates = [0.03; 0.034 ; 0.037; 0.039; 0.04;];

Compounding = -1;

Basis = 1;

RateSpec = intenvset('ValuationDate', ValuationDate, 'StartDates', ValuationDate, ...

'EndDates', EndDates, 'Rates', Rates, 'Compounding', Compounding,'Basis', Basis)

RateSpec =

FinObj: 'RateSpec'
Compounding: -1

6-798

swaptionbyblk

Disc: [5x1 double]
Rates: [5x1 double]

EndTimes: [5x1 double]
StartTimes: [5x1 double]

EndDates: [5x1 double]
StartDates: 734139

ValuationDate: 734139
Basis: 1

EndMonthRule: 1

Price the swaption using the Black model.

Settle = 'Jan-1-2011';

ExerciseDates = 'Jan-1-2012';

Maturity = 'Jan-1-2017';

Strike = 0.03;

Volatility = 0.21;

Principal =1000;

Reset = 2;

OptSpec = 'put';

Price = swaptionbyblk(RateSpec, OptSpec, Strike, Settle, ExerciseDates, ...

Maturity, Volatility,'Basis', Basis, 'Reset', Reset,'Principal', Principal)

Price =

0.5903

See Also | bondbyzero | cfbyzero | fixedbyzero | floatbyzero

6-799

swaptionbyhjm

Purpose Price swaption from Heath-Jarrow-Morton interest-rate tree

Syntax [Price, PriceTree] = swaptionbyhjm(HJMTree, OptSpec, Strike,
ExerciseDates, Spread, Settle, Maturity,
'Name1', Value1, 'Name2', Value2)

Arguments

HJMTree Interest-rate tree structure created by
hjmtree.

OptSpec NINST-by-1 cell array of strings 'call' or
'put'. A call swaption entitles the buyer to
pay the fixed rate. A put swaption entitles
the buyer to receive the fixed rate.

Strike NINST-by-1 vector of strike swap rate values.

ExerciseDates For a European option: NINST-by-1 vector of
exercise dates. Each row is the schedule for
one option. For a European option, there is
only one ExerciseDate on the option expiry
date.

For an American option: NINST-by-2 vector
of exercise date boundaries. For each
instrument, the option can be exercised
on any coupon date between or including
the pair of dates on that row. If only one
non-NaN date is listed, or if ExerciseDates
is NINST-by-1, the option can be exercised
between the underlying swap Settle and the
single listed ExerciseDate.

Spread NINST-by-1 vector representing the number
of basis points over the reference rate.

Settle NINST-by-1 vector of dates representing the
settle date for each swap.

6-800

swaptionbyhjm

Maturity NINST-by-1 vector of dates representing the
maturity date for each swap.

Note All optional inputs that follow are specified as matching
parameter name/value pairs. The parameter name is specified as
a character string, followed by the corresponding parameter value.
Parameter name/value pairs may be specified in any order; names
are case-insensitive and partial string matches are allowed provided
no ambiguities exist.

AmericanOpt (Optional) NINST-by-1 flags options:

• 0 for European options

• 1 for American options

SwapReset (Optional) NINST-by-1 vector representing the
reset frequency per year for the underlying
swap. Default is 1.

Basis (Optional) Day-count basis of the instrument.
A vector of integers.

• 0 = actual/actual (default)

• 1 = 30/360 (SIA)

• 2 = actual/360

• 3 = actual/365

• 4 = 30/360 (BMA)

• 5 = 30/360 (ISDA)

• 6 = 30/360 (European)

• 7 = actual/365 (Japanese)

• 8 = actual/actual (ICMA)

• 9 = actual/360 (ICMA)

6-801

swaptionbyhjm

• 10 = actual/365 (ICMA)

• 11 = 30/360E (ICMA)

• 12 = actual/actual (ISDA)

• 13 = BUS/252
For more information, see basis.

Principal (Optional) NINST-by-1 vector of the notional
principal amounts. Default is 100.

Options (Optional) Derivatives pricing options
structure created with derivset.

Description [Price, PriceTree] = swaptionbyhjm(HJMTree, OptSpec,
Strike, ExerciseDates, Spread, Settle, Maturity,'Name1',
Value1, 'Name2', Value2) computes the price of a swaption from
a HJM interest-rate tree.

Note The Settle date for every swaption is set to the ValuationDate
of the HJM tree. The swap argument Settle is ignored.

The swaption may be a call swaption or a put swaption.

A call swaption or payer swaption allows the option buyer to enter into
an interest rate swap in which the buyer of the option pays the fixed
rate and receives the floating rate.

A put swaption or receiver swaption allows the option buyer to enter
into an interest rate swap in which the buyer of the option receives the
fixed rate and pays the floating rate.

Price is a (NINST-by-1 vector of expected swaption prices at time 0.

6-802

swaptionbyhjm

PriceTree is a MATLAB structure of trees containing vectors of
swaption instrument prices and a vector of observation times for each
node. Within PriceTree:

• PriceTree.PTree contains the clean prices.

• PriceTree.tObs contains the observation times.

Examples Price a 1-year call swaption using an HJM interest-rate tree.

Assume that interest rate is fixed at 5% annually between the valuation
date of the tree until its maturity. Build a tree with the following data.

Specify the RateSpec:

Rates = [0.05;0.05;0.05;0.05];

StartDates = 'jan-1-2007';

EndDates =['jan-1-2008';'jan-1-2009';'jan-1-2010';'jan-1-2011'];

ValuationDate = StartDates;

Compounding = 1;

RateSpec = intenvset('Rates', Rates, 'StartDates', StartDates, 'EndDates',...

EndDates, 'Compounding', Compounding);

Use VolSpec to compute the interest rate volatility:

VolSpec=hjmvolspec('Constant',0.01);

Use TimeSpec to specify the structure of the time layout for the HJM
interest-rate tree:

TimeSpec = hjmtimespec(ValuationDate, EndDates, Compounding);

Build the HJM tree:

HJMTree = hjmtree(VolSpec, RateSpec, TimeSpec);

Use the following swaption arguments:

SwapSettlement = 'jan-1-2007';
SwapMaturity = 'jan-1-2010';
Spread = [0];

6-803

swaptionbyhjm

SwapReset = 1;
Basis = 1;
Principal = 100;
OptSpec = 'call';
Strike=0.05;
ExerciseDates = '01-Jan-2008';

Price the swaption

[Price, PriceTree] = swaptionbyhjm(HJMTree, OptSpec, Strike, ExerciseDates, ...

Spread, SwapSettlement, SwapMaturity,'SwapReset', SwapReset, ...

'Basis', Basis, 'Principal', Principal)

to return

Price =

0.9296

PriceTree =

FinObj: 'HJMPriceTree'

tObs: [5x1 double]

PBush: {[0.9296] [1x1x2 double] [1x2x2 double] [1x4x2 double] [0 0 0 0 0 0 0 0]}

See Also hjmtree | instswaption | swapbyhjm

6-804

swaptionbyhw

Purpose Price swaption from Hull-White interest-rate tree

Syntax [Price, PriceTree] = swaptionbyhw(HWTree, OptSpec, Strike,
ExerciseDates, Spread, Settle, Maturity,
'Name1', Value1, 'Name2', Value2)

Arguments

HWTree Interest-rate tree structure created by
hwtree.

OptSpec NINST-by-1 cell array of strings 'call' or
'put'. A call swaption entitles the buyer to
pay the fixed rate. A put swaption entitles
the buyer to receive the fixed rate.

Strike NINST-by-1 vector for strike swap rate values.

ExerciseDates For a European option: NINST-by-1 vector of
exercise dates. Each row is the schedule for
one option. For a European option, there is
only one ExerciseDate on the option expiry
date.

For an American option: NINST-by-2 vector
of exercise date boundaries. For each
instrument, the option can be exercised
on any coupon date between or including
the pair of dates on that row. If only one
non-NaN date is listed, or if ExerciseDates
is NINST-by-1, the option can be exercised
between the underlying swap Settle and the
single listed ExerciseDate.

Spread NINST-by-1 vector representing the number
of basis points over the reference rate.

Settle NINST-by-1 vector of dates representing the
settle date for each swap.

6-805

swaptionbyhw

Maturity NINST-by-1 vector of dates representing the
maturity date for each swap.

Note All optional inputs that follow are specified as matching
parameter name/value pairs. The parameter name is specified as
a character string, followed by the corresponding parameter value.
Parameter name/value pairs may be specified in any order; names
are case-insensitive and partial string matches are allowed provided
no ambiguities exist.

AmericanOpt (Optional) NINST-by-1 flags options:

• 0 for European options

• 1 for American options

SwapReset (Optional) NINST-by-1 vector representing the
reset frequency per year for the underlying
swap. Default is 1.

Basis (Optional) Day-count basis of the instrument.
A vector of integers.

• 0 = actual/actual (default)

• 1 = 30/360 (SIA)

• 2 = actual/360

• 3 = actual/365

• 4 = 30/360 (BMA)

• 5 = 30/360 (ISDA)

• 6 = 30/360 (European)

• 7 = actual/365 (Japanese)

• 8 = actual/actual (ICMA)

• 9 = actual/360 (ICMA)

6-806

swaptionbyhw

• 10 = actual/365 (ICMA)

• 11 = 30/360E (ICMA)

• 12 = actual/actual (ISDA)

• 13 = BUS/252
For more information, see basis.

Principal (Optional) NINST-by-1 vector of the notional
principal amounts. Default is 100.

Options (Optional) Derivatives pricing options
structure created with derivset.

Description [Price, PriceTree] = swaptionbyhw(HWTree, OptSpec,
Strike,ExerciseDates, Spread, Settle, Maturity,'Name1',
Value1, 'Name2', Value2) computes the price of a swaption from a
HW interest-rate tree.

Note The Settle date for every swaption is set to the ValuationDate
of the HW tree. The swap argument Settle is ignored.

The swaption may be a call swaption or a put swaption.

A call swaption or payer swaption allows the option buyer to enter into
an interest rate swap in which the buyer of the option pays the fixed
rate and receives the floating rate.

A put swaption or receiver swaption allows the option buyer to enter
into an interest rate swap in which the buyer of the option receives the
fixed rate and pays the floating rate.

Price is a NINST-by-1 vector of expected swaption prices at time 0.

6-807

swaptionbyhw

PriceTree is a MATLAB structure of trees containing vectors of
swaption instrument prices and a vector of observation times for each
node. Within PriceTree:

• PriceTree.PTree contains the clean prices.

• PriceTree.tObs contains the observation times.

Examples Price a 3-year put swaption using an HW interest-rate tree with the
following data.

Specify the RateSpec:

Rates =0.075 * ones (10,1);

Compounding = 2;

StartDates = ['jan-1-2007';'jul-1-2007';'jan-1-2008';'jul-1-2008';'jan-1-2009';...

'jul-1-2009';'jan-1-2010'; 'jul-1-2010';'jan-1-2011';'jul-1-2011'];

EndDates =['jul-1-2007';'jan-1-2008';'jul-1-2008';'jan-1-2009';'jul-1-2009';...

'jan-1-2010';'jul-1-2010';'jan-1-2011';'jul-1-2011';'jan-1-2012'];

ValuationDate = 'jan-1-2007';

RateSpec = intenvset('Rates', Rates, 'StartDates', StartDates, 'EndDates',...

EndDates, 'Compounding', Compounding);

Use HWVolSpec to compute the interest rate volatility:

Volatility = 0.05*ones(10,1);

AlphaCurve = 0.01*ones(10,1);

AlphaDates = EndDates;

HWVolSpec = hwvolspec(ValuationDate, EndDates, Volatility, AlphaDates, AlphaCurve);

Use HWTimeSpec to specify the structure of the time layout for an HW
interest-rate tree:

HWTimeSpec = hwtimespec(ValuationDate, EndDates, Compounding);

Build the HW tree:

HWTree = hwtree(HWVolSpec, RateSpec, HWTimeSpec);

Use the following arguments for a 5-year swap and 3-year swaption:

6-808

swaptionbyhw

SwapSettlement = 'jan-1-2007';
SwapMaturity = 'jan-1-2012';
Spread = 0;
SwapReset = 2 ;
Principal = 100;
OptSpec = 'put';
Strike= 0.04;
ExerciseDates = 'jan-1-2010';
Basis=1;

Price the swaption

PriceSwaption = swaptionbyhw(HWTree, OptSpec, Strike, ExerciseDates, ...

Spread, SwapSettlement, SwapMaturity,'SwapReset', SwapReset, ...

'Basis', Basis,'Principal', Principal)

to return

PriceSwaption =

2.9081

See Also hwtree | instswaption | swapbyhw

6-809

time2date

Purpose Dates from time and frequency

Syntax Dates = time2date(Settle, Times, Compounding, Basis,
EndMonthRule)

Arguments

Settle Settlement date. A vector of serial date numbers
or date strings.

Times Vector of times corresponding to the compounding
value. Times must be equal to or greater than 0.

Compounding (Optional) Scalar value representing the rate
at which the input zero rates were compounded
when annualized. Default = 2. This argument
determines the formula for the discount factors:

Compounding = 1, 2, 3, 4, 6, 12

Disc = (1 + Z/F)^(-T), where F is the
compounding frequency, Z is the zero rate, and T
is the time in periodic units; for example, T = F
is 1 year.

Compounding = 365

Disc = (1 + Z/F)^(-T), where F is the number
of days in the basis year and T is a number of days
elapsed computed by basis.

Compounding = -1

Disc = exp(-T*Z), where T is time in years.

6-810

time2date

Basis (Optional) Day-count basis of the instrument. A
vector of integers.

• 0 = actual/actual (default)

• 1 = 30/360 (SIA)

• 2 = actual/360

• 3 = actual/365

• 4 = 30/360 (BMA)

• 5 = 30/360 (ISDA)

• 6 = 30/360 (European)

• 7 = actual/365 (Japanese)

• 8 = actual/actual (ICMA)

• 9 = actual/360 (ICMA)

• 10 = actual/365 (ICMA)

• 11 = 30/360E (ICMA)

• 12 = actual/actual (ISDA)

• 13 = BUS/252
For more information, see basis.

EndMonthRule (Optional) End-of-month rule. A vector. This rule
applies only when Maturity is an end-of-month
date for a month having 30 or fewer days. 0
= ignore rule, meaning that a bond’s coupon
payment date is always the same numerical day
of the month. 1 = set rule on (default), meaning
that a bond’s coupon payment date is always the
last actual day of the month.

6-811

time2date

Description Dates = time2date(Settle, Times, Compounding, Basis,
EndMonthRule) computes dates corresponding to the times occurring
beyond the settlement date.

Note To obtain accurate results from this function, the Basis and
Dates arguments must be consistent. If the Dates argument contains
months that have 31 days, Basis must be one of the values that allow
months to contain more than 30 days; for example, Basis = 0, 3, or 7.

The time2date function is the inverse of date2time.

Examples Show that date2time and time2date are the inverse of each other.
First compute the time factors using date2time.

Settle = '1-Sep-2002';

Dates = datenum(['31-Aug-2005'; '28-Feb-2006'; '15-Jun-2006';

'31-Dec-2006']);

Compounding = 2;

Basis = 0;

EndMonthRule = 1;

Times = date2time(Settle, Dates, Compounding, Basis,...

EndMonthRule)

Times =

5.9945

6.9945

7.5738

8.6576

Now use the calculated Times in time2date and compare the calculated
dates with the original set.

Dates_calc = time2date(Settle, Times, Compounding, Basis,...

EndMonthRule)

6-812

time2date

Dates_calc =

732555

732736

732843

733042

datestr(Dates_calc)

ans =

31-Aug-2005

28-Feb-2006

15-Jun-2006

31-Dec-2006

See Also cftimes | date2time | disc2rate | rate2disc

6-813

treepath

Purpose Entries from node of recombining binomial tree

Syntax Values = treepath(Tree, BranchList)

Arguments

Tree Recombining binomial tree.

BranchList Number of paths (NUMPATHS) by path length
(PATHLENGTH) matrix containing the sequence of
branchings.

Description Values = treepath(Tree, BranchList) extracts entries of a node
of a recombining binomial tree. The node path is described by the
sequence of branchings taken, starting at the root. The top branch
is number one, the second-to-top is two, and so on. Set the branch
sequence to zero to obtain the entries at the root node.

Values is a number of values (NUMVALS)-by-NUMPATHS matrix containing
the retrieved entries of a recombining tree.

Examples Create a BDT tree by loading the example file.

load deriv.mat;

Then

FwdRates = treepath(BDTTree.FwdTree, [1 2 1])

returns the rates at the tree nodes located by taking the up branch,
then the down branch, and finally the up branch again.

FwdRates =

1.1000
1.0979
1.1377

6-814

treepath

1.1183

You can visualize this with the treeviewer function.

treeviewer(BDTTree)

See Also mktree | treeshape

6-815

treeshape

Purpose Shape of recombining binomial tree

Syntax [NumLevels, NumPos, IsPriceTree] = treeshape(Tree)

Arguments

Tree Recombining binomial tree.

Description [NumLevels, NumPos, IsPriceTree] = treeshape(Tree) returns
information on a recombining binomial tree’s shape.

NumLevels is the number of time levels of the tree.

NumPos is a 1-by-NUMLEVELS vector containing the length of the state
vectors in each level.

IsPriceTree is a Boolean determining if a final horizontal branch is
present in the tree.

Examples Create a BDT tree by loading the example file.

load deriv.mat;

With treeviewer you can see the general shape of the BDT interest-rate
tree.

treeviewer(BDTTree)

6-816

treeshape

With this tree

[NumLevels, NumPos, IsPriceTree] = treeshape(BDTTree.FwdTree)

returns

NumLevels =
4

NumPos =
1 1 1 1

IsPriceTree =
0

See Also mktree | treepath

6-817

treeviewer

Purpose Tree information

Syntax treeviewer(Tree)
treeviewer(PriceTree, InstSet)
treeviewer(CFTree, InstSet)

Arguments

Tree Tree can be any of the following types of trees.

Interest-rate trees:

• Black-Derman-Toy (BDTTree)

• Black-Karasinski (BKTree)

• Heath-Jarrow-Morton (HJMTree)

• Hull-White (HWTree)

For information on creating interest-rate trees, see:

• bktree for information on creating BKTree.

• bdttree for information on creating BDTTree.

• hjmtree for information on creating HJMTree.

• hwtree for information on creating HWTree.

Money market trees:

• Money market tree (MMktTree)

For information on creating money-market trees,
see:

• mmktbybdt for information on creating a
money-market tree from a BDT interest-rate tree.

• mmktbyhjm for information on creating a
money-market tree from an HJM interest-rate
tree.

6-818

treeviewer

Note Money market trees cannot be created from
BK or HW interest-rate trees.

Stock price trees:

• Cox-Ross-Rubinstein (CRRTree)

• Implied Trinomial tree (ITTTree)

• Leisen-Reimer stock tree (LRTree)

• Equal probabilities (EQPTree)

For information on creating stock price trees, see:

• crrtree for information on creating CRRTree.

• eqptree for information on creating EQPTree.

• itttree for information on creating ITTTree.

• lrtree for information on creating LRTree.

Cash flow trees:

• Black-Derman-Toy (BDTCFTree)

• Heath-Jarrow-Morton (HJMCFTree)

Cash flow trees are created as outputs from the
swap functions swapbyhjm and swapbybdt.

Note For the function swapbybdt, which uses a
recombining binomial tree, this structure contains
only NaNs because cash flows cannot be accurately
calculated at every tree node for floating-rate
notes.

6-819

treeviewer

PriceTree PriceTree is a Black-Derman-Toy
(BDTPriceTree), Black-Karasinski (BKPriceTree),
Heath-Jarrow-Morton (HJMPriceTree), Hull-White
(HWPriceTree), Cox-Ross-Rubinstein (crrprice),
Equal probabilities (eqpprice), or Implied Trinomial
tree (ittprice) tree of instrument prices.

CFTree CFTree is a tree of swap cash flows. You create cash
flow trees when executing the Black-Derman-Toy
and Heath-Jarrow-Morton swap functions.
(Black-Derman-Toy cash flow trees contain only
NaNs.)

InstSet (Optional) Variable containing a collection of
instruments whose prices or cash flows are contained
in a tree. The collection can be created with the
function instadd or as a cell array containing the
names of the instruments. To display the names
of the instruments, the field Name should exist in
InstSet. If InstSet is not passed, treeviewer
uses default instruments names (numbers) when
displaying prices or cash flows.

Description treeviewer(Tree) displays an interest rate, stock price, or
money-market tree.

treeviewer(PriceTree, InstSet) displays a tree of instrument
prices. If you provide the name of an instrument set (InstSet) and
you have named the instruments using the field Name, the treeviewer
display identifies the instrument being displayed with its name. (See
Example 3 for a description.) If you do not provide the optional InstSet
argument, the instruments are identified by their sequence number in
the instrument set. (See Example 6 for a description.)

treeviewer(CFTree, InstSet) displays a cash flow tree that has been
created with swapbybdt or swapbyhjm. If you provide the name of an
instrument set (InstSet) containing cash flow names, the treeviewer

6-820

treeviewer

display identifies the instrument being displayed with its name. (See
Example 3 for a description.) If the optional InstSet argument is not
present, the instruments are identified by their sequence number in the
instrument set. See Example 6 for a description.)

treeviewer price tree diagrams follow the convention that increasing
prices appear on the upper branch of a tree and, consequently,
decreasing prices appear on the lower branch. Conversely, for interest
rate displays, decreasing interest rates appear on the upper branch
(prices are rising) and increasing interest rates on the lower branch
(prices are falling).

treeviewer provides an interactive display of prices or interest rates.
The display is activated by clicking the nodes along the price or interest
rate path shown in the left pane when the function is called. For HJM
trees you select the endpoints of the path, and treeviewer displays all
data from beginning to end. With recombining trees, such as BDT, BK
and HW, you must click each node in succession from the beginning
(t = 1) to the last node (t = n). Do not include the root node, the
node at t = 0. If you do not click the nodes in the proper order, you
are reminded with the message

Parent of selected node must be selected.

Examples Example 1. Display an HJM Interest-Rate Tree.

load deriv.mat
treeviewer(HJMTree)

The treeviewer function displays the structure of an HJM tree in the
left pane. The tree visualization in the right pane is blank.

6-821

treeviewer

To visualize the actual interest-rate tree, go to the Tree Visualization
pane and click on Path (the default) and Diagram. Now, select the
first path by clicking on the last node (t = 3) of the upper branch.

6-822

treeviewer

Note that the entire upper path is highlighted in red.

To complete the process, select a second path by clicking on the last
node (t = 3) of another branch. The second path is highlighted in
purple. The final display looks like this.

6-823

treeviewer

Alternative Forms of Display

The Tree Visualization pane allows you to select alternative ways
to display tree data. For example, if you select Path and Table as
your visualization choices, the final display above instead appears in
tabular form.

6-824

treeviewer

To see a plot of interest rates along the chosen branches, click Path and
Plot in the Tree Visualization pane.

6-825

treeviewer

Note that with Plot selected, rising interest rates are shown on the
upper branch and declining interest rates on the lower.

Finally, if you clicked Node and Children under Tree Visualization,
you restrict the data displayed to just the selected parent node and
its children.

6-826

treeviewer

With Node and Children selected, the choices under Visualization
are unavailable.

Example 2. Display a BDT Interest-Rate Tree.

load deriv.mat
treeviewer(BDTTree)

The treeviewer function displays the structure of a BDT tree in the
left pane. The tree visualization in the right pane is blank.

6-827

treeviewer

To visualize the actual interest-rate tree, go to the Tree Visualization
pane and click Path (the default) and Diagram. Now, select the first
path by clicking on the first node of the up branch (t = 1). Continue
by clicking the down branch at the next node (t = 2). The two figures
below show the treeviewer path diagrams for these selections.

6-828

treeviewer

Continue clicking all nodes in succession until you reach the end of
the branch. Note that the entire path you have selected is highlighted
in red.

Select a second path by clicking the first node of the lower branch
(t = 1). Continue clicking lower nodes as you did on the first branch.
Note that the second branch is highlighted in purple. The final display
looks like this.

6-829

treeviewer

Example 3. Display an HJM Price Tree for Named
Instruments.

load deriv.mat
[Price, PriceTree] = hjmprice(HJMTree, HJMInstSet);
treeviewer(PriceTree, HJMInstSet)

6-830

treeviewer

Example 4. Display a BDT Price Tree for Named Instruments.

load deriv.mat
[Price, PriceTree] = bdtprice(BDTTree, BDTInstSet);
treeviewer(PriceTree, BDTInstSet)

6-831

treeviewer

Example 5. Display an HJM Price Tree with Renamed
Instruments.

load deriv.mat

[Price, PriceTree] = hjmprice(HJMTree, HJMInstSet);

Names = {'Bond1', 'Bond2', 'Option', 'Fixed','Float', 'Cap',...

'Floor', 'Swap'};

treeviewer(PriceTree, Names)

6-832

treeviewer

Example 6. Display an HJM Price Tree Using Default
Instrument Names (Numbers).

load deriv.mat
[Price, PriceTree] = hjmprice(HJMTree, HJMInstSet);
treeviewer(PriceTree)

6-833

treeviewer

See Also bdttree | bktree | crrtree | eqptree | hjmtree | hwtree | instadd |
itttree | lrtree | mmktbybdt | mmktbyhjm | swapbybdt | swapbyhjm

6-834

trintreepath

Purpose Entries from node of recombining trinomial tree

Syntax Values = trintreepath(TrinTree, BranchList)

Arguments

TrinTree Recombining price or interest-rate trinomial tree.

BranchList Number of paths (NUMPATHS) by path length
(PATHLENGTH) matrix containing the sequence of
branchings.

Description Values = trintreepath(TrinTree, BranchList) extracts entries of
a node of a recombining trinomial tree. The node path is described by
the sequence of branchings taken, starting at the root. The top branch
is number 1, the middle branch is 2, and the bottom branch is 3. Set the
branch sequence to 0 to obtain the entries at the root node.

Values is a number of values (NUMVALS)-by-NUMPATHS matrix containing
the retrieved entries of a recombining tree.

Examples Create a Hull-White tree by loading the example file.

load deriv.mat;

Then, for example

FwdRates = trintreepath(HWTree, [1 2 3])

returns the rates at the tree nodes located by starting at 0, taking the
up branch at the first node, the middle branch at the second node, and
finally the bottom branch at the third node.

FwdRates =

1.0279

6-835

trintreepath

1.0528
1.0652
1.0591

You can visualize this with the treeviewer function.

treeviewer(HWTree)

See Also mktrintree | trintreeshape

6-836

trintreeshape

Purpose Shape of recombining trinomial tree

Syntax [NumLevels, NumPos, NumStates] = trintreeshape(TrinTree)

Arguments

TrinTree Recombining price or interest-rate trinomial tree.

Description [NumLevels, NumPos, NumStates] = trintreeshape(TrinTree)
returns information on a recombining trinomial tree’s shape.

NumLevels is the number of time levels of the tree.

NumPos is a 1-by-NUMLEVELS vector containing the length of the state
vectors in each level.

NumStates is a 1-by-NUMLEVELS vector containing the number of state
vectors in each level.

Examples Create a Hull-White tree by loading the example file.

load deriv.mat;

With treeviewer you can see the general shape of the HW interest-rate
tree.

treeviewer(HWTree)

6-837

trintreeshape

With this tree

[NumLevels, NumPos, NumStates] = trintreeshape(HWTree)

returns

NumLevels =
4

NumPos =
1 1 1 1

NumStates =
1 3 5 5

See Also mktrintree | trintreepath

6-838

A

Derivatives Pricing Options

• “Pricing Options Structure” on page A-2

• “Customizing the Structure” on page A-5

A Derivatives Pricing Options

Pricing Options Structure

In this section...

“Introduction” on page A-2

“Default Structure” on page A-2

Introduction
The MATLAB Options structure provides additional input to most pricing
functions. The Options structure

• Tells pricing functions how to use the interest-rate tree to calculate
instrument prices.

• Determines what additional information the Command Window displays
along with instrument prices.

• Tells pricing functions which method to use in pricing barrier options.

The pricing options structure is primarily used in the pricing of
interest-rate-based financial derivatives. However, the BarrierMethod field
in the structure allows you to use it in pricing equity barrier options as well.

You provide pricing options in an optional Options argument passed to a
pricing function. (See, for example, bondbyhjm, bdtprice, barrierbycrr,
barrierbyeqp, or barrierbyitt.)

Default Structure
If you do not specify the Options argument in the call to a pricing function,
the function uses a default structure. To observe the default structure, use
derivset without any arguments.

Options = derivset

Options =

Diagnostics: 'off'
Warnings: 'on'

ConstRate: 'on'

A-2

Pricing Options Structure

BarrierMethod: 'unenhanced'

The Options structure has four fields: Diagnostics, Warnings, ConstRate,
and BarrierMethod.

Diagnostics Field
Diagnostics indicates whether additional information is displayed if the
tree is modified. The default value for this option is 'off'. If Diagnostics
is set to 'on' and ConstRate is set to 'off', the pricing functions display
information such as the number of nodes in the last level of the tree generated
for pricing purposes.

Warnings Field
Warnings indicates whether to display warning messages when the input tree
is not adequate for accurately pricing the instruments. The default value for
this option is 'on'. If both ConstRate and Warnings are 'on', a warning is
displayed if any of the instruments in the input portfolio has a cash flow
date between tree dates. If ConstRate is 'off', and Warnings is 'on', a
warning is displayed if the tree is modified to match the cash flow dates on
the instruments in the portfolio.

ConstRate Field
ConstRate indicates whether the interest rates should be assumed constant
between tree dates. By default this option is 'on', which is not an
arbitrage-free assumption. Consequently the pricing functions return an
approximate price for instruments featuring cash flows between tree dates.
Instruments featuring cash flows only on tree nodes are not affected by this
option and return exact (arbitrage-free) prices. When ConstRate is 'off', the
pricing function finds the cash flow dates for all instruments in the portfolio.
If these cash flows do not align exactly with the tree dates, a new tree is
generated and used for pricing. This new tree features the same volatility and
initial rate specifications of the input tree but contains tree nodes for each
date in which at least one instrument in the portfolio has a cash flow. Keep in
mind that the number of nodes in a tree grows exponentially with the number
of tree dates. Consequently, setting ConstRate 'off' dramatically increases
the memory and processor demands on the computer.

A-3

A Derivatives Pricing Options

BarrierMethod Field
When using binomial trees to price barrier options, you may require a large
number of tree steps to achieve an accurate result when tree nodes do not
align with the barrier level. With the BarrierMethod field, the toolbox
provides an enhancement method that improves the accuracy of the results
without having to use large trees.

The BarrierMethod field can be set to 'unenhanced' (default) or 'interp'. If
you specify 'unenhanced', no correction calculation is used. Otherwise, if you
specify 'interp', the toolbox provides an enhanced valuation by interpolating
between nodes on barrier boundaries.

You specify the barrier method in the last input argument, Options, of the
functions barrierbycrr, barrierbyeqp, crrprice, or eqpprice. Options is a
structure that you create with the function derivset. Using derivset, you
specify whether to use the enhanced or the unenhanced method.

For more information about this algorithm, see Derman, E., I. Kani, D.
Ergener and I. Bardhan, “Enhanced Numerical Methods for Options with
Barriers,” Financial Analysts Journal, (Nov. - Dec. 1995), pp. 65-74.

A-4

Customizing the Structure

Customizing the Structure
Customize the Options structure by passing property name/property value
pairs to the derivset function.

As an example, consider an Options structure with ConstRate 'off' and
Diagnostics 'on'.

Options = derivset('ConstRate', 'off', 'Diagnostics', 'on')

Options =

Diagnostics: 'on'
Warnings: 'on'

ConstRate: 'off'
BarrierMethod: 'unenhanced'

To obtain the value of a specific property from the Options structure, use
derivget.

CR = derivget(Options, 'ConstRate')

CR =
Off

Note Use derivset and derivget to construct the Options structure. These
functions are guaranteed to remain unchanged, while the implementation of
the structure itself may be modified in the future.

Now observe the effects of setting ConstRate 'off'. Obtain the tree dates
from the HJM tree.

TreeDates = [HJMTree.TimeSpec.ValuationDate;...
HJMTree.TimeSpec.Maturity]

TreeDates =

730486

A-5

A Derivatives Pricing Options

730852
731217
731582
731947

datedisp(TreeDates)

01-Jan-2000
01-Jan-2001
01-Jan-2002
01-Jan-2003
01-Jan-2004

All instruments in HJMInstSet settle on January 1, 2000, and all have cash
flows once a year, with the exception of the second bond, which features a
period of 2. This bond has cash flows twice a year, with every other cash
flow consequently falling between tree dates. You can extract this bond from
the portfolio to compare how its price differs by setting ConstRate to 'on'
and 'off'.

BondPort = instselect(HJMInstSet, 'Index', 2);

instdisp(BondPort)

Index Type CouponRate Settle Maturity Period Basis...
1 Bond 0.04 01-Jan-2000 01-Jan-2004 2 NaN...

First price the bond with ConstRate 'on' (default).

format long

[BondPrice, BondPriceTree] = hjmprice(HJMTree, BondPort)

Warning: Not all cash flows are aligned with the tree. Result will

be approximated.

BondPrice =

97.52801411736377

BondPriceTree =

FinObj: 'HJMPriceTree'

A-6

Customizing the Structure

PBush: {1x5 cell}

AIBush: {[0] [1x1x2 double] ... [1x4x2 double] [1x8 double]}

tObs: [0 1 2 3 4]

Now recalculate the price of the bond setting ConstRate 'off'.

OptionsNoCR = derivset('ConstR', 'off')

OptionsNoCR =

Diagnostics: 'off'

Warnings: 'on'

ConstRate: 'off'

[BondPriceNoCR, BondPriceTreeNoCR] = hjmprice(HJMTree,...

BondPort, OptionsNoCR)

Warning: Not all cash flows are aligned with the tree. Rebuilding

tree.

BondPriceNoCR =

97.53342361674437

BondPriceTreeNoCR =

FinObj: 'HJMPriceTree'

PBush: {1x9 cell}

AIBush: {1x9 cell}

tObs: [0 0.5000 1 1.5000 2 2.5000 3 3.5000 4]

As indicated in the last warning, because the cash flows of the bond did not
align with the tree dates, a new tree was generated for pricing the bond.
This pricing method returns more accurate results since it guarantees that
the process is arbitrage-free. It also takes longer to calculate and requires
more memory. The tObs field of the price tree structure indicates the
increased memory usage. BondPriceTree.tObs has only five elements, while
BondPriceTreeNoCR.tObs has nine. While this may not seem like a large
difference, it has a dramatic effect on the number of states in the last node.

size(BondPriceTree.PBush{end})

A-7

A Derivatives Pricing Options

ans =

1 8

size(BondPriceTreeNoCR.PBush{end})

ans =

1 128

The differences become more obvious by examining the price trees with
treeviewer.

treeviewer(BondPriceTree, BondPort)

treeviewer(BondPriceTreeNoCR, BondPort)

A-8

Customizing the Structure

All = [Delta ./ Price, Gamma ./ Price, Vega ./ Price, Price]

All =

-2.76 10.43 0.00 98.72
-3.56 16.64 -0.00 97.53

-166.18 13235.59 700.96 0.05
-2.76 10.43 0.00 98.72
-0.01 0.03 0 100.55
46.95 1090.63 14.91 6.28

-969.85 173969.77 1926.72 0.05
-76.39 287.00 0.00 3.690

A-9

A Derivatives Pricing Options

A-10

B

Bibliography

• “Black-Derman-Toy (BDT) Modeling” on page B-2

• “Heath-Jarrow-Morton (HJM) Modeling” on page B-3

• “Hull-White (HW) and Black-Karasinski (BK) Modeling” on page B-4

• “Cox-Ross-Rubinstein (CRR) Modeling” on page B-5

• “Implied Trinomial Tree (ITT) Modeling” on page B-6

• “Leisen-Reimer Tree (LR) Modeling” on page B-7

• “Equal Probabilities Tree (EQP) Modeling” on page B-8

• “Closed-Form Solutions Modeling” on page B-9

• “Financial Derivatives” on page B-10

B Bibliography

Black-Derman-Toy (BDT) Modeling
A description of the Black-Derman-Toy interest-rate model can be found in:

Black, Fischer, Emanuel Derman, and William Toy, “A One Factor Model
of Interest Rates and its Application to Treasury Bond Options,” Financial
Analysts Journal, January - February 1990.

B-2

Heath-Jarrow-Morton (HJM) Modeling

Heath-Jarrow-Morton (HJM) Modeling
An introduction to Heath-Jarrow-Morton modeling, used extensively in
Financial Derivatives Toolbox software, can be found in:

Jarrow, Robert A., Modelling Fixed Income Securities and Interest Rate
Options, McGraw-Hill, 1996, ISBN 0-07-912253-1.

B-3

B Bibliography

Hull-White (HW) and Black-Karasinski (BK) Modeling
A description of the Hull-White model and its Black-Karasinski modification
can be found in:

Hull, John C., Options, Futures, and Other Derivatives, Prentice-Hall, 1997,
ISBN 0-13-186479-3.

You can find additional information about the Hull-White single-factor model
used in this toolbox in these papers:

Hull, J., and A. White, “Numerical Procedures for Implementing Term
Structure Models I: Single-Factor Models,” Journal of Derivatives, 1994.

Hull, J., and A. White, “Using Hull-White Interest Rate Trees,” Journal of
Derivatives, 1996.

B-4

Cox-Ross-Rubinstein (CRR) Modeling

Cox-Ross-Rubinstein (CRR) Modeling
To learn about the Cox-Ross-Rubinstein model, see:

Cox, J. C., S. A. Ross, and M. Rubinstein, “Option Pricing: A Simplified
Approach,” Journal of Financial Economics, Number 7, 1979, pp. 229-263.

B-5

B Bibliography

Implied Trinomial Tree (ITT) Modeling
To learn about the Implied Trinomial Tree model, see:

Chriss, Neil A., E. Derman, and I. Kani, “Implied trinomial trees of the
volatility smile,” Journal of Derivatives, 1996.

B-6

Leisen-Reimer Tree (LR) Modeling

Leisen-Reimer Tree (LR) Modeling
To learn about the Leisen-Reimer model, see:

Leisen D.P., M. Reimer, “Binomial Models for Option Valuation – Examining
and Improving Convergence,” Applied Mathematical Finance, Number 3,
1996, pp. 319-346.

B-7

B Bibliography

Equal Probabilities Tree (EQP) Modeling
To learn about the Equal Probabilities model, see:

Chriss, Neil A.,Black Scholes and Beyond: Option Pricing Models,
McGraw-Hill, 1996, ISBN 0-7863-1025-1.

B-8

Closed-Form Solutions Modeling

Closed-Form Solutions Modeling
To learn about the Bjerksund-Stensland 2002 model, see:

Bjerksund, P. and G. Stensland, Closed-Form Approximation of American
Options, Scandinavian Journal of Management, 1993, Vol. 9, Suppl., pp.
S88-S99.

Bjerksund, P. and G. Stensland, Closed Form
Valuation of American Options, Discussion paper 2002
(http://bora.nhh.no/bitstream/2330/711/1/bjerksund%20petter%200902.pdf).

B-9

B Bibliography

Financial Derivatives
You can find information on the creation of financial derivatives and their
role in the marketplace in numerous sources. Among those consulted in the
development of Financial Derivatives Toolbox software are:

Chance, Don. M., An Introduction to Derivatives, The Dryden Press, 1998,
ISBN 0-030-024483-8.

Fabozzi, Frank J., Treasury Securities and Derivatives, Frank J. Fabozzi
Associates, 1998, ISBN 1-883249-23-6.

Wilmott, Paul, Derivatives: The Theory and Practice of Financial Engineering,
John Wiley and Sons, 1998, ISBN 0-471-983-89-6.

B-10

C

Examples

Use this list to find examples in the documentation.

C Examples

Instrument Portfolio Examples
“Creating New Instruments or Properties” on page 1-11
“instfind Examples” on page 1-14
“instselect Examples” on page 1-17

C-2

Interest Rate Environment Examples

Interest Rate Environment Examples
“Calculating Discount Factors from Rates” on page 2-22
“Calculating Rates from Discounts” on page 2-26
“Spot Curve to Forward Curve Conversion” on page 2-27
“Example: Pricing a Portfolio of Instruments” on page 2-39
“Example: Sensitivities and Prices” on page 2-40

C-3

C Examples

HJM Examples
“Specifying the Volatility Model (VolSpec)” on page 2-45
“Creating an HJM Tree” on page 2-51
“HJM Pricing Example” on page 2-66

C-4

Volatility Modeling

Volatility Modeling
“HJM Volatility Specification Example” on page 2-45

C-5

C Examples

BDT Examples
“BDT Volatility Specification Example” on page 2-47
“Creating a BDT Tree” on page 2-51
“BDT Tree Structure” on page 2-57
“BDT Pricing Example” on page 2-68

C-6

Rate Specification Creation

Rate Specification Creation
“Rate Specification Creation Example” on page 2-48
“Hull-White Model Calibration Example” on page 2-76

C-7

C Examples

Time Specification
“HJM Time Specification Example” on page 2-50
“Creating a BDT Time Specification” on page 2-50

C-8

Sensitivity

Sensitivity
“HJM Sensitivities Example” on page 2-74
“BDT Sensitivities Example” on page 2-75
“CRR Sensitivities Example” on page 3-46
“ITT Sensitivities Example” on page 3-47

C-9

C Examples

Treeviewer Examples
“Valuation Date Prices” on page 2-94
“Additional Observation Times” on page 2-96

C-10

Creating Equity Derivatives

Creating Equity Derivatives
“Stock Structure Example Using a Binary Tree” on page 3-5
“TimeSpec Example Using a Binary Tree” on page 3-6
“Examples of Binary Tree Creation” on page 3-7
“Stock Structure Example Using an Implied Trinomial Tree” on page 3-10
“TimeSpec Example Using an Implied Trinomial Tree” on page 3-11
“Option Stock Structure Example Using an Implied Trinomial Tree” on
page 3-13

C-11

C Examples

Pricing Equity Derivatives
“Computing Prices Using CRR” on page 3-35
“Computing Prices Using EQP” on page 3-37
“Computing Prices Using ITT” on page 3-39

C-12

Closed-Form Solution Examples

Closed-Form Solution Examples
“Computing Prices and Sensitivities Using the Black-Scholes Model” on
page 3-55
“Computing Prices and Sensitivities Using the Black Model” on page 3-57
“Computing Prices and Sensitivities Using the Roll-Geske-Whaley Model”
on page 3-59
“Computing Prices and Sensitivities Using the Bjerksund-Stensland
Model” on page 3-60

C-13

C Examples

Hedging Examples
“Maintaining Existing Allocations” on page 4-6
“Partially Hedged Portfolio” on page 4-7
“Fully Hedged Portfolio” on page 4-8
“Minimizing Portfolio Sensitivities” on page 4-9
“Self-Financing Hedges with hedgeslf” on page 4-12
“Specifying Constraints with ConSet” on page 4-16

C-14

Hedging with Constrained Portfolios

Hedging with Constrained Portfolios
“Example: Fully Hedged Portfolio” on page 4-21
“Example: Minimize Portfolio Sensitivities” on page 4-24
“Example: Under-Determined System” on page 4-25
“Example: Portfolio Constraints with hedgeslf” on page 4-27

C-15

C Examples

C-16

Glossary

Glossary

American option
An option that can be exercised any time until its expiration date.
Contrast with European option on page Glossary-4.

arbitrary cash flow instrument
A set of generic cash flow amounts for which a price needs to be
established.

Asian option
An option whose payoff depends upon the average price of the
underlying asset over a certain period of time.

asset-or-nothing option
A digital option that pays the value of the underlying security if the
option expires in the money.

barrier option
An option that is activated or deactivated only if the price of the
underlying asset crosses a barrier. See also knock-in on page
Glossary-6 and knock-out on page Glossary-6. If the option fails to
execute, the seller may pay to the purchaser a predetermined rebate
on page Glossary-8.

barrier option
An option that is activated or deactivated only if the price of the
underlying asset crosses a barrier. See also knock-in on page
Glossary-6 and knock-out on page Glossary-6. If the option fails to
execute, the seller may pay to the purchaser a predetermined rebate
on page Glossary-8.

basket option
An option that provides a payoff dependent on the value of a portfolio of
assets.

beta
The price volatility of a financial instrument relative to the price
volatility of a market or index as a whole. Beta is most commonly used

Glossary-1

Glossary

with respect to equities. A high-beta instrument is riskier than a
low-beta instrument.

binomial model
A method in which the probability over time of each possible price or
rate follows a binomial distribution. The basic assumption is that prices
or rates can move to only two values (one higher and one lower) over
any short time period. See also trinomial model on page Glossary-10.

Black-Derman-Toy (BDT) model
A model for pricing interest rate derivatives where all security prices
and rates depend upon the short rate (annualized one-period interest
rate).

bond
A long-term debt security with fixed interest payments and fixed
maturity date.

bond option
The right to sell a bond back to the issuer (put) or to redeem a bond from
its current owner (call) at a specific price and on a specific date.

bushy tree
A tree of prices or interest rates in which the number of branches
increases exponentially relative to observation times; branches never
recombine. Opposite of a recombining tree on page Glossary-8.

call
1. An option to buy a certain quantity of a stock or commodity for a
specified price within a specified time. See also put on page Glossary-7.

2. A demand to submit bonds to the issuer for redemption before the
maturity date.

call swaption
Allows the option buyer to enter into an interest rate swap in which the
buyer of the option pays the fixed rate and receives the floating rate.

Glossary-2

Glossary

callable bond
A bond that allows the issuer to buy back the bond at a predetermined
price at specified future dates. The bond contains an embedded call
option; that is, the holder has sold a call option to the issuer. See also
puttable bond on page Glossary-8.

cap
Interest-rate option that guarantees that the rate on a floating-rate
loan will not exceed a certain level.

caplet
An interim cap component in a multiperiod interest-rate cap agreement.

cash-or-nothing option
A digital option that pays some fixed amount of cash if the option
expires in the money.

compound option
An option on an option, such as a call on a call, a put on a put, a call
on a put, or a put on a call.

delta
The rate of change of the price of a derivative security relative to the
price of the underlying asset; that is, the first derivative of the curve that
relates the price of the derivative to the price of the underlying security.

derivative
A financial instrument that is based on some underlying asset. For
example, an option is a derivative instrument based on the right to buy
or sell an underlying instrument.

deterministic model
An interest rate model in which the values of the rates in the next time
step are determined solely by the values of the rates in the current
time step.

digital option
An option whose payout is fixed after the underlying stock exceeds the
predetermined threshold or strike price.

Glossary-3

Glossary

discount factor
Coefficient used to compute the present value of future cash flows.

dollar sensitivity
Sensitivity reported as a dollar price change instead of a percentage
price change.

down-and-in
A type of barrier option on page Glossary-1 that becomes active if the
barrier is reached from above. See also knock-in on page Glossary-6.

down-and-out
A type of barrier option on page Glossary-1 that becomes deactivated
if the barrier is reached from above. See also knock-out on page
Glossary-6.

European option
An option that can be exercised only on its expiration date. Contrast
with American option on page Glossary-1.

ex-dividend date
Date when a declared dividend belongs to the seller rather than the
buyer.

exercise price
The price set for buying an asset (call) or selling an asset (put). The
strike price.

exotic option
Any nonstandard option. Opposite of vanilla option on page
Glossary-10.

fixed lookback option
Strike price is fixed at purchase. The underlying is priced at its highest
or lowest level, depending whether it is a call or put, during the life of
the option rather than expiring at market.

Glossary-4

Glossary

fixed-rate note
A long-term debt security with preset interest rate and maturity, by
which the interest must be paid. The principal may or may not be paid
at maturity.

floating lookback option
Strike price is fixed at maturity. For a call, the price is fixed at the
lowest price during the life of the option; for a put it is fixed at the
highest price.

floating-rate note
A security similar to a bond, but in which the note’s interest rate is reset
periodically, relative to a reference index rate, to reflect fluctuations
in market interest rates.

floor
Interest-rate option that guarantees that the rate on a floating-rate loan
will not fall below a certain level.

floorlet
One of the interim period floors in a multiple period floor agreement.

forward curve
The curve of forward interest rates vs. maturity dates for bonds.

forward rate
The future interest rate of a bond inferred from the term structure,
especially from the yield curve of zero-coupon bonds, calculated from the
growth factor of an investment in a zero held until maturity.

gamma
The rate of change of delta for a derivative security relative to the price
of the underlying asset; that is, the second derivative of the option price
relative to the security price.

gap option
A digital option in which one strike decides if the option is in or out of
money and another strike decides the size the size of the payoff.

Glossary-5

Glossary

Heath-Jarrow-Morton (HJM) model
A model of the interest rate term structure that works with a type of
interest rate tree called a bushy tree on page Glossary-2.

hedge
A securities transaction that reduces or offsets the risk on an existing
investment position.

instrument set
A collection of financial assets. A portfolio.

inverse discount
A factor by which the present value of an asset is multiplied to find its
future value. The reciprocal of the discount factor.

irregular coupon
A bond interest payment for more or less than six-months’ interest. The
first coupon on many bonds is irregular because payment is other than
six months from the dated date.

knock-in
A barrier option on page Glossary-1 that is activated when the price of
the underlying asset achieves a designated target. There are two types:
up-and-in on page Glossary-10 and down-and-in on page Glossary-4.

knock-out
A barrier option on page Glossary-1 that is deactivated when the
price of the underlying asset achieves a designated target. There are
two types: up-and-out on page Glossary-10 and down-and-out on
page Glossary-4.

Lambda
The percentage change in an option price divided by the percentage
change in an underlying price.

least-squares method
A mathematical method of determining the best fit of a curve to a series
of observations by choosing the curve that minimizes the sum of the
squares of all deviations from the curve.

Glossary-6

Glossary

long rate
The yield on a zero-coupon Treasury bond.

lookback option
An option that reduces uncertainties associated with the timing of
market entry. Lookback options can be either fixed lookback option
on page Glossary-4 and floating lookback option on page Glossary-5.

mean reversion
The tendency of a variable to return to its mean value after reaching a
point of excessive positive or negative valuation relative to the mean.

option
A right to buy or sell specific securities or commodities at a stated price
(exercise or strike price) within a specified time. An option is a type of
derivative.

per-dollar sensitivity
The dollar sensitivity on page Glossary-8 divided by the corresponding
instrument price.

portfolio
A collection of financial assets. Also called an instrument set.

price tree structure
A MATLAB structure that holds all pricing information.

price vector
A vector of instrument prices.

pricing options structure
A MATLAB structure that defines how the price tree is used to find
the price of instruments in the portfolio, and how much additional
information is displayed in the command window when the pricing
function is called.

put
An option to sell a stipulated amount of stock or securities within a
specified time and at a fixed exercise price. See also call on page
Glossary-2.

Glossary-7

Glossary

put swaption
Allows the option buyer to enter into an interest rate swap in which the
buyer of the option receives the fixed rate and pays the floating rate.

puttable bond
A bond that allows the holder to redeem the bond at a predetermined
price at specified future dates. The bond contains an embedded put
option; that is, the holder has bought a put option. See also callable
bond on page Glossary-3.

rainbow option
A single option linked to two or more underlying assets. In order for the
option to pay off, all the underlying assets must move in the intended
direction.

rate specification
A MATLAB structure that holds all information needed to identify
completely the evolution of interest rates.

rebate
A predetermined amount of money paid to the purchaser of a barrier
option on page Glossary-1 if the option fails to execute.

recombining tree
A tree of prices or interest rates whose branches recombine over time.
Opposite of a bushy tree on page Glossary-2.

self-financing hedge
A trading strategy whereby the value of a portfolio after rebalancing is
equal to its value at any previous time.

sensitivity
The “what if” relationship between variables; the degree to which
changes in one variable cause changes in another variable. A specific
synonym is volatility. See also dollar sensitivity on page Glossary-4.

short rate
The annualized one-period interest rate.

Glossary-8

Glossary

sinking fund bond
A sinking fund bond is a coupon bond with a sinking fund provision.
This provision obligates the issuer to amortize portions of the principal
prior to maturity, affecting bond prices since the time of the principal
repayment changes.

spot curve, spot yield curve
See zero curve, zero-coupon yield curve on page Glossary-11.

spot rate
The current interest rate appropriate for discounting a cash flow of
some given maturity.

spread
For options, a combination of call or put options on the same stock with
differing exercise prices or maturity dates.

stepped coupon bond
A step-up and step-down bond is a debt security with a predetermined
coupon structure over time.

stochastic model
Involving or containing a random variable or variables; involving chance
or probability.

strike
Exercise a put or call option.

strike price
See exercise price on page Glossary-4.

supershare option
A digital option that pays out a proportion of the assets underlying a
portfolio if the asset lies between a lower and an upper bound at the
expiry of the option.

swap
A contract between two parties to exchange cash flows in the future
according to some formula.

Glossary-9

Glossary

swaption
An option on an interest rate swap. It grants the option buyer the right
to enter into an interest rate swap at a future date.

time specification
A MATLAB structure that represents the mapping between times and
dates for interest rate quoting.

trinomial model
A method in which the basic assumption is that prices or rates can move
to one of three possible values over any short time period. At any time
step the price or rate direction can be upward, neutral, or downward.
See also binomial model on page Glossary-2.

under-determined system
A set of simultaneous equations in which the number of independent
variables exceeds the number of equations in the set, leading to an
infinite number of solutions.

up-and-in
A type of barrier option on page Glossary-1 that becomes active if the
barrier is reached from below. See also knock-in on page Glossary-6.

up-and-out
A type of barrier option on page Glossary-1 that becomes deactivated
if the barrier is reached from below. See also knock-out on page
Glossary-6.

vanilla option
A common option, such as a put or call. Opposite of exotic option
on page Glossary-4.

vanilla swap
A swap on page Glossary-9 agreement to exchange a fixed rate for a
floating rate.

vega
The rate of change in the price of a derivative security relative to the
volatility of the underlying security. When vega is large, the security is
sensitive to small changes in volatility.

Glossary-10

Glossary

volatility specification
A MATLAB structure that specifies the forward rate volatility process.

yields
The zero coupon rate.

yield curve
The zero curve.

yield volatility
The zero coupon volatilities.

zero curve, zero-coupon yield curve
A yield curve for zero-coupon bonds; zero rates versus maturity dates.
Since the maturity and duration (Macaulay duration) are identical for
zeros, the zero curve is a pure depiction of supply/demand conditions for
loanable funds across a continuum of durations and maturities. Also
known as spot curve or spot yield curve.

zero-coupon bond, or zero
A bond that, instead of carrying a coupon, is sold at a discount from its
face value, pays no interest during its life, and pays the principal only
at maturity.

Glossary-11

Glossary

Glossary-12

Index

IndexA
Asian option

defined 3-22
Asian options

fixed and floating strike, by CRR 6-3
fixed and floating strike, by EQP 6-6
fixed and floating strike, by ITT 6-9

asianbycrr 6-2
asianbyeqp 6-5
asianbyitt 6-8
assetbybls 6-11
assetsensbybls 6-13
average price options

by CRR 6-3
by EQP 6-6
by ITT 6-9

average strike options
by CRR 6-3
by EQP 6-6
by ITT 6-9

B
bank format 4-4
barrier option

defined 3-23
types of 3-23

barrierbycrr 6-17
barrierbyeqp 6-20
barrierbyitt 6-23
basket option

defined 3-25
basketbyju 6-26
basketbyls 6-30
basketsensbyju 6-34
basketsensbyls 6-38
basketstockspec 6-44
BDT model 2-17
BDT Trees

functions 5-6

bdtprice 6-49
bdtsens 6-58
bdttimespec 6-61
bdttree 6-63

input arguments 2-43
bdtvolspec 6-65

forms of volatility 2-44
Bermuda option

bond 2-6
stock 3-32

binomial trees 2-18
Bjerksund-Stensland Option Pricing Model

functions 5-19
BK model 2-17
BK Tree Pricing and Sensitivity

functions 5-9
BK Trees

functions 5-9
bkprice 6-67
bksens 6-77
bktimespec 6-80
bktree 6-82
bkvolspec 6-88
Black Option Pricing Model

functions 5-18
Black-Derman-Toy (BDT) model 2-42
Black-Derman-Toy tree 2-65
Black-Karasinski (BK) model 2-43
Black-Scholes Option Pricing Model

functions 5-17
bond

defined 2-3
bond with embedded options

defined 2-6
bondbybdt 6-90
bondbybk 6-100
bondbyhjm 6-110
bondbyhw 6-120
bondbyzero 6-130
bonds with an amortization schedule, defined 2-5

Index-1

Index

bushpath 6-140
example 2-56

bushshape 6-142
bushy trees 2-19

C
calibrating HW model

using market data 2-76
cap, defined 2-12
capbybdt 6-145
capbybk 6-149
capbyblk 6-152
capbyhjm 6-155
capbyhw 6-158
cashbybls 6-161
cashsensbybls 6-163
cfbybdt 6-167
cfbybk 6-171
cfbyhjm 6-175
cfbyhw 6-179
cfbyzero 6-183
chooserbybls 6-186
classfin 6-188
closed-form solutions

types of 3-51
compound option

defined 3-26
compoundbyeqp 6-193
compoundbyitt 6-196
computing prices and sensitivities

Bjerksund-Stensland model 3-60
Black model 3-57
Black-Scholes model 3-55
Roll-Geske-Whaley model 3-59

constraints 4-24
dependent 4-24
inconsistent 4-27

constructor 1-10
Controlling Defaults and Options

functions 5-22
convbyzero 6-216
coupoundbycrr 6-190
CRR and EQP

differences 3-21
CRR model description 3-2
CRR Tree Pricing and Sensitivity

functions 5-13
CRR Trees

functions 5-13
crrprice 6-199
crrsens 6-203
crrtimespec 6-206
crrtree 6-208
cvtree 6-212

D
date2time 6-216
datedisp 6-219
delta 2-40

defined 4-3
dependent constraints 4-24
deriv.mat 2-19
derivget 6-221
derivset 6-223
deterministic model 2-37
differences between CRR and EQP 3-21
digital option

defined 3-28
types of 3-28

disc2rate 6-226
purpose 2-22
syntax 2-26

discount factors 2-22
discrete time models 3-2
dollar sensitivities

from interest-rate models 2-73
from interest-rate term structure 2-40
from stock trees 3-45

Index-2

Index

E
EQP model description 3-2
EQP Tree Pricing and Sensitivity

functions 5-14
EQP Trees

functions 5-14
eqpprice 6-230
eqpsens 6-233
eqptimespec 6-236
eqptree 6-238
equity binary trees

building 3-3
equity exotic options

types 3-33
types of 3-22

Equity Instruments
functions 5-12

F
field 1-11
Financial Object Structures

functions 5-24
fixed lookback options 3-27
fixed-rate note, defined 2-10
fixedbybdt 6-242
fixedbybk 6-247
fixedbyhjm 6-252
fixedbyhw 6-257
fixedbyzero 6-262
floatbybdt 6-267
floatbybk 6-274
floatbyhjm 6-281
floatbyhw 6-288
floatbyzero 6-295
floating lookback option 3-27
floating-rate note with an amortization schedule,

defined 2-11
floating-rate note, defined 2-11
floor, defined 2-13

floorbybdt 6-302
floorbybk 6-306
floorbyblk 6-309
floorbyhjm 6-312
floorbyhw 6-315

G
gamma 2-40

defined 4-3
gapbybls 6-318
gapsensbybls 6-320

H
Heath-Jarrow-Morton (HJM) model 2-42
Heath-Jarrow-Morton tree 2-65
hedgeopt 6-324

purpose 4-3
hedgeslf 6-328

purpose 4-3
hedging

considerations 4-2
functions 4-3
goals 4-3

Hedging Portfolios
functions 5-25

HJM model
described 2-17

HJM pricing options structure A-2
HJM Tree Pricing and Sensitivity

functions 5-5
HJM Trees

functions 5-4
hjmprice 6-332
hjmsens 6-341
hjmtimespec 6-344
hjmtree 6-346

input arguments 2-43
HJMTree 2-65

Index-3

Index

hjmvolspec 6-348
forms of volatility 2-44

Hull-White (HW) model 2-42
HW model 2-17
HW Tree Pricing and Sensitivity

functions 5-8
HW Trees

functions 5-7
hwcalbycap 6-352
hwcalbyfloor 6-356
hwprice 6-360
hwsens 6-370
hwtimespec 6-373
hwtree 6-375
hwvolspec 6-381

I
implied trinomial trees

building 3-8
impvbybjs 6-383
impvbyblk 6-386
impvbybls 6-389
impvbyrgw 6-392
inconsistent constraints 4-27
instadd 6-395

creating an instrument 1-6
instaddfield 6-398

creating new instruments 1-11
instasian 6-402
instbarrier 6-405
instbond 6-407
instcap 6-411
instcf 6-413
instcompound 6-415
instdelete 6-418
instdisp 6-421
instfields 6-423
instfind 6-426

purpose 1-13

syntax 1-14
instfixed 6-429
instfloat 6-432
instfloor 6-435
instget 6-437
instgetcell 6-442
instlength 6-447
instlookback 6-448
instoptbnd 6-450
instoptembnd 6-453
instoptstock 6-459
instrangefloat 6-462
instrument

creating 1-11
instrument constructor 1-10
instrument index 1-13
Instrument Portfolio Handling

functions 5-23
instselect 6-467

purpose 1-13
instsetfield 6-470
instswap 6-474
instswaption 6-479
insttypes 6-484
intenvget 6-486

purpose 2-34
intenvprice 6-488
intenvsens 6-490
intenvset 6-493

purpose 2-32
interest rate derivatives

using Black option pricing model 2-87
interest rate term structure, defined 2-22
Interest-Rate Closed-Form Solutions

functions 5-11
Interest-Rate Instruments

functions 5-2
Interest-Rate Term Structure

functions 5-3
inverse discount 2-54

Index-4

Index

isafin 6-501
ITT model description 3-3
ITT Tree Pricing and Sensitivity

functions 5-15
ITT Trees

functions 5-15
ittprice 6-502
ittsens 6-505
itttimespec 6-509
itttree 6-510

L
least squares problem 4-21
Longstaff-Schwartz Option Pricing Model

functions 5-21
lookback option

defined 3-27
types of 3-27

lookbackbycrr 6-517
lookbackbyeqp 6-520
lookbackbyitt 6-523
LR model description 3-3
LR Tree Pricing and Sensitivity

functions 5-15
LR Trees

functions 5-15
lrtimespec 6-526
lrtree 6-528

M
maxassetbystulz 6-531
maxassetsensbystulz 6-534
minassetbystulz 6-538
minassetsensbystulz 6-541
mkbush 6-545
mktree 6-547
mktrintree 6-548
mmktbybdt 6-549

mmktbyhjm 6-551
model

Black-Derman-Toy (BDT) 2-42
Black-Karasinski (BK) 2-43
Cox-Ross-Rubinstein (CRR) 3-2
Equal Probabilities (EQP) 3-2
Heath-Jarrow-Morton (HJM) 2-42
Hull-White (HJW) 2-42
Implied Trinomial Tree (ITT) 3-3
Leisen-Reimer (LR) 3-3

multifactor volatility models 2-45

N
Nengjiu Ju Approximation Model

functions 5-19

O
OAS for callable and puttable bonds, defined 2-7
oasbybdt 6-553
oasbybk 6-561
oasbyhjm 6-569
oasbyhw 6-577
object 1-10
observation time zero 2-70
optbnbybk 6-591
optbnbyhw 6-602
optbndbybdt 6-585
optbndbyhjm 6-597
optembndbybdt 6-608
optembndbybk 6-619
optembndbyhjm 6-628
optembndbyhw 6-637
Options argument

input to pricing functions 2-65
optstockbybjs 6-648
optstockbyblk 6-651
optstockbybls 6-653
optstockbycrr 6-656

Index-5

Index

optstockbyeqp 6-659
optstockbyitt 6-662
optstockbylr 6-665
optstockbyrgw 6-670
optstocksensbybjs 6-672
optstocksensbyblk 6-676
optstocksensbybls 6-679
optstocksensbylr 6-683
optstocksensbyrgw 6-687

P
per-dollar sensitivities

calculating 2-75
example 2-41

portfolio 1-6
creation 1-6
management 1-10

portfolio pricing functions
equity derivatives 3-33
interest-rate based 2-64

price swaption using Black model, defined 2-16
price tree structure 2-71
Price vector

BDT 2-73
HJM 2-70

pricing options
default structure A-2
structure A-2

R
rainbow option

defined 3-29
types of 3-29

range note, defined 2-13
rangefloatbybdt 6-691
rangefloatbybk 6-696
rangefloatbyhjm 6-701
rangefloatbyhw 6-706

rate specification 2-22
rate2disc 6-711

creating inverse discounts 2-54
purpose 2-22

RateSpec
creation of 2-45
defined 2-22
using with HJM 2-48

ratetimes 6-717
purpose 2-22

rebate 3-24
recombining trees 2-19
Role-Geske-Whaley Option Pricing Model

functions 5-19
root node 6-821

S
sensitivity

per-dollar, viewing 2-75
types of 2-40

sensitivity functions 2-73
short rate 2-17
sinking fund bonds with embedded option,

defined 2-9
sinking fund bonds, defined 2-5
specific-instrument pricing functions 2-65
stepped coupon bonds with callable and puttable

features, defined 2-8
stepped coupon bonds, defined 2-4
stochastic model 2-37
stock structure 3-4 3-9
stockoptspec 6-721
StockOptSpec

for stock trees 3-12
stockspec 6-725
Stulz Option Pricing Model

functions 5-20
supersharebybls 6-729
supersharesensbybls 6-731

Index-6

Index

swapwith an amortization schedule, defined 2-14
swap, defined 2-14
swapbybdt 6-735
swapbybk 6-744
swapbyhjm 6-752
swapbyhw 6-762
swapbyzero 6-771
swaption, defined 2-15
swaptionbybdt 6-784
swaptionbybk 6-789
swaptionbyblk 6-794
swaptionbyhjm 6-800 6-805

T
time2date 6-810
TimeSpec

defined 2-45
for stock trees 3-6 3-11
using 2-49

Tree Manipulation
functions 5-10 5-16

treepath 6-814
trees

binomial 2-18
bushy 2-19
recombining 2-19
trinomial 2-18

treeshape 6-816

treeviewer 6-818
displaying BDT trees 6-827
displaying HJM trees 6-822
examining values with 2-88
purpose 2-20
with recombining trees 2-91

trinomial trees 2-18
trintreepath 6-835
trintreeshape 6-837
TypeString argument 1-6

U
under-determined system 4-23

V
vanilla option

defined 3-30
vanilla swaps 2-14
vega, defined 4-3
volatility

process 2-45
VolSpec

BDT 2-47
calling syntax 2-44
HJM 2-44
using 2-45

Index-7

	toc
	Getting Started
	Product Description
	Key Features

	Interest-Rate-Based Derivatives
	Equity-Based Derivatives
	Expected Users
	Portfolio Creation
	Introduction
	Interest-Rate-Based Derivatives
	Equity Derivatives
	Adding Instruments to an Existing Portfolio

	Portfolio Management
	Instrument Constructors
	Creating New Instruments or Properties
	Searching or Subsetting a Portfolio
	instfind
	instselect

	Interest-Rate Derivatives
	Understanding Interest-Rate Derivative Instruments
	Introduction
	Bond
	Stepped Coupon Bonds
	Sinking Fund Bonds
	Bonds with an Amortization Schedule

	Bond Options
	Bond with Embedded Options
	OAS for Callable and Puttable Bonds
	Stepped Coupon Bonds with Callable and Puttable Features
	Sinking Fund Bonds with an Embedded Option

	Fixed-Rate Note
	Floating-Rate Note
	Floating-Rate Note with an Amortization Schedule

	Cap
	Floor
	Range Note
	Swap
	Swap with an Amortization Schedule

	Swaption
	Price Swaption Using Black Model

	Overview of Interest-Rate Tree Models
	Interest-Rate Modeling
	Rate and Price Trees
	Types of Trees

	Viewing Rate or Price Movement with This Toolbox

	Understanding the Interest-Rate Term Structure
	Introduction
	Interest Rates Versus Discount Factors
	Calculating Discount Factors from Rates
	Optional Time Factor Outputs
	Alternative Syntax (rate2disc)
	Calculating Rates from Discounts
	Alternative Syntax (disc2rate)

	Interest-Rate Term Conversions
	Spot Curve to Forward Curve Conversion
	Alternative Syntax (ratetimes)

	Functions That Model the Interest-Rate Term Structure
	Creating or Modifying (intenvset)
	Obtaining Specific Properties (intenvget)

	Computing Prices and Sensitivities Using the Interest-Rate Term
	Introduction
	Computing Instrument Prices
	Example: Pricing a Portfolio of Instruments

	Computing Instrument Sensitivities
	Example: Sensitivities and Prices

	Understanding Interest-Rate Tree Models
	Introduction
	Building a Tree of Forward Rates
	Calling Sequence

	Specifying the Volatility Model (VolSpec)
	Creating an HJM Volatility Model
	Creating a BDT Volatility Model

	Specifying the Interest-Rate Term Structure (RateSpec)
	Rate Specification Creation Example

	Specifying the Time Structure (TimeSpec)
	Creating a Time Specification

	Examples of Tree Creation
	Creating an HJM Tree
	Creating a BDT Tree

	Examining Trees
	HJM Tree Structure
	BDT Tree Structure
	HW and BK Tree Structures

	Computing Prices and Sensitivities Using Interest-Rate Tree Mode
	Introduction
	Computing Instrument Prices
	HJM Pricing Example
	BDT Pricing Example
	Price Vector Output
	Price Tree Structure Output

	Computing Instrument Sensitivities
	HJM Sensitivities Example
	BDT Sensitivities Example

	Calibrating the Hull-White Model Using Market Data
	Hull-White Model Calibration Example

	Interest-Rate Derivatives Using Closed-Form Solutions
	Pricing Caps and Floors Using the Black Option Model

	Graphical Representation of Trees
	Introduction
	Observing Interest Rates
	Observing Instrument Prices
	Valuation Date Prices
	Additional Observation Times

	Equity Derivatives
	Understanding Equity Trees
	Introduction
	Building Equity Binary Trees
	Calling Sequence for Equity Binary Trees
	Specifying the Stock Structure for Equity Binary Trees
	Stock Structure Example Using a Binary Tree
	Specifying the Interest-Rate Term Structure for Equity Binary Tr
	Specifying the Tree-Time Term Structure for Equity Binary Trees
	TimeSpec Example Using a Binary Tree
	Examples of Binary Tree Creation

	Building Implied Trinomial Trees
	Calling Sequence for Implied Trinomial Trees
	Specifying the Stock Structure for Implied Trinomial Trees
	Stock Structure Example Using an Implied Trinomial Tree
	Specifying the Interest-Rate Term Structure for Implied Trinomia
	Specifying the Tree-Time Term Structure for Implied Trinomial Tr
	TimeSpec Example Using an Implied Trinomial Tree
	Specifying the Option Stock Structure for Implied Trinomial Tree
	Option Stock Structure Example Using an Implied Trinomial Tree
	Creating an Implied Trinomial Tree

	Examining Equity Trees
	Examining a CRRTree
	Examining an ITTTree
	Isolating a Specific Node for a CRRTree
	Isolating a Specific Node for an ITTTree

	Differences Between CRR and EQP Tree Structures

	Understanding Equity Exotic Options
	Introduction
	Asian Option
	Barrier Option
	Up Knock-In
	Up Knock-Out
	Down Knock-In
	Down Knock-Out
	Rebates

	Basket Option
	Compound Option
	Lookback Option
	Digital Option
	Rainbow Option
	Vanilla Option
	Bermuda Put and Call Schedule

	Computing Prices and Sensitivities for Equity Derivatives Using
	Computing Instrument Prices
	Required Arguments
	Optional Argument

	Computing Prices Using CRR
	Computing Prices Using EQP
	Computing Prices Using ITT
	Examining Output from the Pricing Functions
	Price Tree Output for CRR
	Price Tree Output for ITT
	Prices for Lookback and Asian Options for Equity Trees

	Computing Instrument Sensitivities
	CRR Sensitivities Example
	ITT Sensitivities Example

	Graphical Representation of CRR, EQP, LR, and ITT Trees

	Equity Derivatives Using Closed-Form Solutions
	Introduction
	Black-Scholes Model
	Black Model
	Roll-Geske-Whaley Model
	Bjerksund-Stensland 2002 Model

	Computing Prices and Sensitivities Using the Black-Scholes Model
	Computing Prices and Sensitivities Using the Black Model
	Computing Prices and Sensitivities Using the Roll-Geske-Whaley M
	Computing Prices and Sensitivities Using the Bjerksund-Stensland

	Hedging Portfolios
	Hedging
	Hedging Functions
	Introduction
	Hedging with hedgeopt
	Maintaining Existing Allocations
	Partially Hedged Portfolio
	Fully Hedged Portfolio
	Minimizing Portfolio Sensitivities

	Self-Financing Hedges with hedgeslf

	Specifying Constraints with ConSet
	Introduction
	Setting Constraints
	Portfolio Rebalancing

	Hedging with Constrained Portfolios
	Overview
	Example: Fully Hedged Portfolio
	Additional Constraints

	Example: Minimize Portfolio Sensitivities
	Example: Under-Determined System
	Example: Portfolio Constraints with hedgeslf

	Function Reference
	Interest-Rate Instruments
	Interest-Rate Term Structure
	Interest-Rate Tree Models
	Heath-Jarrow-Morton Trees
	Heath-Jarrow-Morton Tree Utililites
	Black-Derman-Toy Trees
	Black-Derman-Toy Tree Utilities
	Hull-White Trees
	Hull-White Tree Utilities
	Black-Karasinski Trees
	Black-Karasinski Tree Utilities
	Tree Manipulation

	Interest-Rate Closed-Form Solutions
	Equity Instruments
	Equity Tree Models
	Cox-Ross-Rubinstein Trees
	Cox-Ross-Rubinstein Tree Utilities
	Equal Probabilities Binomial Trees
	Equal Probabilities Binomial Tree Utilities
	Leisen-Reimer Trees
	Leisen-Reimer Tree Utilities
	Implied Trinomial Trees
	Implied Trinomial Tree Utilities
	Tree Manipulation

	Equity Derivative Closed-Form Solutions
	Black-Scholes Option Pricing Model
	Black Option Pricing Model
	 Role-Geske-Whaley Option Pricing Model
	Bjerksund-Stensland Option Pricing Model
	Nengjiu Ju Approximation Pricing Model
	Stulz Option Pricing

	Monte Carlo Simulation for Equity Derivatives
	Longstaff-Schwartz Option Pricing Model

	Controlling Defaults and Options
	Portfolio Handling for Interest and Equity Instruments
	Financial Object Structures
	Hedging Portfolios

	Functions — Alphabetical List
	Derivatives Pricing Options
	Pricing Options Structure
	Introduction
	Default Structure
	Diagnostics Field
	Warnings Field
	ConstRate Field
	BarrierMethod Field

	Customizing the Structure

	Bibliography
	Black-Derman-Toy (BDT) Modeling
	Heath-Jarrow-Morton (HJM) Modeling
	Hull-White (HW) and Black-Karasinski (BK) Modeling
	Cox-Ross-Rubinstein (CRR) Modeling
	Implied Trinomial Tree (ITT) Modeling
	Leisen-Reimer Tree (LR) Modeling
	Equal Probabilities Tree (EQP) Modeling
	Closed-Form Solutions Modeling
	Financial Derivatives

	Examples
	Instrument Portfolio Examples
	Interest Rate Environment Examples
	HJM Examples
	Volatility Modeling
	BDT Examples
	Rate Specification Creation
	Time Specification
	Sensitivity
	Treeviewer Examples
	Creating Equity Derivatives
	Pricing Equity Derivatives
	Closed-Form Solution Examples
	Hedging Examples
	Hedging with Constrained Portfolios

	Glossary
	Index

